CN109794252A - 一种磁性铈锆复合氧化物及其制备方法与应用 - Google Patents

一种磁性铈锆复合氧化物及其制备方法与应用 Download PDF

Info

Publication number
CN109794252A
CN109794252A CN201910039708.0A CN201910039708A CN109794252A CN 109794252 A CN109794252 A CN 109794252A CN 201910039708 A CN201910039708 A CN 201910039708A CN 109794252 A CN109794252 A CN 109794252A
Authority
CN
China
Prior art keywords
oxide
cerium
parts
zirconium compound
magnetism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910039708.0A
Other languages
English (en)
Other versions
CN109794252B (zh
Inventor
宋锡滨
焦英训
朱国强
潘光军
艾辽东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Sinocera Functional Material Co Ltd
Original Assignee
Shandong Sinocera Functional Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Sinocera Functional Material Co Ltd filed Critical Shandong Sinocera Functional Material Co Ltd
Priority to CN201910039708.0A priority Critical patent/CN109794252B/zh
Publication of CN109794252A publication Critical patent/CN109794252A/zh
Application granted granted Critical
Publication of CN109794252B publication Critical patent/CN109794252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明涉及一种磁性铈锆复合氧化物及其制备方法与应用。该磁性铈锆复合氧化物,以重量百分比计包括:氧化铈20‑70份,氧化锆20‑60份,四氧化三铁或四氧化三锰20‑50份,任一种或几种除铈之外的稀土元素氧化物3‑20份。本发明磁性铈锆复合氧化物,富含Fe3+/Fe2+或Mn3+/Mn2+,增加了瞬时储放氧的能力和速率,增加了晶格和结构的缺陷,增加了静态储氧能力和晶格氧的移动速率;降低了还原的温度,增加了汽车冷启动阶段的尾气的净化能力。本发明磁性铈锆复合氧化物具有较高的比表面积和孔容,抗老化能力强,使用寿命较长,且有利于铈锆类复合氧化物的涂覆和分离。

Description

一种磁性铈锆复合氧化物及其制备方法与应用
技术领域
本发明属于无机非金属材料领域,具体涉及一种磁性铈锆复合氧化物及其制备方法与应用。
背景技术
随着汽车数量的增加,汽车尾气的污染非常严重,发展高效的尾气净化催化剂已经成为当今的研究热点。铈锆复合氧化物是汽车三效催化剂的关键材料。汽车尾气温度变化较大,低温区和高温区的尾气净化对铈锆复合氧化物的要求最高。铈锆复合氧化物必须具备较高的储放氧能力增加低温区的净化能力,同时必须具备较高的抗老化能力增加高温区的净化能力和三效催化剂的使用寿命。
发明内容
本发明目的在于提供一种磁性铈锆复合氧化物及其制备方法与应用。
研究发现,在铈锆复合氧化物中引入镧系金属、碱土金属元素等能有效增加抗老化能力和储放氧性能。在铈锆复合氧化物中引入Fe3+/Fe2+或Mn3+/Mn2+,不仅能增加晶格缺陷进一步增加储氧能力,而且同时具有磁性。磁性铈锆复合氧化物中由于含有过渡金属铁和锰,具有较低的还原温度,增加了汽车冷启动阶段汽车尾气处理的效率。磁性铈锆复合氧化物不仅具有传统铈锆复合氧化物的高的比表面积、孔容和高的储氧量,并且具有磁性,易于载体的涂覆和分离。
具体而言,本发明提供一种磁性铈锆复合氧化物,以重量百分比计包括:
氧化铈20-70份,
氧化锆20-60份,
四氧化三铁或四氧化三锰20-50份,
任一种或几种除铈之外的稀土元素氧化物3-20份。
优选地,所述磁性铈锆复合氧化物以重量百分比计包括:
氧化铈20-50份,
氧化锆20-50份,
四氧化三铁或四氧化三锰20-50份,
任一种或几种除铈之外的稀土元素氧化物3-20份。
进一步优选地,所述磁性铈锆复合氧化物以重量百分比计包括:
氧化铈20-30份,
氧化锆20-30份,
四氧化三铁或四氧化三锰25-35份,
氧化镧5-10份,
氧化镨5-10份。
本发明所述铈(Ce)之外的稀土元素是指镧(La)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钇(Y)和钪(Sc)。
所述除铈之外的稀土元素氧化物优选为氧化镧、氧化镨、氧化钕、氧化钇、氧化钐中的任一种或几种。实验证明,当所述除铈之外的稀土元素氧化物为氧化镧和氧化镨时,储放氧和抗老化等性能更佳。
具体地,所述磁性铈锆复合氧化物即是由氧化铈,氧化锆,四氧化三铁或四氧化三锰,以及除铈之外的稀土元素氧化物组成,其总量为100份。
在本发明具体实施方式中,以重量百分含量计,所述磁性铈锆复合氧化物由以下组分组成:
氧化铈20%-50%,
氧化锆20%-50%,
四氧化三铁20%-50%,
氧化镧、氧化镨、氧化钕、氧化钇中的一种或几种3%-20%。
优选地,以重量百分含量计,所述磁性铈锆复合氧化物由以下组分组成:
氧化铈20%-30%,
氧化锆20%-30%,
四氧化三铁25%-35%,
氧化镧5%-10%,
氧化镨5%-10%。
制备本发明所述磁性铈锆复合氧化物所用锆源可选自硝酸锆、硫酸锆、氯氧化锆、醋酸锆等。从价格角度考虑优选氧氯化锆作为锆源。
制备本发明所述磁性铈锆复合氧化物所用铈源可选自硝酸铈、氯化铈、碳酸铈、硝酸铈铵、硫酸铈铵等,优选以硝酸铈铵作为铈源。
制备本发明所述磁性铈锆复合氧化物所用铁源可选自三氯化铁和二氯化铁;所用锰源可选自三氯化锰和二氯化锰作为锰源。所用稀土元素源可选自其相应地硝酸盐或氯化物。
本发明所述磁性铈锆复合氧化物具有如下性质:
750℃,BET比表面至少为80m2/g,BJH孔容在0.55ml/g至0.80ml/g之间,孔径呈现双孔分布,以介孔为主,分布范围2-5nm,10-50nm;和/或,
1100℃下煅烧4h,BET比表面至少为30m2/g;BJH孔容在0.35ml/g至0.50ml/g之间,孔径呈现双孔分布,以介孔为主,分布范围2-3nm,30-100nm;和/或,
所述复合氧化物的储氧量在500μmolO2/g至1200μmolO2/g之间;和/或,
所述复合氧化物通过程序升温还原(H2-TPR)测量的最高还原温度低于或等于500℃;和/或,
所述复合氧化物通过样品振动磁强计测其磁滞曲线,其饱和磁化强度在20emu/g至50emu/g。
上述磁性铈锆复合氧化物可采用溶胶-水热法合成。首先,合成铈锆铁以及除铈以外的稀土元素的溶胶,有利于各组分分散均匀;进一步的水热合成有利于形成特定形貌和高比表面积的磁性铈锆复合氧化物。溶胶-水热法生成的磁性铈锆复合氧化物克服了传统共沉淀工艺的铈锆类复合氧化物易高温烧结和储氧量低的缺点,而且易于和载体涂覆和分离,未来应用前景十分广阔。
具体地,本发明还提供上述磁性铈锆复合氧化物的制备方法,包括:
1)将制备各氧化物的原料溶于水,制成混合溶液;向该混合溶液中加入氨水(优选调节pH至10以上),制成混合氢氧化物沉淀物;
2)向步骤1)制得的混合氢氧化物中加入极性分散介质,制成极性分散液;所述极性分散介质可选自乙醇、乙二醇等极性溶剂,优选为乙二醇;
3)向步骤2)制得的极性分散液中加入酸,调节pH至酸性,制成酸性分散液;加热制成混合溶胶;
可采用本领域常用的硝酸、硫酸、盐酸等酸调节pH;
一般加热温度为80℃左右;
4)将步骤3)制备的混合溶胶于水性介质中加热反应制成复合氧化物;然后煅烧制成所述磁性铈锆复合氧化物;一般加热温度为180℃左右;一般煅烧温度为750℃左右,煅烧时间4h左右。可在氧化气氛条件下进行煅烧。
本发明还包括上述方法制备的磁性铈锆复合氧化物。
本发明还包括上述磁性铈锆复合氧化物在尾气脱硝中的应用。所述尾气包括各种含氮氧化物(NOx)的尾气,例如机动车、船舶的机动柴油尾气,电厂、锅炉与工厂燃烧尾气等。
本发明所用原料均可市售购得,或按本领域常规方法制备。
在符合本领域常识的基础上,上述各优选条件,可以相互组合,即得本发明各较佳实例。
本发明磁性铈锆复合氧化物,富含Fe3+/Fe2+或Mn3+/Mn2+。Fe3+/Fe2+或Mn3+/Mn2+具有比Ce4+/Ce3+更低的氧化还原电位,增加了瞬时储放氧的能力和速率,增加了晶格和结构的缺陷,增加了静态储氧能力和晶格氧的移动速率。同时,铁和锰两种过渡金属元素的引入,降低了还原的温度,增加了汽车冷启动阶段的尾气的净化能力。本发明磁性铈锆复合氧化物具有较高的比表面积和孔容,抗老化能力强,使用寿命较长,且有利于铈锆类复合氧化物的涂覆和分离。本发明利用溶胶-水热法合成磁性铈锆类复合氧化物,克服了传统共沉淀工艺的铈锆类复合氧化物易高温烧结和储氧量低的缺点,易于工业化应用。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。
实施例1
一种磁性铈锆复合氧化物,以重量百分含量计,其组成为:氧化铈30%、氧化锆30%、四氧化三铁25%、氧化镧10%、氧化镨5%。
本实施例还提供上述磁性铈锆复合氧化物的制备方法,包括如下步骤:
1)准备制备300g氧化铈所需的硝酸铈铵(铈源)、制备300g氧化锆所需的氧氯化锆(锆源)、制备250g四氧化三铁所需的氯化铁和氯化亚铁(二者摩尔比为2:1,铁源)、制备100g氧化镧所需的硝酸镧(镧源)及50g氧化镨对应的硝酸镨(镨源);溶于2000mL超纯水中,制成混合溶液,向该溶液中慢慢滴加氨水,调节pH值到10以上,得到氢氧化铈—氢氧化锆—氢氧化铁—氢氧化亚铁—氢氧化镧—氢氧化镨的混合氢氧化物,过滤洗涤得混合氢氧化物沉淀物;
2)将上述沉淀物加入到1500mL的乙二醇溶液中,制成极性分散液。
3)向所得极性分散中慢慢滴加硝酸,调节pH值到酸性,制成酸性分散液;加热至80℃保持48h,制成氧化铈—氧化锆—四氧化三铁—氧化镧—氧化镨的混合溶胶。
4)将所得混合溶胶放入10L高压反应釜中,180℃水性介质中反应8h,制成氧化铈—氧化锆—四氧化三铁—氧化镧—氧化镨的磁性复合氧化物。将所得磁性铈锆复合氧化物于750℃氧化气氛煅烧4h,最终得到新鲜磁性铈锆复合氧化物。
实施例2
一种磁性铈锆复合氧化物,以重量百分含量计,其组成为:氧化铈30%、氧化锆30%、四氧化三锰25%、氧化镧10%、氧化镨5%。
本实施例还提供上述磁性铈锆复合氧化物的制备方法,包括:准备制备300g氧化铈所需的硝酸铈铵(铈源)、制备300g氧化锆所需的氧氯化锆(锆源)、制备250g四氧化三锰对应的三氯化锰和二氯化锰(二者摩尔比为2:1,锰源)、制备100g氧化镧所需的硝酸镧(镧源)及50g氧化镨对应的硝酸镨(镨源);溶于2000mL超纯水中,制成混合溶液;后续步骤与实施例1相同。
实施例3
一种磁性铈锆复合氧化物,以重量百分含量计,其组成为:氧化铈30%、氧化锆20%、四氧化三铁35%、氧化镧10%、氧化镨5%。
本实施例还提供上述磁性铈锆复合氧化物的制备方法,包括:准备制备300g氧化铈所需的硝酸铈铵(铈源)、制备200g氧化锆所需的氧氯化锆(锆源)、制备350g四氧化三铁所需的氯化铁和氯化亚铁(二者摩尔比为2:1,铁源)、制备100g氧化镧所需的硝酸镧(镧源)及50g氧化镨对应的硝酸镨(镨源);溶于2000mL超纯水中,制成混合溶液;后续步骤与实施例1相同。
对比例1
一种铈锆复合氧化物,以重量百分含量计,其组成为:氧化锆40%、氧化铈40%、氧化镧10%、氧化镨10%。
本对比例铈锆复合氧化物的制备方法,包括:准备制备400g氧化锆所需的氧氯化锆(锆源)、制备400g氧化铈所需的硝酸铈铵(铈源)、制备100g氧化镧所需的硝酸镧(镧源)及100g氧化镨对应的硝酸镨(镨源);溶于2000mL超纯水中,制成混合溶液;后续步骤与实施例1相同。
实验例1
分别对实施例1-3及对比例1所制备的铈锆复合氧化物的进行物化性能测试,结果如下表1所示。
表1
实施例1 实施例2 实施例3 对比例1
750℃比表面(m<sup>2</sup>/g) 108 100 95 103
750℃孔容(mL/g) 0.66 0.63 0.58 0.65
750℃孔径(nm) 25 27 23 27
1100℃比表面(m<sup>2</sup>/g) 32 35 30 31
1100℃孔容(mL/g) 0.20 0.23 0.18 0.19
1100℃孔径(nm) 34 30 32 35
磁强度(emu/g) 25 23 30 0
实验例2
分别对实施例1-3及对比例1所制备的铈锆复合氧化物的进行应用性能测试。
实验方法:
1、催化剂的制备:采用浸渍法制备催化剂。分别将实施例1-3及对比例1所提供的铈锆复合氧化物即催化剂载体(即催化剂载体)浸渍到H2PdCl4水溶液中浸渍18h,其中Pd的负载量为0.5%,水合肼还原处理后用去离子水洗涤,于100℃干燥6h,480℃空气气氛中焙烧2h,得到新鲜的催化剂。
2、催化剂的催化效果评价:催化剂的评价采用自建的微反应装置。模拟气成分NO(1000ppm)、NO2(300ppm)、C3H6(670ppm)、CO(7500ppm)、O2和Ar(平衡气)。催化剂评价过程中用T50和T90表示催化剂对指定反应物的催化活性。T50为指定反应物为50%的反应温度,T90为指定反应物转化率为90%的反应温度。控制λ={2[O2]+[ON]+2[NO2]}/{9[CH]+[CO]},空速43000h-1
测试结果如下表2所示。
表2
以上测试结果表明,磁性铈锆固溶体不仅具有传统的铈锆固溶体高的老化比表面积,而且其净化汽车尾气的效率很高。磁性铈锆固溶体具有磁性,易于载体的涂覆和分离,具有常规铈锆固溶体不可比拟的优点。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种磁性铈锆复合氧化物,其特征在于,以重量百分比计包括:
氧化铈20-70份,
氧化锆20-60份,
四氧化三铁或四氧化三锰20-50份,
任一种或几种除铈之外的稀土元素氧化物3-20份;
优选地,所述磁性铈锆复合氧化物以重量百分比计包括:
氧化铈20-50份,
氧化锆20-50份,
四氧化三铁或四氧化三锰20-50份,
任一种或几种除铈之外的稀土元素氧化物3-20份。
2.根据权利要求1所述的磁性铈锆复合氧化物,其特征在于,以重量百分比计包括:
氧化铈20-30份,
氧化锆20-30份,
四氧化三铁或四氧化三锰25-35份,
氧化镧5-10份,
氧化镨5-10份。
3.根据权利要求1或2所述的磁性铈锆复合氧化物,其特征在于,由氧化铈,氧化锆,四氧化三铁或四氧化三锰,以及除铈之外的稀土元素氧化物组成;优选其总量为100份。
4.根据权利要求1-3任一项所述的磁性铈锆复合氧化物,其特征在于,所述除铈之外的稀土元素氧化物为氧化镧、氧化镨、氧化钕、氧化钇或氧化钐。
5.一种磁性铈锆复合氧化物,其特征在于,以重量百分含量计,由以下组分组成:
氧化铈20%-50%,
氧化锆20%-50%,
四氧化三铁20%-50%,
氧化镧、氧化镨、氧化钕、氧化钇中的一种或几种3%-20%;
优选地,以重量百分含量计,所述磁性铈锆复合氧化物由以下组分组成:
氧化铈20%-30%,
氧化锆20%-30%,
四氧化三铁25%-35%,
氧化镧5%-10%,
氧化镨5%-10%。
6.权利要求1-5任一项所述磁性铈锆复合氧化物的制备方法,其特征在于,包括:
1)将制备各氧化物的原料溶于水,制成混合溶液;向该混合溶液中加入氨水,制成混合氢氧化物沉淀物;
2)向步骤1)制得的混合氢氧化物中加入极性分散介质,制成极性分散液;
3)向步骤2)制得的极性分散液中加入酸,调节pH至酸性,制成酸性分散液;加热制成混合溶胶;
4)将步骤3)制备的混合溶胶于水性介质中加热反应制成复合氧化物;然后煅烧制成所述磁性铈锆复合氧化物。
7.根据权利要求6所述的制备方法,其特征在于,步骤1)通过加入氨水调节pH至10以上;和/或,
步骤2)所述极性分散介质为乙醇或乙二醇;和/或,
步骤3)所述加热温度为180℃左右;和/或煅烧温度为750℃左右。
8.权利要求6或7所述方法制备的磁性铈锆复合氧化物。
9.权利要求1-5、8任一项所述的磁性铈锆复合氧化物,其特征在于,具有如下性质:
750℃,BET比表面至少为80m2/g,BJH孔容在0.55ml/g至0.80ml/g之间,孔径呈现双孔分布,以介孔为主,分布范围2-5nm,10-50nm;和/或,
1100℃下煅烧4h,BET比表面至少为30m2/g;BJH孔容在0.35ml/g至0.50ml/g之间,孔径呈现双孔分布,以介孔为主,分布范围2-3nm,30-100nm;和/或,
所述复合氧化物的储氧量在500μmolO2/g至1200μmolO2/g之间;和/或,
所述复合氧化物通过程序升温还原(H2-TPR)测量的最高还原温度低于或等于500℃;和/或,
所述复合氧化物通过样品振动磁强计测其磁滞曲线,其饱和磁化强度在20emu/g至50emu/g。
10.权利要求1-5、8、9任一项所述磁性铈锆复合氧化物在尾气脱硝中的应用。
CN201910039708.0A 2019-01-16 2019-01-16 一种磁性铈锆复合氧化物及其制备方法与应用 Active CN109794252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910039708.0A CN109794252B (zh) 2019-01-16 2019-01-16 一种磁性铈锆复合氧化物及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910039708.0A CN109794252B (zh) 2019-01-16 2019-01-16 一种磁性铈锆复合氧化物及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109794252A true CN109794252A (zh) 2019-05-24
CN109794252B CN109794252B (zh) 2022-06-10

Family

ID=66559517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910039708.0A Active CN109794252B (zh) 2019-01-16 2019-01-16 一种磁性铈锆复合氧化物及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109794252B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385120A (zh) * 2019-06-19 2019-10-29 山东国瓷功能材料股份有限公司 一种铈锆复合氧化物及其制备方法
CN114364460A (zh) * 2019-09-10 2022-04-15 三井金属矿业株式会社 含有铈元素和锆元素的复合氧化物的粉末、使用其的废气净化用催化剂组合物及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314127A (zh) * 2007-05-31 2008-12-03 中国科学院大连化学物理研究所 用于选择性还原氮氧化物的氧化物催化剂及其制造方法和用途
CN101380543A (zh) * 2008-09-11 2009-03-11 南京工业大学 一种烟气脱硝复合催化剂及其制备方法
WO2011116907A2 (en) * 2010-03-26 2011-09-29 Umicore Ag & Co. Kg Zrox, ce-zrox, ce-zr-reox as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant scr catalysts
CN103537289A (zh) * 2013-11-07 2014-01-29 盐城工学院 一种低温scr脱硝催化剂制备方法
CN104117363A (zh) * 2014-08-12 2014-10-29 淄博加华新材料资源有限公司 多元掺杂铈锆载体催化剂及其制备方法
CN105983403A (zh) * 2015-02-09 2016-10-05 有研稀土新材料股份有限公司 一种铈锆复合氧化物、其制备方法及催化剂的应用
CN106430304A (zh) * 2016-07-31 2017-02-22 包头稀土研究院 一种高比表面耐高温铈锆固溶体的制备方法
CN106830929A (zh) * 2017-02-10 2017-06-13 山东国瓷功能材料股份有限公司 白色氧化锆烧结体及其制备方法和应用
CN108554429A (zh) * 2018-03-09 2018-09-21 盐城工学院 一种负载型scr脱硝催化剂的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314127A (zh) * 2007-05-31 2008-12-03 中国科学院大连化学物理研究所 用于选择性还原氮氧化物的氧化物催化剂及其制造方法和用途
CN101380543A (zh) * 2008-09-11 2009-03-11 南京工业大学 一种烟气脱硝复合催化剂及其制备方法
WO2011116907A2 (en) * 2010-03-26 2011-09-29 Umicore Ag & Co. Kg Zrox, ce-zrox, ce-zr-reox as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant scr catalysts
CN103537289A (zh) * 2013-11-07 2014-01-29 盐城工学院 一种低温scr脱硝催化剂制备方法
CN104117363A (zh) * 2014-08-12 2014-10-29 淄博加华新材料资源有限公司 多元掺杂铈锆载体催化剂及其制备方法
CN105983403A (zh) * 2015-02-09 2016-10-05 有研稀土新材料股份有限公司 一种铈锆复合氧化物、其制备方法及催化剂的应用
CN106430304A (zh) * 2016-07-31 2017-02-22 包头稀土研究院 一种高比表面耐高温铈锆固溶体的制备方法
CN106830929A (zh) * 2017-02-10 2017-06-13 山东国瓷功能材料股份有限公司 白色氧化锆烧结体及其制备方法和应用
CN108554429A (zh) * 2018-03-09 2018-09-21 盐城工学院 一种负载型scr脱硝催化剂的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385120A (zh) * 2019-06-19 2019-10-29 山东国瓷功能材料股份有限公司 一种铈锆复合氧化物及其制备方法
CN114364460A (zh) * 2019-09-10 2022-04-15 三井金属矿业株式会社 含有铈元素和锆元素的复合氧化物的粉末、使用其的废气净化用催化剂组合物及其制造方法

Also Published As

Publication number Publication date
CN109794252B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
JP6471240B2 (ja) セリウム・ジルコニウム複合酸化物及びその製造方法並びに触媒の使用
CN103191712B (zh) 一种具有良好抗老化性能、高还原活性的氧化铈氧化锆基复合稀土氧化物及其制备方法
CN109529801A (zh) 可调控双孔道铈锆复合氧化物及其制备方法和应用
WO2022057593A1 (zh) 一种核壳结构铈锆基复合氧化物及其制备方法
JP5564109B2 (ja) 特有の多孔度を有する酸化セリウムおよび酸化ジルコニウムを含む組成物、この調製方法および触媒作用におけるこの使用
WO2021026964A1 (zh) 一种稳定的铈锆固溶体及其制备方法、应用
CA3132392C (en) Rare-earth-manganese/cerium-zirconium-based composite compound, method for preparing same and use thereof
US9901906B2 (en) Complex oxide, method for producing same and exhaust gas purifying catalyst
CN103357396B (zh) 具有高活性的钙钛矿空心球催化剂及制备和应用
CN107456964A (zh) 用于碳氢化合物低温氧化的超大比表面积钙钛矿型复合氧化物催化剂及其制备
CN109529802A (zh) 一种铈锆复合氧化物及其制备方法和应用
KR20130062349A (ko) 세륨 산화물 및 니오븀 산화물을 포함하는 조성물을 촉매로 사용하는, 질소 산화물(NOx)-함유 가스를 처리하는 방법
CN110026179B (zh) 一种高储氧量的铈锆复合氧化物及其制备方法
CN110252276B (zh) 一种抗老化的铈锆复合氧化物及其制备方法和应用
WO2014161203A1 (zh) 一种氧化铈氧化锆基复合稀土氧化物及其制备方法
CN104722292A (zh) 一种埃洛石/稀土钙钛矿复合scr催化剂及其制备方法
CN109794252A (zh) 一种磁性铈锆复合氧化物及其制备方法与应用
CN106732521B (zh) 一种高性能铈锆固溶体材料的制备方法
CN111185182A (zh) 钙钛矿催化剂及其制备方法和用途
CN112439408A (zh) 负载稀土锰的铈锆复合化合物及制备方法和催化剂
CN105080530A (zh) 一种高性能的铈锆复合氧化物的制备方法
CN106881081A (zh) 一种三维有序介孔锰铈复合氧化物催化剂及其制备方法和应用
JP6256769B2 (ja) 排気ガス浄化用触媒
CN105817229A (zh) 一种稀土元素修饰的负载型四氧化三钴催化剂及其制备方法
JP6682650B2 (ja) メソポーラスジルコニウム系複合酸化物の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant