CN109841608B - 瞬态电压抑制器 - Google Patents

瞬态电压抑制器 Download PDF

Info

Publication number
CN109841608B
CN109841608B CN201810048116.0A CN201810048116A CN109841608B CN 109841608 B CN109841608 B CN 109841608B CN 201810048116 A CN201810048116 A CN 201810048116A CN 109841608 B CN109841608 B CN 109841608B
Authority
CN
China
Prior art keywords
well region
electrode
well
region
doped region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810048116.0A
Other languages
English (en)
Other versions
CN109841608A (zh
Inventor
陈志豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuanxin Semiconductor Co ltd
Original Assignee
Yuanxin Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuanxin Semiconductor Co ltd filed Critical Yuanxin Semiconductor Co ltd
Publication of CN109841608A publication Critical patent/CN109841608A/zh
Application granted granted Critical
Publication of CN109841608B publication Critical patent/CN109841608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0259Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements
    • H01L27/0262Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base coupled to the collector of the other transistor, e.g. silicon controlled rectifier [SCR] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Thyristors (AREA)

Abstract

本发明涉及一种瞬态电压抑制器,包括基板、第一阱区、第二阱区、第三阱区、第一电极、第二电极及掺杂区。基板具有表面。第一阱区形成于基板中且邻近表面。第二阱区形成于第一阱区中且邻近表面。第三阱区形成于第一阱区中且邻近表面。第二阱区与第三阱区之间具有间隙。第一电极形成于第二阱区中且邻近表面。第二电极形成于第一阱区中且邻近表面。第一阱区及第一电极具有第一电性。第二阱区、第三阱区及第二电极具有第二电性。掺杂区形成于第一电极与第二电极之间且邻近表面。掺杂区分别电性连接第一阱区与第三阱区。本发明可有效降低瞬态电压抑制器的整体电阻并可调控瞬态电压抑制器的导通电阻。

Description

瞬态电压抑制器
技术领域
本发明与瞬态电压的抑制有关,特别是关于一种瞬态电压抑制器(TransientVoltage Suppressor,TVS)。
背景技术
一般而言,静电放电是影响电子产品良率及可靠度的重要因素之一,尤其是现今的电子产品有相当多的热插拔界面,加上消费者使用行为的改变,使得静电放电导致电子产品毁损的风险变高。因此,很多厂商均将静电放电测试规格要求提高至最高等级。在众多的静电保护器产品中,由于瞬态电压抑制器阵列(TVS array)具有导通速度快、箝制电压低等优点,已成为符合最高等级静电放电测试规格的最佳选择。
请参照图1,图1为传统的瞬态电压抑制器的电流-电压特性曲线图。如图1所示,当顺向电压+V很小时,瞬态电压抑制器会呈现高阻值的特性而处于OFF(关闭)状态;当顺向电压+V达到崩溃电压(Breakdown voltage)VBR时,瞬态电压抑制器会被导通而处于ON(开启)状态,此时其阻值会变小。这种将电压由OFF(关闭)状态拉回ON(开启)状态的现象称之为“弹回”(Snap back),而导通电压VON的大小通常会由闸极所接收到的电流大小来决定。
然而,传统的瞬态电压抑制器的结构较复杂,需要闸极结构来控制导通电压VON。此外,当静电放电事件发生时,传统的瞬态电压抑制器中的电流会集中于同一电流路径,导致瞬态电压抑制器的整体电阻难以降低。
发明内容
有鉴于此,本发明提供一种瞬态电压抑制器,以解决现有技术所述及的问题。
本发明的一较佳具体实施例为一种瞬态电压抑制器。于此实施例中,瞬态电压抑制器包括基板、第一阱区、第二阱区、第三阱区、第一电极、第二电极及掺杂区。基板具有表面。第一阱区形成于基板中且邻近表面,第一阱区具有第一电性。第二阱区形成于第一阱区中且邻近表面,第二阱区具有第二电性。第三阱区形成于第一阱区中且邻近表面,第三阱区具有第二电性且第二阱区与第三阱区之间具有间隙,该第二阱区与该第三阱区于该间隙中彼此扩散相连而导通。第一电极形成于第二阱区中且邻近表面,第一电极具有第一电性。第二电极形成于第一阱区中且邻近表面,第二电极具有第二电性。掺杂区形成于第一电极与第二电极之间且邻近表面,掺杂区分别电性连接第一阱区与第三阱区。
在本发明的一实施例中,瞬态电压抑制器还包括第四阱区、第三电极及第四电极。第四阱区形成于第一阱区外的基板中且邻近表面。第三电极形成于第四阱区中且邻近表面,具有第一电性。第四电极形成于第四阱区中且邻近表面,具有第二电性。第三电极电性连接输入/输出端,第四电极电性连接第一电极。
在本发明的一实施例中,瞬态电压抑制器还包括重掺杂区。重掺杂区形成于掺杂区下方。重掺杂区具有与掺杂区相同的电性且重掺杂区的掺杂浓度高于掺杂区的掺杂浓度。
在本发明的一实施例中,重掺杂区与掺杂区均具有第一电性。
在本发明的一实施例中,重掺杂区与掺杂区均具有第二电性。
在本发明的一实施例中,掺杂区位于第三阱区的边缘并与第一阱区相邻。
在本发明的一实施例中,掺杂区为浮接(Floating)。
在本发明的一实施例中,彼此扩散相连的第二阱区与第三阱区会形成葫芦状阱区。
在本发明的一实施例中,瞬态电压抑制器的导通电压(Trigger voltage)与重掺杂区的掺杂浓度有关。
在本发明的一实施例中,掺杂区的掺杂浓度高于第一阱区、第二阱区及第三阱区的掺杂浓度。
相较于现有技术,本发明的瞬态电压抑制器具有下列优点及功效:
(1)瞬态电压抑制器仅包括阳极与阴极而未耦接闸极,故其结构相对较为简单;
(2)第一电极所在的第二阱区与掺杂区所在的第三阱区之间会具有间隙,并于该间隙中会彼此扩散相连而形成葫芦状阱区,从而提高第一电流路径的电阻,使得大部份电流走第二电流路径,可防止掺杂区因大电流而烧毁。此外,瞬态电压抑制器的导通电阻与间隙的大小、第二阱区的掺杂浓度及第三阱区的掺杂浓度有关,故可通过改变间隙的大小或第二阱区及第三阱区的掺杂浓度的方式来调控瞬态电压抑制器的导通电阻;以及
(3)瞬态电压抑制器在阳极与阴极中间设置有浮接的掺杂区且其下方还设置有重掺杂区可作为触发结构,通过调整重掺杂区的掺杂浓度的方式降低崩溃电压。当静电放电事件发生时,形成于第一电极、扩散相连的第二阱区与第三阱区、重掺杂区、第一阱区至第二电极的第一电流路径会导通,故可通过调整重掺杂区的掺杂浓度的方式有效降低导通电压,于此同时,形成于第一电极、第二阱区、第一阱区至第二电极的第二电流路径亦会导通,通过电流分流的方式有效降低瞬态电压抑制器的整体电阻,让大部份电流走第二电流路径,不会因第一电流路径较小而烧毁。
关于本发明的优点与精神可以通过以下的发明详述及所附附图得到进一步的了解。
附图说明
图1为传统的瞬态电压抑制器的电流-电压特性曲线图。
图2为本发明的一较佳具体实施例中的瞬态电压抑制器的剖面以及静电放电事件发生时通过第一电流路径及第二电流路径进行分流的剖面示意图。
图3为本发明的另一较佳具体实施例中的瞬态电压抑制器的剖面示意图以及静电放电事件发生时通过第一电流路径及第二电流路径进行分流的剖面示意图。
图4A及图4B分别为瞬态电压抑制器还包括旁路二极管的剖面示意图及电路图。
主要元件符号说明:
+V:顺向电压
-V:逆向电压
+I:顺向电流
-I:逆向电流
VBR:崩溃电压
VBR’:逆向崩溃电压
VON:导通电压
IH:维持电流
2、3:瞬态电压抑制器
SUB:基板
F1:第一表面
F2:第二表面
PW:第一阱区
NW1:第二阱区
NW2:第三阱区
P:第一电极
N:第二电极
P+、N+:掺杂区
P++、N++:重掺杂区
AD:阳极
CD:阴极
GAP:间隙
PATH1:第一电流路径
PATH2:第二电流路径
4:瞬态电压抑制器
40:瞬态电压抑制器
41~42:旁路二极管
PW:第四阱区
P+:第三电极
N+:第四电极
G:闸极
I/O:输入/输出端
PW:第五阱区
P+:第五电极
N+:第六电极
具体实施方式
现在将详细参考本发明的示范性实施例,并在附图中说明所述示范性实施例的实例。在附图及实施方式中所使用相同或类似标号的元件/构件是用来代表相同或类似部分。
根据本发明的一较佳具体实施例为一种瞬态电压抑制器。于此实施例中,瞬态电压抑制器用以于静电放电事件发生时提供防护功能,以确保欲保护的电子元件不会受静电放电的影响而毁损,但不以此为限。
请参照图2,图2为本发明的一较佳具体实施例中的瞬态电压抑制器的剖面,以及静电放电事件发生时通过第一电流路径及第二电流路径进行分流的剖面示意图。
如图2所示,瞬态电压抑制器2包括基板SUB、第一阱区PW、第二阱区NW1、第三阱区NW2、第一电极P、第二电极N、掺杂区P+及重掺杂区P++。
基板SUB具有彼此相对的第一表面F1及第二表面F2。第一阱区PW形成于基板SUB中且邻近第一表面F1。第二阱区NW1形成于第一阱区PW中且邻近第一表面F1。第三阱区NW2形成于第一阱区PW中且邻近第一表面F1。第二阱区NW1与第三阱区NW2之间具有间隙GAP。第一阱区PW具有第一电性且第二阱区NW1及第三阱区NW2具有第二电性。
第一电极P形成于第二阱区NW1中且邻近第一表面F1。第二电极N形成于第一阱区PW中且邻近第一表面F1。第一电极P具有第一电性且第二电极N具有第二电性。第一电极P与第二电极N会分别电性连接阳极AD与阴极CD。
于此实施例中,假设第一电性为P型且第二电性为N型,则第一阱区PW的电性为P型且第二阱区NW1及第三阱区NW2的电性为N型,而第一电极P的电性为P型且第二电极N的电性为N型。
掺杂区P+形成于第一电极P与第二电极N之间且邻近第一表面F1。掺杂区P+分别电性连接第一阱区PW与第三阱区NW2。而重掺杂区P++则形成于掺杂区P+下方。掺杂区P+为浮接且位于第三阱区NW2的边缘并与第一阱区PW相邻。
需说明的是,本发明的重掺杂区P++具有与掺杂区P+相同的电性且重掺杂区P++的掺杂浓度会高于掺杂区P+的掺杂浓度。于此实施例中,重掺杂区P++与掺杂区P+的电性均为P型,但不以此为限。
除了重掺杂区P++的掺杂浓度会高于掺杂区P+的掺杂浓度之外,掺杂区P+的掺杂浓度会高于第一阱区PW、第二阱区NW1及第三阱区NW2的掺杂浓度。也就是说,掺杂浓度由高至低依序为:重掺杂区P++>掺杂区P+>第一阱区PW、第二阱区NW1及第三阱区NW2。
第二阱区NW1与第三阱区NW2会彼此扩散相连而形成葫芦状阱区,从而提高第一电流路径的电阻,可防止掺杂区P+因通过的电流过大而烧毁。
需说明的是,瞬态电压抑制器2的导通电阻会与间隙GAP的大小、第二阱区NW1的掺杂浓度及第三阱区NW2的掺杂浓度有关,故本发明可通过改变间隙GAP的大小或第二阱区NW1及第三阱区NW2的掺杂浓度的方式来调控瞬态电压抑制器2的导通电阻,但不以此为限。
当瞬态电压抑制器2运作时,瞬态电压抑制器2中的第二阱区NW1与第三阱区NW2扩散相连所形成的葫芦状阱区与重掺杂区P++及掺杂区P+之间的PN界面具有逆向偏压,使得从阳极AD至阴极CD间的电流路径不导通。当静电放电事件发生时,瞬态电压抑制器2中的葫芦状阱区与重掺杂区P++及掺杂区P+之间的PN界面崩溃,瞬态电压抑制器2会立即启动其静电防护机制,使得形成于第一电极P、第二阱区NW1与第三阱区NW2扩散相连所形成的葫芦状阱区、重掺杂区P++、第一阱区PW至第二电极N的第一电流路径PATH1会导通,此外,形成于第一电极P、第二阱区NW1、第一阱区PW至第二电极N的第二电流路径PATH2亦会导通,使得从阳极AD流入的电流除了原本的第一电流路径PATH1之外,还可依序流经第一电极P、第二阱区NW1、第一阱区PW、第二电极N而流至阴极CD。
于实际应用中,由于电流会流经具有最高掺杂浓度的重掺杂区P++,瞬态电压抑制器2的导通电压(Trigger voltage)会与重掺杂区P++的掺杂浓度大小有关。因此,本发明亦可通过改变重掺杂区P++的掺杂浓度的方式来调控瞬态电压抑制器2的导通电压,但不以此为限。由此,本发明可通过电流分流的方式避免电流过度集中于同一电流路径,以有效降低瞬态电压抑制器2的整体电阻。
接着,请参照图3,图3为本发明的另一较佳具体实施例中的瞬态电压抑制器的剖面以及静电放电事件发生时通过第一电流路径及第二电流路径进行分流的剖面示意图。
图3所示的瞬态电压抑制器3不同于图2所示的瞬态电压抑制器2之处在于:瞬态电压抑制器3中的重掺杂区N++与掺杂区N+的电性均为N型。
如图3所示,瞬态电压抑制器3的第二阱区NW1与第三阱区NW2彼此扩散相连而形成葫芦状阱区,从而提高第一电流路径的电阻,可防止掺杂区P+因通过的电流过大而烧毁。
当瞬态电压抑制器3通电时,重掺杂区N++及掺杂区与第一阱区PW之间的PN界面具有逆向偏压,使得从阳极AD至阴极CD间的电流路径不导通。
于实际应用中,由于电流会流经具有最高掺杂浓度的重掺杂区N++,瞬态电压抑制器3的导通电压会与重掺杂区N++的掺杂浓度有关。因此,本发明亦可通过改变重掺杂区N++的掺杂浓度的方式来调控瞬态电压抑制器3的导通电压,但不以此为限。
当静电放电事件发生时,重掺杂区N++及掺杂区与第一阱区PW之间的PN介崩溃,瞬态电压抑制器3会立即启动其静电防护机制,除了形成于第一电极P、第二阱区NW1与第三阱区NW2彼此扩散相连而形成的葫芦状阱区、重掺杂区N++、第一阱区PW至第二电极N的第一电流路径PATH1会导通之外,形成于第一电极P、第二阱区NW1、第一阱区PW至第二电极N的第二电流路径PATH2亦会导通,使得从阳极AD流入的电流除了原本的第一电流路径PATH1之外,还可依序流经第一电极P、第二阱区NW1、第一阱区PW、第二电极N而流至阴极CD。由此,本发明可通过电流分流的方式避免电流过度集中于同一电流路径,以有效降低瞬态电压抑制器4的整体电阻。
于另一实施例中,瞬态电压抑制器还可进一步包括其他元件,例如至少一旁路二极管以达到双向保护的功效,但不以此为限。
请参照图4A及图4B,图4A及图4B分别为瞬态电压抑制器4的剖面示意图及电路图。如图4A及图4B所示,瞬态电压抑制器4除了包括与图2中的瞬态电压抑制器2相同的瞬态电压抑制器40之外,还包括旁路二极管41~42。旁路二极管41~42彼此串接后再与瞬态电压抑制器40并联。由于瞬态电压抑制器40与图2中的瞬态电压抑制器2相同,故瞬态电压抑制器40的结构请参照前面叙述,于此不另行赘述。
于此实施例中,旁路二极管41包括第四阱区PW、第三电极P+及第四电极N+。第四阱区PW形成于第一阱区PW之外的基板SUB中且邻近第一表面F1。第三电极P+形成于第四阱区PW中且邻近第一表面F1。第四电极N+形成于第四阱区PW中且邻近第一表面F1。第三电极P+具有第一电性且第四电极N+具有第二电性。第三电极P+电性连接输入/输出端I/O。第四电极N+电性连接第一电极P。
同理,旁路二极管4包括第五阱区PW、第五电极P+及第六电极N+。第五阱区PW形成于第一阱区PW及第四阱区PW之外的基板SUB中且邻近第一表面F1。第五电极P+形成于第五阱区PW中且邻近第一表面F1。第六电极N+形成于第五阱区PW中且邻近第一表面F1。第五电极P+具有第一电性且第六电极N+具有第二电性。第五电极P+电性连接第二电极N及闸极G。第六电极N+电性连接输入/输出端I/O。
相较于现有技术,本发明的瞬态电压抑制器具有下列优点及功效:
(1)瞬态电压抑制器仅包括阳极与阴极而未耦接闸极,故其结构相对较为简单;
(2)第一电极所在的第二阱区与中间掺杂区所在的第三阱区之间会具有间隙,并于该间隙中会彼此扩散相连而形成葫芦状阱区,从而提高第一电流路径的电阻,使得大部份电流走第二电流路径,可防止掺杂区因大电流而烧毁。此外,瞬态电压抑制器的导通电阻与间隙的大小、第二阱区的掺杂浓度及第三阱区的掺杂浓度有关,故可通过改变间隙的大小或第二阱区及第三阱区的掺杂浓度的方式来调控瞬态电压抑制器的导通电阻;以及
(3)瞬态电压抑制器在阳极与阴极中间设置有浮接的掺杂区且其下方还设置有重掺杂区可作为触发结构,通过调整重掺杂区的掺杂浓度的方式降低崩溃电压。当静电放电事件发生时,形成于第一电极、扩散相连的第二阱区与第三阱区、重掺杂区、第一阱区至第二电极的第一电流路径会导通,形成于第一电极、第二阱区、第一阱区至第二电极的第二电流路径亦会导通,通过电流分流的方式有效降低瞬态电压抑制器的整体电阻,让大部份电流走第二电流路径,不会因第一电流路径较小而烧毁。
通过以上较佳具体实施例的详述,是希望能更加清楚描述本发明的特征与精神,而并非以上述所公开的较佳具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明权利要求的范畴内。

Claims (9)

1.一种瞬态电压抑制器,其特征在于,上述瞬态电压抑制器包括:
一基板,具有一表面;
一第一阱区,形成于上述基板中且邻近上述表面,上述第一阱区具有一第一电性;
一第二阱区,形成于上述第一阱区中且邻近上述表面,上述第二阱区具有一第二电性;
一第三阱区,形成于上述第一阱区中且邻近上述表面,上述第三阱区具有上述第二电性且上述第二阱区与上述第三阱区之间具有一间隙,其中上述第二阱区与上述第三阱区于上述间隙中彼此扩散相连而导通;
一第一电极,形成于上述第二阱区中且邻近上述表面,上述第一电极具有上述第一电性;
一第二电极,形成于上述第一阱区中且邻近上述表面,上述第二电极具有上述第二电性;
一掺杂区,形成于上述第一电极与上述第二电极之间且邻近上述表面,上述掺杂区分别电性连接上述第一阱区与上述第三阱区;
一第四阱区,形成于上述第一阱区外的上述基板中且邻近上述表面;
一第三电极,形成于上述第四阱区中且邻近上述表面,具有上述第一电性;以及
一第四电极,形成于上述第四阱区中且邻近上述表面,具有上述第二电性,
其中,上述第三电极电性连接一输入/输出端,上述第四电极电性连接上述第一电极。
2.如权利要求1所述的瞬态电压抑制器,其特征在于,上述瞬态电压抑制器还包括:
一重掺杂区,形成于上述掺杂区下方,上述重掺杂区具有与上述掺杂区相同的电性且上述重掺杂区的掺杂浓度高于上述掺杂区的掺杂浓度。
3.如权利要求2所述的瞬态电压抑制器,其特征在于,上述重掺杂区与上述掺杂区均具有上述第一电性。
4.如权利要求2所述的瞬态电压抑制器,其特征在于,上述重掺杂区与上述掺杂区均具有上述第二电性。
5.如权利要求1所述的瞬态电压抑制器,其特征在于,上述掺杂区位于上述第三阱区的边缘并与上述第一阱区相邻。
6.如权利要求1所述的瞬态电压抑制器,其特征在于,上述掺杂区为浮接。
7.如权利要求1所述的瞬态电压抑制器,其特征在于,彼此扩散相连的上述第二阱区与上述第三阱区会形成一葫芦状阱区。
8.如权利要求2所述的瞬态电压抑制器,其特征在于,上述瞬态电压抑制器的一导通电压与上述重掺杂区的掺杂浓度有关。
9.如权利要求1所述的瞬态电压抑制器,其特征在于,上述掺杂区的掺杂浓度高于上述第一阱区、上述第二阱区及上述第三阱区的掺杂浓度。
CN201810048116.0A 2017-11-24 2018-01-18 瞬态电压抑制器 Active CN109841608B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW106141033A TWI733957B (zh) 2017-11-24 2017-11-24 暫態電壓抑制器
TW106141033 2017-11-24

Publications (2)

Publication Number Publication Date
CN109841608A CN109841608A (zh) 2019-06-04
CN109841608B true CN109841608B (zh) 2023-02-28

Family

ID=66632698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810048116.0A Active CN109841608B (zh) 2017-11-24 2018-01-18 瞬态电压抑制器

Country Status (3)

Country Link
US (1) US10607983B2 (zh)
CN (1) CN109841608B (zh)
TW (1) TWI733957B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11652097B2 (en) * 2020-11-30 2023-05-16 Amazing Microelectronic Corp. Transient voltage suppression device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253123A (zh) * 2013-06-26 2014-12-31 中芯国际集成电路制造(上海)有限公司 静电放电保护结构
CN106129058A (zh) * 2016-08-27 2016-11-16 上海长园维安微电子有限公司 沟槽引出集成型低压双向瞬时电压抑制器及其制造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626882A (en) * 1984-07-18 1986-12-02 International Business Machines Corporation Twin diode overvoltage protection structure
US6172404B1 (en) 1997-10-31 2001-01-09 Texas Instruments Incorporated Tuneable holding voltage SCR ESD protection
US6171891B1 (en) * 1998-02-27 2001-01-09 Taiwan Semiconductor Manufacturing Company Method of manufacture of CMOS device using additional implant regions to enhance ESD performance
US6268639B1 (en) 1999-02-11 2001-07-31 Xilinx, Inc. Electrostatic-discharge protection circuit
US6268992B1 (en) 1999-04-15 2001-07-31 Taiwan Semiconductor Manufacturing Company Displacement current trigger SCR
TW493265B (en) 2001-08-16 2002-07-01 Winbond Electronics Corp ESD protection circuit with high trigger current
TW578290B (en) 2002-03-04 2004-03-01 Winbond Electronics Corp Electrostatic discharged protection device
US7202114B2 (en) * 2004-01-13 2007-04-10 Intersil Americas Inc. On-chip structure for electrostatic discharge (ESD) protection
US7566914B2 (en) * 2005-07-07 2009-07-28 Intersil Americas Inc. Devices with adjustable dual-polarity trigger- and holding-voltage/current for high level of electrostatic discharge protection in sub-micron mixed signal CMOS/BiCMOS integrated circuits
US20080029782A1 (en) * 2006-08-04 2008-02-07 Texas Instruments, Inc. Integrated ESD protection device
US8237193B2 (en) * 2010-07-15 2012-08-07 Amazing Microelectronic Corp. Lateral transient voltage suppressor for low-voltage applications
US8217462B2 (en) * 2010-09-22 2012-07-10 Amazing Microelectronic Corp. Transient voltage suppressors
US8592860B2 (en) * 2011-02-11 2013-11-26 Analog Devices, Inc. Apparatus and method for protection of electronic circuits operating under high stress conditions
US8431999B2 (en) * 2011-03-25 2013-04-30 Amazing Microelectronic Corp. Low capacitance transient voltage suppressor
US8704271B2 (en) * 2012-04-27 2014-04-22 Texas Instruments Incorporated Bidirectional electrostatic discharge (ESD) protection
US9711643B2 (en) * 2013-11-25 2017-07-18 Texas Instruments Incorporated ESD robust MOS device
TWI584382B (zh) * 2016-02-01 2017-05-21 力祥半導體股份有限公司 暫態電壓抑制器之二極體元件及其製造方法
TWI594393B (zh) * 2016-03-31 2017-08-01 旺宏電子股份有限公司 靜電放電保護元件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253123A (zh) * 2013-06-26 2014-12-31 中芯国际集成电路制造(上海)有限公司 静电放电保护结构
CN106129058A (zh) * 2016-08-27 2016-11-16 上海长园维安微电子有限公司 沟槽引出集成型低压双向瞬时电压抑制器及其制造方法

Also Published As

Publication number Publication date
US10607983B2 (en) 2020-03-31
CN109841608A (zh) 2019-06-04
US20190165089A1 (en) 2019-05-30
TW201926727A (zh) 2019-07-01
TWI733957B (zh) 2021-07-21

Similar Documents

Publication Publication Date Title
TWI446520B (zh) 用於配置超低電壓瞬態電壓抑制器的底部源極n型金屬氧化物半導體觸發的齊納箝位
US8829570B2 (en) Switching device for heterojunction integrated circuits and methods of forming the same
CN109686733B (zh) 低电容瞬变电压抑制器
CN107731812B (zh) 一种嵌套型多指双向可控硅静电防护器件
US20150084117A1 (en) Bottom source nmos triggered zener clamp for configuring an ultra-low voltage transient voltage suppressor (tvs)
KR20130129144A (ko) 고 전압 응용을 위한 esd 보호
CN109841609B (zh) 瞬态电压抑制器
CN101702508B (zh) 双向阻断型浪涌保护器件
CN102623449A (zh) Esd保护装置
CN110198029A (zh) 一种芯片电源过压及反接保护电路及方法
US20150116873A1 (en) Crowbar device for voltage transient circuit protection
CN109841608B (zh) 瞬态电压抑制器
CN110556808B (zh) 静电放电保护电路
KR101848352B1 (ko) 반도체 장치
US11195825B2 (en) Multi-diode semiconductor device and method of operation therefor
US8780511B2 (en) Electrostatic discharge protection circuit
CN109273532B (zh) 应用于高压电路防静电保护的无回滞效应硅控整流器
CN108630362B (zh) 电压增加而电阻值增加的电阻元件
CN113380786B (zh) 集成逆导二极管的可控硅瞬态电压抑制保护器件结构
CN103811482B (zh) 静电放电保护电路
CN107293537B (zh) 静电放电保护装置、存储器元件及静电放电保护方法
KR101281784B1 (ko) Esd 보호소자
CN114400993A (zh) 一种具有双向过压保护的模拟开关电路
KR102139088B1 (ko) 높은 홀딩 전류를 갖는 정전기 방전 보호소자
TWI398944B (zh) 設有位能障式稽納二極體之低壓暫態電壓抑制器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210209

Address after: 3 / F, 5 / F, 197 Tai Po First Street, Tai Po Li, Zhunan Town, Miaoli County, Taiwan, China

Applicant after: Yuanxin Semiconductor Co.,Ltd.

Address before: 1 / F, 9 / F, No.5, Taiyuan 1st Street, Zhubei City, Hsinchu County, Taiwan, China

Applicant before: uPI Semiconductor Corp.

GR01 Patent grant
GR01 Patent grant