CN109680044B - 一种基于选择性消除野生链背景干扰的基因突变检测方法 - Google Patents

一种基于选择性消除野生链背景干扰的基因突变检测方法 Download PDF

Info

Publication number
CN109680044B
CN109680044B CN201910052680.4A CN201910052680A CN109680044B CN 109680044 B CN109680044 B CN 109680044B CN 201910052680 A CN201910052680 A CN 201910052680A CN 109680044 B CN109680044 B CN 109680044B
Authority
CN
China
Prior art keywords
dna
dnase
chain
target region
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910052680.4A
Other languages
English (en)
Other versions
CN109680044A (zh
Inventor
赵美萍
陈维
阳彝栋
肖先金
李梦圆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201910052680.4A priority Critical patent/CN109680044B/zh
Publication of CN109680044A publication Critical patent/CN109680044A/zh
Priority to PCT/CN2019/113859 priority patent/WO2020151283A1/zh
Application granted granted Critical
Publication of CN109680044B publication Critical patent/CN109680044B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于选择性消除野生链背景干扰的基因突变检测方法。通过PCR对待测目标序列进行扩增,并通过Lambda核酸外切酶处理成单链DNA;设计并合成与野生型DNA序列目标区域互补的硫代DNA链以及与非目标区域互补的RNA封闭链,与单链DNA混合并升温退火后加入DNase I进行切割;DNase I在硫代DNA链的引导下选择性地切除野生型DNA链目标区域序列,突变型DNA链由于目标区域内存在错配不能被DNase I切除而得以保留,从而显著提升突变型DNA链的丰度,大幅度降低了目前已有技术检测低丰度基因突变的难度。本发明方法无需复杂昂贵的仪器,容易操作,成本低,1天之内即可给出结果,可为临床肿瘤早筛和术后复发监测提供及时、可靠的基因突变信息。

Description

一种基于选择性消除野生链背景干扰的基因突变检测方法
技术领域
本发明涉及基因组样品处理和基因突变检测领域,特别涉及一种对基因组样品进行预处理的方法,通过该方法消除野生型DNA后,与常规测序法联用,实现超低丰度基因突变的快速、低成本测序分析。
背景技术
癌症(恶性肿瘤)是当今严重威胁人类健康的头号杀手,与癌症相关的早期诊断和术后复发监测具有重要的生物学和医学意义。基因突变是指基因组DNA分子发生了可遗传的变异现象,是导致恶性肿瘤形成的重要原因之一。传统的肿瘤基因检测手段主要是组织活检,即通过手术穿刺的方式获取肿瘤组织样本并对其进行基因检测,该方法主要针对癌变组织进行检测,对于还未形成病灶的早期肿瘤细胞无法实现有效的检测,对于已经形成病灶的肿瘤组织也可能因为肿瘤异质性而得到假阴性的检测结果。此外,这种侵入式的检测手段给患者带来较大的痛苦,且可能在手术穿刺时进一步刺激癌组织引发恶化。组织活检也不适合进行连续取样和病情跟踪检测。
随着精准医疗概念的提出和循环肿瘤DNA(Circulating tumor DNA,ctDNA)1、循环肿瘤细胞和外泌体等新型肿瘤标志物的发现,液体活检逐渐成为癌症早期诊断的新希望。ctDNA是早期肿瘤细胞脱落或者凋亡后释放至循环***内的DNA,该DNA高度碎片化但携带肿瘤细胞的全部基因突变信息。针对循环体系内ctDNA的检测能够为肿瘤早筛和复发监测提供重要的信息。由于正常细胞在程序性凋亡的过程中也会向循环***中释放大量的碎片化DNA,给血浆游离DNA(Cell free DNA,cfDNA)中ctDNA的检测带来很大程度的背景干扰。据文献报道,血浆中存在基因突变的ctDNA丰度一般在0.001%-10%之间,这对突变检测方法的灵敏度和选择性都提出了很高的要求。
目前针对基因突变的检测方法主要有测序法、数字液滴PCR法和DNA探针杂交法等。直接测序法是最为经典、适用范围最广的基因突变检测方法。测序法能够直接给出目标DNA分子的核苷酸序列,因此被视作基因突变检测的金标准。Sanger测序法(双脱氧链终止法)经过数十年的发展和技术优化,实现了单一样品的低成本快速检测,但其灵敏度有限,对突变基因丰度的最低检测限在5%-10%之间,无法直接用于ctDNA的检测。第二代测序法(Next-generation sequencing,NGS)2采用一种与经典的Sanger链终止法截然不同的原理,它以大规模并行的方式,实现边合成边测序(Sequencing by synthesis,SBS)。在常规测序深度下,NGS能够给出有效数据的突变丰度范围为0.1-0.5%以上。在此基础上,Newman等人开发了肿瘤个体化深度测序分析法(Cancer personalized profiling by deepsequencing,CAPP-NGS)。该方法的核心思想是缩小NGS的检测范围,通过对人群大样本的分析,筛选出约0.04%目标范围的基因库,仅对该基因库进行高深度二代测序,检测限可以达到0.02%,并同时实现数百个基因突变的同时检测。但是CAPP-NGS仍然不能够满足早期癌症样品的检测,且为了达到0.02%的检测限,CAPP-NGS的测序深度需10000倍以上,检测成本极高,检测周期达数周,很难大范围推广。在二代测序被开发和商业化的同时,以纳米孔(Nanopore)3测序为代表的第三代测序技术同样得到了广泛的关注。Nanopore测序利用α-溶血素构建生物纳米孔,孔中间恰好允许单链DNA通过。DNA链通过纳米孔时会阻碍其他离子自由进出纳米孔从而导致纳米孔附近的电流发生变化,此外,DNA上四种碱基的化学结构和大小略有不同,对纳米孔附近电流的实时监测可以间接获取到DNA的序列信息。Nanopore技术最大的特点是惊人的读长以及小巧的体积,在实际应用中最高达到了147Kb。但目前测序结果的准确度还不够高,仅有80%,与实现ctDNA的直接测序还有一定的距离。
数字液滴PCR(digital droplet PCR,ddPCR)4在传统的PCR技术的基础上,利用芯片或者液滴实现样品的独立分配,对独立液滴进行PCR,极限检测限能达到0.005-0.05%,是目前检测ctDNA灵敏度最高的方法,但达到该极限检测限对于原PCR体系超分散至微滴时的要求极高。为了保证测定的准确性,该方法稳定的检测限被人为控制在0.01%-0.1%之间,实际临床使用时将检测限控制在0.05%-0.1%。检测限越低,所需的样品量就越大。ddPCR关键的技术核心为实现待测DNA单分子级别的分散,实际操作繁琐,仪器价格昂贵,操作成本高,检测周期2-4天,也不易实现ctDNA的快速分析。
荧光探针法利用人为设计并合成的分别标记有荧光基团和猝灭基团的单链DNA探针,特异性识别并结合体系中的待测突变目标链并给出荧光信号,从而实现待测样品中突变基因丰度的检测。在一般测定条件下,待测样品中野生链与突变链间的差异仅为一个碱基,DNA探针对于该碱基的区分能力有限,在实际应用过程中检测限为10%左右。为了进一步提高DNA荧光探针的灵敏度,人们在简单探针的基础上发展了多种新型探针,如分子信标、二元探针、三茎探针等,将检测限降低至3%。Zhang5等人进一步在简单的DNA杂交探针的基础上引入大量热力学和动力学计算,利用链竞争、链置换、链迁移的识别进一步将检测限降低至0.01%至1%,但是该方法检测时间较长且需要对于探针序列和竞争序列进行精确的计算。Das6等人结合DNA探针与高灵敏度的电化学检测法开发出了一种基于探针杂交免PCR的基因突变电化学检测法,该方法借助电化学检测的高灵敏度,摒弃传统PCR,能够直接测定0.01%的突变链,达到了超低丰度基因突变检测水平。但该方法的普适性较差,纳米电极的构造以及电极表面纳米载体的合成较为困难,针对不同的检测体系需要重新设计电化学检测体系,同时体系中大量使用的PNA成本较高,限制了该方法的进一步推广。Xiao7等人在原有荧光探针法的基础上引入了核酸酶辅助荧光信号放大显著提高了荧光探针法的灵敏度。相比于测序法,荧光分析法缺少碱基变化的直接信息。
目前针对实际样品的检测还离不开PCR扩增,通过提高PCR过程的选择性对样品体系中突变链进行优先富集的方法也得到了广泛的关注和研究。将扩增阶段的常规PCR替换成选择性PCR可以在最终测定前提高待测样品中突变链的丰度,从而提高对低丰度突变的灵敏度。现有的选择性PCR方法主要包括突变阻滞扩增PCR(Amplification refractorymutation system PCR,ARMS PCR)8、野生链阻碍PCR(Wild-type blocking PCR)9、低温PCR(Co-amplification at lower temperature PCR,COLD-PCR)10、锁核酸/肽核酸钳PCR(Locked nucleic acids/peptide nucleic acids-mediated PCR,LNA/PNA-mediatedPCR)11以及将上述方法联用的ARMS-qPCR、ice-COLD PCR等方法。但是PCR体系本身就是一个涉及多温度组合、多组分参与的复杂生化反应,在引物设计、温度优化和时间控制上都较为繁琐,产物组成也十分复杂。在PCR过程中额外引入竞争性的新组分,使反应变得更加复杂难控。在实验过程中需要对各核酸链的序列、各组分加入量、退火温度及各阶段恒温时间进行复杂的优化和精确的控制,影响因素复杂。即使是组合型选择性PCR,其稳定的检出限也控制在0.05%-0.1%之间,难于满足ctDNA的快速测序分析要求。
由于野生型DNA不存在突变,不携带关键致病基因相关信息,亦不能为肿瘤早筛或者术后复发监测提供关键信息,却在检测体系中占据绝大多数比例,给样品中突变型DNA的检出带来巨大的背景干扰。如果能构建一种简单、高效的能选择性去除体系中野生型DNA的方法,则可以显著提升突变型DNA的丰度,之后可通过常规测序方法进行分析。在这方面目前有两个研究组开展过一些探索性研究,分别是利用双链特异性核酸酶(DSN酶)12以及磁珠捕获(DISSECT)13的方法选择性去除待测样品中大量的野生型DNA。但两种方法均存在明显的局限性,难以获得稳定、可靠的结果。例如,DSN酶本身对于野生型DNA和突变型DNA并没有序列选择性,其区分能力仅来源于底物链是单链还是双链,辅之以精确的温度控制。这一原理导致基因组的长链DNA可能会被非特异性水解,从而导致富集的失败。另一项DISSECT技术是利用互补序列修饰的磁珠选择性杂交去除体系中的野生型DNA。由于该去除过程是线性的,单次去除效率较低,而且磁珠表面的非特异性吸附易导致突变型DNA链的损失。
我们课题组在以前的研究中曾通过DNase I和硫代DNA链在高浓度下的静电自组装作用构建了一种可调控核酸酶序列选择性的酶复合物(专利号:ZL 2014 1 0797398.6)14。该酶复合物可以高效率地选择性切除体系中与硫代DNA链完全互补配对的底物链,这为我们开发一种选择性去除基因组样品中野生链的方法奠定了重要的基础。
综上所述,现有的方法在针对ctDNA的早期肿瘤检测方面仍然存在灵敏度不够高,检测周期长,方法不稳定以及实验条件控制要求苛刻和仪器试剂价格高昂等一系列问题。针对这些问题,本发明拟发展一种灵敏度高、操作相对简单、结果稳定性好、成本较低、易于推广使用和服务于临床检验的基因突变检测方法。
参考文献
1Wan,J.C.et al.Liquid biopsies come of age:towards implementation ofcirculating tumour DNA.Nat Rev Cancer 17,223-238(2017).
2Shendure,J.&Ji,H.Next-generation DNA sequencing.Nat Biotechnol 26,1135-1145(2008).
3Jain,M.et al.Nanopore sequencing and assembly of a human genome withultra-long reads.Nature Biotechnology 36,338-+(2018).
4Vogelstein,B.&Kinzler,K.W.Digital PCR.Proc.Natl.Acad.Sci.U.S.A.96,9236-9241(1999).
5Wu,L.R.,Chen,S.X.,Wu,Y.,Patel,A.A.&Zhang,D.Y.Multiplexed enrichmentof rare DNA variants via sequence-selective and temperature-robustamplification.Nat Biomed Eng 1,714-723(2017).
6Das,J.,Ivanov,I.,Sargent,E.H.&Kelley,S.O.DNA Clutch Probes forCirculating Tumor DNA Analysis.J Am Chem Soc 138,11009-11016(2016).
7Xiao,X.,Song,C.,Zhang,C.,Su,X.&Zhao,M.Ultra-selective and sensitiveDNA detection by a universal apurinic/apyrimidinic probe-based endonucleaseIV signal amplification system.Chem Commun(Camb)48,1964-1966(2012).
8Milbury,C.A.,Li,J.&Makrigiorgos,G.M.PCR-based methods for theenrichment of minority alleles and mutations.Clin Chem 55,632-640(2009).
9Dominguez,P.L.&Kolodney,M.S.Wild-type blocking polymerase chainreaction for detection of single nucleotide minority mutations from clinicalspecimens.Oncogene 24,6830-6834(2005).
10Li,J.et al.Replacing PCR with COLD-PCR enriches variant DNAsequences and redefines the sensitivity of genetic testing.Nat Med 14,579-584(2008).
11Oldenburg,R.P.,Liu,M.S.&Kolodney,M.S.Selective amplification ofrare mutations using locked nucleic acid oligonucleotides that competitivelyinhibit primer binding to wild-type DNA.J Invest Dermatol 128,398-402(2008).
12Song,C.et al.Elimination of unaltered DNA in mixed clinical samplesvia nuclease-assisted minor-allele enrichment.Nucleic Acids Research 44(2016).
13Guha,M.,Castellanos-Rizaldos,E.,Liu,P.,Mamon,H.&Makrigiorgos,G.M.Differential strand separation at critical temperature:a minimallydisruptive enrichment method for low-abundance unknown DNA mutations.NucleicAcids Res 41,e50(2013).
14Xiao,X,Wu,T.,Gu F.and Zhao M,Generation of artificial sequence-specific nucleases via preassembled inert-template,Chemical Science,7,2051-2057(2016).
发明内容
本发明的目的在于提供一种基因突变检测方法,通过构建一种简便、高效的方法去除待测体系中的野生型DNA,从而使突变链DNA的丰度上升到可以直接用Sanger测序法检出。
我们对专利ZL 2014 1 0797398.6所建立的方法开展深入机理研究的过程中发现,DNase I与硫代DNA链之间的亲和力明显大于该酶与天然DNA单链之间的亲和力。这意味着在一个混合体系中,DNase I会优先与硫代DNA链结合,然后才与普通DNA链相互作用。利用这一特点,本发明构建了一个无需预组装,在低浓度DNase I的条件下,由溶液中游离的硫代DNA链优先结合DNase I,然后在溶液中原位诱导DNase I选择性切割与硫代DNA链完全互补序列的方法。根据待测目标基因的DNA序列,我们将硫代DNA链的序列设计成与野生型DNA完全互补,使之被快速水解;而突变链由于与硫代DNA链存在单碱基错配,基本不被切割。经过这一体系处理过的基因组样品,突变链所占的比例显著提高,后续直接用最简单的Sanger测序法即测出基因组样品中是否存在突变和突变碱基的类型。进一步通过处理时间与突变富集倍数之间的定量关系,可计算出原始基因组样品中的突变丰度值。
本发明方法的原理如图1所示,将突变型DNA链与野生型DNA链序列中可能存在突变位点的区域(10-12个碱基范围)记为目标区域,人为设计硫代DNA链序列与野生型DNA链目标区域序列完全互补配对,突变型DNA链则由于突变位点的存在其目标区域不能与硫代DNA链序列完全互补配对。突变型DNA链与野生型DNA链目标区域外的序列记为非目标区域,二者在非目标区域内序列一致。为了防止非目标区域被DNase I非特异性切割,在溶液中加入与其序列完全互补的RNA单链对其进行封闭。
将上述方法应用于分析基因组样品(如血浆样品或者组织样品)时,首先利用试剂盒提取和纯化其中的DNA,然后通过PCR对所提取DNA中待测目标序列(野生型或突变型)进行扩增。扩增产物经Lambda核酸外切酶处理成单链DNA后,其中含有大量的野生型DNA单链和少量的突变型DNA单链。向体系中加入RNA封闭链和硫代DNA链,升温退火后加入DNase I进行切割。DNase I在硫代DNA的引导下选择性地切除野生型DNA链目标区域序列,而突变型DNA链由于目标区域内存在错配不能被DNase I切除而得以保留在溶液体系中。随着酶切反应的进行,突变型DNA链的丰度显著提升,直到常规突变检测方法可准确检出的范围,后续通过PCR扩增和Sanger测序即可直接检测。
本发明的基因突变检测方法具体操作步骤如下:
1)确定基因组DNA待测目标序列,该目标序列包括目标区域和非目标区域,设计并合成与野生型DNA序列目标区域互补的硫代DNA链以及与非目标区域互补的RNA封闭链;
2)设计PCR扩增体系对待测目标序列(包括野生型和突变型)进行扩增,利用Lambda核酸外切酶将扩增产物处理成单链;
3)将步骤2)得到的单链DNA与步骤1)合成的硫代DNA链和RNA封闭链在DNase I缓冲溶液中混合,升温退火后加入DNase I反应一段时间,热失活DNase I;
4)对步骤3)酶切产物进行测序检测。
上述步骤1)中,所述待测目标序列的长度优选为115~130nt,可能存在突变位点的目标区域优选位于待测目标序列的中部。所述目标区域中可能存在一个或多个突变位点,根据序列GC含量不同,目标区域长度控制在其熔解温度Tm在42-46℃之间,一般的,目标区域的长度优选为11~13nt。
所述非目标区域位于目标区域的两端,与非目标区域互补的RNA封闭链的长度通常为25~90nt,如果非目标区域比较长,可以设计并合成多条RNA封闭链。
所述硫代DNA链的长度优选为16~59nt,包括与野生型DNA目标区域互补片段和两端的非互补片段。优选的,所述硫代DNA链为全硫代DNA链。
上述步骤2)中,优选的,PCR扩增体系的正向引物为5’-OH末端,反向引物的5’末端磷酸化标记,Lambda核酸外切酶选择性地消化双链DNA的5’磷酸化的链。扩增产物经Lambda核酸外切酶处理成单链后通过超滤纯化。
步骤2)中PCR扩增后,先对PCR溶液进行超滤除盐,然后加入Lambda核酸外切酶,37℃恒温反应一定时间后热失活Lambda核酸外切酶,随后对酶切产物溶液再次进行超滤纯化。
上述步骤3)将步骤2)得到的单链DNA与步骤1)合成的硫代DNA链和RNA封闭链在DNase I缓冲溶液中混合,升温退火后加入DNase I,在37~42℃温度下反应30~45min,然后热失活DNase I。其中升温退火的条件是95℃下30s以上解链,然后缓慢降至室温,降温速率不超过10℃/min,防止杂交不完全。具体程序可以是:95℃ 90s;80℃ 90s;65℃ 90s;50℃ 90s;37℃ 120s。上述步骤4)对DNase I酶切产物检测的方法包括但不限于:PCR扩增后Sanger测序检测、焦磷酸测序、二代测序等。
本发明中使用的硫代DNA链和RNA封闭链均通过化学合成法获得,其中硫代DNA链不会被核酸酶水解,RNA封闭链本身不会被DNase I切割,与非目标区域的DNA单链杂交后可以辅助抑制DNase I对于杂交链中DNA的酶切。
与现有技术相比,本发明具有明显的技术优势,具体阐述如下:
现行的两类主流的基因突变检测技术是二代测序和数字液滴PCR。二代测序法面临的问题是检测周期长,尤其是对低丰度的基因突变样品,需要更长时间的测序和数据处理,通常是2-4周,不仅成本高,而且难以满足临床大量样品快速检测的需求。数字液滴PCR法则依赖于较大的样品量,才能提供足够高的灵敏度,这对患者来说是不易接受的。本发明通过一步预处理去除野生型DNA,使突变丰度上升到Sanger测序法可以测到的范围。实验证实,这一方法对突变丰度低至0.01%的样品仍可以取得明显的富集效果,这大幅度降低了目前已有技术检测低丰度基因突变的难度。整个方法无需复杂昂贵的仪器,容易操作,成本低,1天之内即可给出结果,比二代测序法更具有实际应用价值,可为临床肿瘤早筛和术后复发监测提供及时、可靠的基因突变信息。
附图说明
图1是硫代DNA链引导DNase I切割野生型DNA以显著提高突变型DNA丰度,从而实现低丰度基因突变样品富集后直接Sanger测序的方法原理图。
图2是实施例1中EGFR L858R野生型探针和突变型探针与不同种类核酸链杂交后被DNase I酶切的相对速率对比图。
图3是实施例1中DNase I在不同浓度硫代DNA链引导下对EGFR L858R野生型探针(a)和突变型探针(b)的酶切反应荧光曲线图,其中(b)中的内插图为四条荧光上升曲线的放大图。
图4是实施例1中在不同温度下,硫代DNA链引导DNase I对经过RNA链封闭后的EGFR L858R野生型长链DNA和突变型长链DNA酶切30min后产物的凝胶电泳图。
图5是实施例1中由三种不同长度的硫代DNA链引导DNase I对经过RNA链封闭后的KRAS G13D野生型长链DNA和突变型长链DNA酶切30min后产物的凝胶电泳图。
图6是实施例2中EGFR L858R突变丰度为0.1%和0.01%的样品经过硫代DNA引导DNase I预处理不同时间后PCR产物的Sanger测序图谱。
图7是实施例2中EGFR L858R突变丰度为1.0%、0.1%和0.01%的标准品和阴性组织样品、肺癌患者阳性组织样品及血浆样品经过硫代DNA引导DNase I预处理前后PCR产物的Sanger测序图谱。
具体实施方式
下面结合附图,通过具体实施例进一步阐述本发明。本领域的技术人员应当理解这些实施例仅用于说明本发明而不限制本发明的范围。
实施例1<硫代DNA链引导DNase I选择性切除野生型DNA链>
在该实施例中,选择了两种不同的目标基因DNA序列,一是人表皮生长因子受体(EGFR)21号外显子858号密码子处的点突变(L858R)所在序列;另一是V-Ki-ras2Kirsten大鼠肉瘤病毒癌基因(KRAS)2号外显子13号密码子处的点突变(G13D)所在序列。
表1.在本实施例中所用核酸链的序列(5’-3’)
Figure BDA0001951326940000081
Figure BDA0001951326940000091
Figure BDA0001951326940000101
(1)EGFR L858R硫代DNA链引导DNase I选择性地切割EGFR L858R野生型DNA链
EGFR L858R野生型长链DNA和EGFRL858R突变型长链DNA的序列如表1中所示,下划线部分为目标区域,其中的突变位点加粗表示。针对该目标区域,设计对应的EGFR L858R硫代DNA链序列为:5’-AAAAAAAAAAAGGGCTGGCCAACGCAGATA-3’,其中的磷酸骨架全硫代修饰,下划线部分为与野生型目标序列完全互补的11-nt序列,其余部分是为了增加与DNase I的结合力。
为了更直观地展示该硫代DNA序列对野生链和突变链切割速率的差异,我们分别合成了用荧光标记的、长度为16nt的野生型和突变型短目标序列,分别称为EGFR L858R野生型探针和EGFR L858R突变型探针(序列见表1),其中EGFR L858R野生型探针与EGFRL858R硫代DNA链存在11nt序列完全互补配对,EGFR L858R突变型探针与EGFR L858R硫代DNA链在对应的11nt序列中有一对碱基错配。
以上两种探针均标记了荧光基团和猝灭基团,二者之间可以发生高效率的荧光共振能量转移。当两种探针序列保持完整时,荧光基团受激后发出的荧光被猝灭基团吸收,因而检测不到荧光。而当这些序列被DNase I切割后,猝灭基团远离荧光基团,溶液将发出强烈的荧光,从而可以有效地指示该探针序列是否被硫代DNA引导的DNase I选择性地切割以及切割反应的快慢和进行程度。
具体实施步骤如下:
1)分别将20pmol野生型探针或突变型探针与20pmol硫代DNA链混合于50μL缓冲溶液(组成为:10mmol/L Tris-HCl,2.5mmol/L MgCl2,0.5mmol/L CaCl2,pH 7.6@25℃)中,然后将溶液升温退火(具体程序为95℃ 90s;80℃ 90s;65℃ 90s;50℃ 90s;37℃120s)。
2)向步骤1)退火后的溶液加入0.05U DNase I,混合均匀后立刻放入实时荧光PCR仪(Rotor Gene Q)中,在37℃下测定荧光值,激发波长为470±10nm,检测波长为510±5nm。
用野生型和突变型探针按照以上步骤共进行了4组对照实验,其中第一组不加硫代DNA链;第二组将硫代DNA链替换成与野生型探针完全互补配对的EGFR L858R RNA互补链(序列见表1);第三组将硫代DNA链替换成与野生型探针完全互补配对的EGFR L858R DNA互补链(序列见表1);第四组按正常步骤加入前述的与野生型探针完全互补配对的EGFRL858R硫代DNA链。四组实验得到的野生型探针和突变型探针被酶水解荧光上升的速率如图2所示。
可见,两种探针本身被DNase I切割的速率都很慢,且二者之间没有明显的差别。加入RNA互补链后,与两种探针均能形成DNA∶RNA杂交链,二者被DNase I切割的速率仍很慢且差别不大。第三组实验加入DNA互补链后,野生型探针形成完全互补配对的DNA双链,突变型探针形成单碱基错配的DNA双链,两种DNA双链均被DNase I快速水解,突变型探针形成的双链的切割速率甚至略快于野生型探针形成的完全互补的双链;第四组实验加入硫代DNA链后,野生型探针与其完全互补配对形成DNA∶硫代DNA杂交链,从而被DNase I快速切割,而突变型探针由于与硫代DNA链存在单碱基错配,被DNase I切割的速率甚至略小于突变型探针本身。这四组实验的对照结果充分证明了硫代DNA可引导DNase I选择性地切割与硫代DNA序列完全互补配对的野生型DNA链,而对仅存在单碱基错配的突变型DNA链基本没有影响。
为了进一步确证硫代DNA的引导作用,我们进一步设计了四组对照实验。每组实验中野生型探针和突变型探针的加入量均为20pmol,从第一组到第四组硫代DNA链的加入量依次为0、1pmol、10pmol和25pmol,对应硫代DNA链的终浓度分别为0、20nM、200nM和500nM,实时荧光分析的结果如图3所示。
由图3(a)的数据可以看到,随着硫代DNA链加入量的增加,野生型探针被DNase I切割的速率逐渐加快。当硫代DNA链的加入量大于野生型探针时,荧光信号迅速达到平台,表明野生型探针很快被DNase I水解清除掉了。而突变型探针则表现出相反的结果,如图3(b)所示,随着硫代DNA链加入量的增加,突变型探针被DNase I切割的速率越来越慢,进一步说明硫代DNA链与DNase I的结合力大于普通DNA单链与DNase I的结合力,当硫代DNA链与DNase I优先结合后,突变型探针既不容易直接与DNase I结合,也不容易通过与硫代DNA链杂交而被切割,因此反而被保留下来。
在上述荧光分析实验中使用的野生型探针和突变型探针均为16nt的短链DNA,而在实际的基因组样品体系中,待测DNA通常为长链。为了防止长链DNA单链中目标区域两侧的序列因自身形成二级结构或链间产生部分杂交而导致被DNase I非特异性地切割,我们参照图2中第二组实验的结果,通过向溶液中加入非目标区域的RNA互补链对其进行保护。EGFR L858R野生型和突变型长链DNA的序列如表1所示,序列长度为130nt,其中与硫代DNA互补的目标区域长度为11nt,其余部分均为非目标区域。根据目前可大量合成RNA的长度限制,我们设计了4条长度在25nt–30nt之间的RNA封闭链(序列见表1)用于封闭长链DNA序列中非目标区域的部分。由于长链DNA序列上未标记荧光基团,我们采用凝胶电泳法表征了在硫代DNA链引导下、RNA链封闭的条件下,DNase I切割长链DNA的产物情况。具体实验步骤如下:
1)将EGFR L858R野生型长链DNA或突变型长链DNA(20pmol),EGFR L858R RNA封闭链1-4(各20pmol),EGFR L858R硫代DNA链(25pmol)混合于50μL缓冲溶液中,缓冲液组成为:10mmol/L Tris-HCl,2.5mmol/L MgCl2,0.5mmol/L CaCl2,pH 7.6@25℃,升温退火。
2)对野生型长链DNA和突变型长链DNA均设计不加DNase I、加入0.05U DNase I和加酶后不同温度(33.3℃至45.9℃之间)下反应的对照实验,反应时间均为30min,之后加热使DNase I失活。取少量产物溶液(9μL)进行琼脂糖凝胶电泳实验。
3)设计十组2.5%琼脂糖凝胶电泳实验,其中泳道1:野生型DNA长链加入RNA封闭链和硫代DNA链,升温退火后不加DNase I;泳道2-5:野生型DNA长链加入RNA封闭链和硫代DNA链,升温退火后经DNase I处理30min,反应温度依次为33.3℃、37.1℃、41.7℃和45.9℃;泳道6:突变型DNA长链加入RNA封闭链和硫代DNA链,升温退火后不加DNase I处理;泳道7-10:突变型DNA长链加入RNA封闭链和硫代DNA链,升温退火后经DNase I处理30min,反应温度依次为33.3℃、37.1℃、41.7℃和45.9℃。用GelRed核酸染料进行染色后观察DNA条带分布。
上述凝胶电泳的结果如图4所示。对比泳道1和泳道6可见,在不加入DNase I的情况下,野生型DNA长链和突变型DNA长链均与4条RNA封闭链结合形成了杂交双链,长度为130bp。对比泳道1-5可知,在四种不同的反应温度下,野生型DNA长链与RNA封闭链形成的杂交底物链均可被DNase I快速酶切,酶切产物长度约为80bp和30bp,分别对应于底物链5’末端和3’末端目标区域外序列与RNA封闭链形成的杂交双链。该结果表明RNA封闭链的杂交有效防止了DNase I对于非目标区域的切割,且并不影响体系中的硫代DNA链引导DNase I对于目标区域高效率的切割。对比泳道6-10可知,突变型DNA长链与RNA封闭链形成的杂交底物链在33.3o下经DNase I作用30min后,有少量被水解。随着温度的升高,杂交产物稳定性下降,越来越多地被DNase I水解。温度升高到45.9℃时,大部分杂交产物都被水解。与泳道1-5所示野生型DNA长链的产物条带比较,突变型DNA长链的水解产物并不集中为清晰的两个条带,说明水解过程并无选择性,是随机发生的。以上实验结果表明,突变型长链DNA的非目标区域被RNA链封闭保护后,目标区域仍可被硫代DNA链引导的DNase I选择地切割。
(2)KRAS G13D硫代DNA链引导DNase I选择性地切割KRAS G13D野生型DNA链
为了证明硫代DNA链可引导DNase I选择性切除野生型DNA长链目标区域序列这一性质的普适性,我们进一步选择KRAS G13D基因突变位点所在序列开展了研究。KRAS G13D野生型长链DNA,KRAS G13D突变型长链DNA以及针对两条链非目标区域进行封闭的KRASG13D RNA封闭链1–4的序列如表1所示。此外,我们设计合成了三条不同长度的硫代DNA链进行对比,分别为KRAS G13D硫代DNA链A(41nt)、B(42nt)和C(43nt),其与野生型DNA链目标区域互补配对的序列长度分别为10nt,11nt和12nt。
通过琼脂糖凝胶电泳实验对三条不同硫代DNA链引导DNase I选择性切除长链底物中目标区域序列的效果进行了比较,具体操作步骤如下:
1)将KRAS G13D野生型长链DNA或KRAS G13D突变型长链DNA(20pmol),KRAS G13DRNA封闭链1-4(各20pmol),KRAS G13D硫代DNA链A/B/C(25pmol)混合于50μL缓冲溶液中,缓冲液组成为:10mmol/L Tris-HCl,2.5mmol/L MgCl2,0.5mmol/L CaCl2,pH 7.6@25℃,升温退火。
2)根据实验设计,向实验组中加入0.05U DNase I,对照组中不加入DNase I,37℃下酶切30min,酶切结束后热失活DNase I。
3)利用2.5%琼脂糖凝胶电泳确定2)中产物溶液DNA条带分布。
共设计八组2.5%琼脂糖凝胶电泳实验,用GelRed核酸染料进行染色后观察。其中泳道1、3、5、7对应野生型长链DNA的检测结果,泳道2、4、6、8对应突变型长链DNA的检测结果。泳道1-2:不加DNase I;泳道3-4:加入硫代DNA链A和DNase I处理30min;泳道5-6:加入硫代DNA链B和DNase I处理30min;泳道7-8:加入硫代DNA链C和DNase I处理30min。实验结果如图5所示。对比泳道1-8可见,野生型DNA长链和突变型DNA长链经过RNA封闭链封闭后,三条硫代DNA链均能够引导DNase I选择性切割野生型DNA长链目标区域序列。
以上研究结果表明,在实际应用过程中,硫代DNA链的序列可根据待处理底物链目标区域序列进行灵活设计,本发明的方法具有良好的序列普适性,设计和实施也都简便易行。
实施例2<通过切除野生型DNA链实现低丰度EGFR L858R基因突变的快速测序分析>
本实施例中所用EGFR L858R的野生型DNA长链、突变型DNA长链、硫代DNA链和RNA封闭链的序列均见表1所列。所用PCR扩增引物的序列为:
EGFR L858R正向引物:5’-TTCTTTCTCTTCCGCACC-3’(5’-OH末端)(SEQ ID No:21)
EGFR L858R磷酸化反向引物:5’-PO4–TACTTGGAGGACCGTCG-3’(5’末端磷酸化标记)(SEQ ID No:22)
实验操作步骤如下:
1)用Shearase酶对基因组DNA进行酶切处理:将1mg基因组DNA与1.5μL Shearase酶充分混合于20μL缓冲液中,缓冲液组成为10mmol/L Tris-HCl,25mmol/L MgCl2,1mmol/LDTT,pH 7.5@25℃,在42℃下孵育15min,随后热失活Shearase酶。
2)对基因组DNA和标准品DNA进行PCR扩增:将1.5μL步骤1)中的产物溶液或0.25amol DNA标准品,20pmol正向引物,20pmol反向引物,1nmol dNTPs,1μL LC Green,0.5U Q5聚合酶充分混合于50μL Q5缓冲液中进行PCR扩增(程序为:98℃ 60s;98℃ 9s,63.5℃ 18s,72℃ 20s,循环35圈;72℃延伸600s)。
3)PCR扩增产物的单链化和纯化:对步骤2)中溶液进行超滤除盐(超滤溶剂:去离子无酶水,超滤管截断分子量30KDa,超滤温度4℃,超滤时间:10min,转速:6000rpm,超滤次数:2次)。取出超滤管中上层溶液置于PCR管中(液体总体积约为50μL),向其中加入5ULambda核酸外切酶,37℃恒温反应10min后热失活Lambda核酸外切酶。随后对酶切产物溶液再次进行超滤纯化,超滤方法同上,用Qubit 3.0确定超滤后上层溶液中DNA的含量。
4)利用硫代DNA链引导DNase I选择性切除野生型DNA链:将步骤3)中得到的基因组DNA或者标准品DNA(1pmol),RNA封闭链(各10pmol)和硫代DNA链(12.5pmol)混合于50μL缓冲溶液中,缓冲液组成为:10mmol/L Tris-HCl,2.5mmol/L MgCl2,0.5mmol/L CaCl2,pH7.6@25℃,升温退火后向溶液中加入0.05U DNase I,37℃下反应30min,随后热失活DNaseI。
5)对DNase I酶切产物进行PCR扩增:将1.5μL步骤4)中得到的DNase I酶切产物溶液,20pmol正向引物,20pmol反向引物,1nmol dNTPs,1μL LC Green,0.5U Q5聚合酶充分混合于50μL Q5缓冲液中进行PCR扩增(程序为:98℃ 60s;98℃ 9s,63.5℃ 18s,72℃ 20s,循环35圈;72℃延伸600s)。
6)对步骤5)中PCR产物进行Sanger测序分析。
我们将人工合成的EGFR L858R野生型DNA和EGFR L858R突变型DNA的标准品按不同比例混合,分别得到初始突变丰度为0.1%和0.01%的样品。对两种突变丰度不同的样品分别采用步骤4)预处理不同时间(0min,18min,45min,90min)后再进行步骤5)PCR扩增和步骤6)Sanger测序,得到的Sanger测序图谱如6所示。不经硫代DNA引导DNase I酶切处理的样品(0min),用Sanger测序无法检出目标位点突变峰的存在。经过处理的样品,在Sanger测序图谱中可检测到目标位点突变峰的信号。且随着硫代DNA引导DNase I酶切时间的增加,Sanger图谱中突变峰的信号逐渐增强,说明待测体系中突变链的丰度随着DNase I对野生链的选择性酶切而显著的提升,同时也证实了RNA封闭链对于底物链非目标区域的有效封闭。
在此基础上,我们将方法用于患者组织样品和血浆样品的分析。利用试剂盒提取纯化分别得到组织样品基因组DNA和血浆样品基因组DNA,采用步骤1)-步骤6)进行处理和检测,同时设置不进行步骤4)硫代DNA引导DNase I酶切处理的对照组和采用相同步骤进行处理的标准品的对照组,最终的Sanger测序图谱如图7所示。可见,未经步骤4)酶切处理的对照组仅组织样品基因组DNA的突变可以在Sanger测序图谱中看到,突变丰度约为30%。经过步骤4)硫代DNA引导DNase I酶切处理的实验组中,初始突变丰度为1%,0.1%和0.01%的样品在Sanger图谱中的突变峰信号分别达到约60%,30%和10%。血浆样品经处理后基因突变位点亦可被Sanger测序检出。肺癌阳性组织样品经过处理后在Sanger图谱中的突变丰度也明显升高。阴性组织样品经过处理后在Sanger图谱中未出现假阳性信号。
综合以上实验结果,本发明的方法使得Sanger测序法不能直接检测的低丰度基因突变样品在经过选择性酶切处理后可使突变链的丰度提升到直接由Sanger测序法测到,其中样品处理过程只需4小时,从拿到临床样本到给出Sanger测序结果,整个分析过程时间不超过24小时,这为临床样品的快速测序分析提供了强有力的手段,具有良好的推广应用前景。
SEQUENCE LISTING
<110> 北京大学
<120> 一种基于选择性消除野生链背景干扰的基因突变检测方法
<130> WX2019-03-022
<160> 22
<170> PatentIn version 3.5
<210> 1
<211> 130
<212> DNA
<213> Homo sapiens
<400> 1
gtattctttc tcttccgcac ccagcagttt ggccagccca aaatctgtga tcttgacatg 60
ctgcggtgtt ttcaccagta cgttcctggc tgccaggtcg cggtgcacca agcgacggtc 120
ctccaagtag 130
<210> 2
<211> 130
<212> DNA
<213> Homo sapiens
<400> 2
gtattctttc tcttccgcac ccagcagttt ggcccgccca aaatctgtga tcttgacatg 60
ctgcggtgtt ttcaccagta cgttcctggc tgccaggtcg cggtgcacca agcgacggtc 120
ctccaagtag 130
<210> 3
<211> 16
<212> DNA
<213> 人工序列
<400> 3
cagtttggcc agccca 16
<210> 4
<211> 16
<212> DNA
<213> 人工序列
<400> 4
cagtttggcc cgccca 16
<210> 5
<211> 30
<212> DNA
<213> 人工序列
<400> 5
aaaaaaaaaa agggctggcc aacgcagata 30
<210> 6
<211> 16
<212> RNA
<213> 人工序列
<400> 6
ugggcuggcc aaacug 16
<210> 7
<211> 16
<212> DNA
<213> 人工序列
<400> 7
tgggctggcc aaactg 16
<210> 8
<211> 27
<212> RNA
<213> 人工序列
<400> 8
cugcugggug cggaagagaa agaauac 27
<210> 9
<211> 30
<212> RNA
<213> 人工序列
<400> 9
aacaccgcag caugucaaga ucacagauuu 30
<210> 10
<211> 30
<212> RNA
<213> 人工序列
<400> 10
cgaccuggca gccaggaacg uacuggugaa 30
<210> 11
<211> 30
<212> RNA
<213> 人工序列
<400> 11
cuacuuggag gaccgucgcu uggugcaccg 30
<210> 12
<211> 115
<212> DNA
<213> Rattus norvegicus
<400> 12
gactgaatat aaacttgtgg tagttggagc tggtggcgta ggcaagagtg ccttgacgat 60
acagctaatt cagaatcatt ttgtggacga atatgatcca acaatagagg attcc 115
<210> 13
<211> 115
<212> DNA
<213> Rattus norvegicus
<400> 13
gactgaatat aaacttgtgg tagttggagc tggtgacgta ggcaagagtg ccttgacgat 60
acagctaatt cagaatcatt ttgtggacga atatgatcca acaatagagg attcc 115
<210> 14
<211> 41
<212> DNA
<213> 人工序列
<400> 14
aaaaaaaaaa tacgccacca actgagacta ctacatgaca a 41
<210> 15
<211> 42
<212> DNA
<213> 人工序列
<400> 15
aaaaaaaaaa tacgccacca gactgagact actacatgac aa 42
<210> 16
<211> 43
<212> DNA
<213> 人工序列
<400> 16
aaaaaaaaaa ctacgccacc agactgagac tactacatga caa 43
<210> 17
<211> 24
<212> RNA
<213> 人工序列
<400> 17
acuaccacaa guuuauauuc aguc 24
<210> 18
<211> 25
<212> RNA
<213> 人工序列
<400> 18
gcuguaucgu caaggcacuc uugcc 25
<210> 19
<211> 25
<212> RNA
<213> 人工序列
<400> 19
ucguccacaa aaugauucug aauua 25
<210> 20
<211> 25
<212> RNA
<213> 人工序列
<400> 20
ggaauccucu auuguuggau cauau 25
<210> 21
<211> 18
<212> DNA
<213> 人工序列
<400> 21
ttctttctct tccgcacc 18
<210> 22
<211> 17
<212> DNA
<213> 人工序列
<400> 22
tacttggagg accgtcg 17

Claims (9)

1.一种非疾病诊断目的的基因突变检测方法,包括以下步骤:
1)确定基因组DNA待测目标序列,该目标序列包括目标区域和非目标区域,设计并合成与野生型DNA序列目标区域互补的硫代DNA链以及与非目标区域互补的RNA封闭链,其中所述待测目标序列上可能存在突变位点的目标区域位于待测目标序列的中部,目标区域的长度控制在其熔解温度Tm在42~46°C之间;
2)对待测目标序列进行PCR扩增,利用Lambda核酸外切酶将扩增产物处理成单链;
3)将步骤2)得到的单链DNA与步骤1)合成的硫代DNA链和RNA封闭链在DNase I缓冲溶液中混合,升温退火后在50 μL体系中加入0.05U DNase I反应一段时间,热失活DNase I;
4)对步骤3)酶切产物进行测序检测。
2.如权利要求1所述的基因突变检测方法,其特征在于,步骤1)中所述待测目标序列的长度为115~130 nt。
3.如权利要求1所述的基因突变检测方法,其特征在于,目标区域的长度为 11~13 nt。
4.如权利要求1所述的基因突变检测方法,其特征在于,步骤1)中所述非目标区域位于目标区域的两端,与非目标区域互补的RNA封闭链为多条,每条长度为25~90 nt。
5.如权利要求1所述的基因突变检测方法,其特征在于,所述硫代DNA链的长度为16~59nt,包括与野生型DNA目标区域互补片段和两端的非互补片段。
6.如权利要求1所述的基因突变检测方法,其特征在于,所述硫代DNA链为全硫代DNA链。
7.如权利要求1所述的基因突变检测方法,其特征在于,步骤2)中PCR扩增采用的正向引物为5’-OH末端,反向引物的5’末端磷酸化标记,Lambda核酸外切酶选择性地消化双链DNA的5’磷酸化的链。
8.如权利要求1所述的基因突变检测方法,其特征在于,步骤2)中PCR扩增产物经Lambda核酸外切酶处理成单链后通过超滤纯化。
9.如权利要求1所述的基因突变检测方法,其特征在于,步骤3)将步骤2)得到的单链DNA与步骤1)合成的硫代DNA链和RNA封闭链在DNase I缓冲溶液中混合,升温退火后加入DNase I,在37~42°C温度下反应30~45 min,然后热失活DNase I。
CN201910052680.4A 2019-01-21 2019-01-21 一种基于选择性消除野生链背景干扰的基因突变检测方法 Active CN109680044B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910052680.4A CN109680044B (zh) 2019-01-21 2019-01-21 一种基于选择性消除野生链背景干扰的基因突变检测方法
PCT/CN2019/113859 WO2020151283A1 (zh) 2019-01-21 2019-10-29 一种基于选择性消除野生链背景干扰的基因突变检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910052680.4A CN109680044B (zh) 2019-01-21 2019-01-21 一种基于选择性消除野生链背景干扰的基因突变检测方法

Publications (2)

Publication Number Publication Date
CN109680044A CN109680044A (zh) 2019-04-26
CN109680044B true CN109680044B (zh) 2021-04-30

Family

ID=66193748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910052680.4A Active CN109680044B (zh) 2019-01-21 2019-01-21 一种基于选择性消除野生链背景干扰的基因突变检测方法

Country Status (2)

Country Link
CN (1) CN109680044B (zh)
WO (1) WO2020151283A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680044B (zh) * 2019-01-21 2021-04-30 北京大学 一种基于选择性消除野生链背景干扰的基因突变检测方法
CN110511984B (zh) * 2019-09-10 2021-08-24 北京大学 Egfr基因19号外显子缺失突变的快速荧光检测方法及应用
CN114592046A (zh) * 2022-03-18 2022-06-07 广州迪澳基因科技有限公司 一种对低丰度突变dna进行富集及检测的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743326A (zh) * 2007-05-14 2010-06-16 因赛特遗传学公司 筛选核酸中的单核苷酸变异的方法
WO2014189628A1 (en) * 2013-04-11 2014-11-27 Caribou Biosciences, Inc. Dna-guided dna interference by a prokaryotic argonaute
CN104611318A (zh) * 2014-12-18 2015-05-13 北京大学 一种调控核酸酶序列选择性的酶复合物及方法
CN107604053A (zh) * 2017-08-16 2018-01-19 金绍莲 一种野生型扩增阻滞物在制备检测基因痕量突变试剂中的应用及其试剂盒和检测方法
CN107893109A (zh) * 2017-11-08 2018-04-10 重庆邮电大学 一种基于移除野生型序列的低丰度基因突变富集方法
CN108291253A (zh) * 2015-11-25 2018-07-17 综合基因技术公司 用于变体检测的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680044B (zh) * 2019-01-21 2021-04-30 北京大学 一种基于选择性消除野生链背景干扰的基因突变检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743326A (zh) * 2007-05-14 2010-06-16 因赛特遗传学公司 筛选核酸中的单核苷酸变异的方法
WO2014189628A1 (en) * 2013-04-11 2014-11-27 Caribou Biosciences, Inc. Dna-guided dna interference by a prokaryotic argonaute
CN104611318A (zh) * 2014-12-18 2015-05-13 北京大学 一种调控核酸酶序列选择性的酶复合物及方法
CN108291253A (zh) * 2015-11-25 2018-07-17 综合基因技术公司 用于变体检测的方法
CN107604053A (zh) * 2017-08-16 2018-01-19 金绍莲 一种野生型扩增阻滞物在制备检测基因痕量突变试剂中的应用及其试剂盒和检测方法
CN107893109A (zh) * 2017-11-08 2018-04-10 重庆邮电大学 一种基于移除野生型序列的低丰度基因突变富集方法

Also Published As

Publication number Publication date
CN109680044A (zh) 2019-04-26
WO2020151283A1 (zh) 2020-07-30

Similar Documents

Publication Publication Date Title
US20210254148A1 (en) Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing
CN107109401B (zh) 使用crispr-cas***的多核苷酸富集
US20230392191A1 (en) Selective degradation of wild-type dna and enrichment of mutant alleles using nuclease
JP2010535031A (ja) 標的配列の濃縮
CN109680044B (zh) 一种基于选择性消除野生链背景干扰的基因突变检测方法
EP3353320B1 (en) Improved detection of short homopolymeric repeats
US20180355417A1 (en) Rare nucleic acid detection
CN114555830A (zh) 靶核酸的检测方法、核酸结合分子的检测方法、及核酸结合能力的评价方法
US11174511B2 (en) Methods and compositions for selecting and amplifying DNA targets in a single reaction mixture
CN111349691B (zh) Egfr基因缺失突变检测用组合物、试剂盒及检测方法
CN113493835A (zh) 通过检测bcan基因区域的甲基化状态筛查大肠瘤的方法和试剂盒
CN114250276B (zh) 基于指数扩增反应和Argonaute核酸酶的microRNA检测体系及方法
WO2016160823A1 (en) Methods of amplifying nucleic acids and compositions and kits for practicing the same
WO2023087290A1 (en) Methods for nucleic acid detection
Liu et al. Argonaute-mediated system for supersensitive and multiplexed detection of rare mutations
CN115992206A (zh) Argonaute介导的一锅法microRNA检测体系及检测方法
Liu et al. A-Star, an Argonaute-directed System for Rare SNV Enrichment and Detection
CN117144067A (zh) 用于多重化核酸检测的组合物和方法
JP2007215413A (ja) 欠損の検出方法
Sürsal Development of rapid and accurate IDH1 mutation detection system that is compatible for intraoperative diagnosis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant