CN109630491B - 一种电控补偿二通比例流量阀 - Google Patents

一种电控补偿二通比例流量阀 Download PDF

Info

Publication number
CN109630491B
CN109630491B CN201811600410.4A CN201811600410A CN109630491B CN 109630491 B CN109630491 B CN 109630491B CN 201811600410 A CN201811600410 A CN 201811600410A CN 109630491 B CN109630491 B CN 109630491B
Authority
CN
China
Prior art keywords
valve
compensating
pressure compensation
core
compensation valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811600410.4A
Other languages
English (en)
Other versions
CN109630491A (zh
Inventor
权龙�
王波
王翔宇
葛磊
郝云晓
杨敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201811600410.4A priority Critical patent/CN109630491B/zh
Publication of CN109630491A publication Critical patent/CN109630491A/zh
Application granted granted Critical
Publication of CN109630491B publication Critical patent/CN109630491B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/026Pressure compensating valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Servomotors (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

本发明提供一种电控补偿二通比例流量阀,采用新型电子压力补偿阀或电液压力补偿阀,电子压力补偿阀或电液压力补偿阀出油口B1与主阀进油口PA、电子压力补偿阀或电液压力补偿阀第Ⅰ控制腔PF连通,主阀出油口PB与电子压力补偿阀或电液压力补偿阀第Ⅱ控制腔PE连通。本发明设计了新型元件电子压力补偿阀和电液压力补偿阀,采用电子控制单元控制和检测补偿阀芯位置,实现补偿阀芯闭环控制和补偿压差连续调控,提高了整个阀的流量控制精度,增强了抗负载变化流量调节刚性,具有结构简单、动态特性好和高精度流量稳态控制的优点。

Description

一种电控补偿二通比例流量阀
技术领域
本发明属于一种二位二通比例流量阀,具体涉及到一种电控补偿二通比例流量阀。
背景技术
二通比例流量阀作为重大机械装备电液控制***的核心元件,可连续控制液压执行器流量,在海洋工程、铁路隧道、航空航天、核电等领域应用广泛。由阀口流量方程
Figure BDA0001922341100000011
可知,通过比例流量阀流量不仅和阀口开口面积A有关,同时还受阀口两端压差Δp变化影响。
为了消除负载变化影响,如图1所示,传统流量阀在比例节流阀的进口或出口串联一个压力补偿阀,维持节流阀两端压差Δp恒定,实现通流流量的比例控制。但这种流量控制阀在低工作压力范围内可控性差、动态响应慢;同时,受补偿阀芯液动力和动态频响影响,节流阀压差Δp波动大,存在较大的流量偏差和负载压力阶跃起动流量超调,图2和图3分别给出了其稳态负载特性曲线和负载阶跃响应特性曲线。
为了提高比例流量阀的控制精度、改善动态特性,现有解决方案是采用二通插装阀作为动态流量传感器,对阀的流量进行检测,将通过传感器的流量转为二通插装阀阀芯的位移或压差,作为反馈信号闭环控制阀的流量,典型的应用有流量-位移-力反馈比例流量阀。但这种阀的不足是结构较为复杂,也不适合大流量的控制阀。
发明内容
为了解决上述问题,本发明旨在提供一种结构简单、动态特性好、调控范围大的电控补偿二通比例流量阀,克服传统流量阀负载阶跃和起动阶跃下流量超调大的缺陷,实现高精度流量稳态控制。
为实现上述目的,本发明采用以下技术方案:一种电控补偿二通比例流量阀,包括比例先导阀(1)、主阀(6)和第Ⅰ位移传感器(10);比例先导阀包括有先导阀芯(2)、第Ⅰ比例电磁铁(3)、先导阀弹簧(4)、先导阀体(5)、先导阀进油口(A2)和先导阀出油口(B2);主阀包括有主阀芯(7)、主阀套(8)、主阀复位弹簧(9)、主阀进油口(PA)、主阀出油口(PB)和主阀控制腔(PC);第Ⅰ位移传感器安装在主阀芯上,检测主阀芯位移;其特征在于,还包括电子压力补偿阀(11)或电液压力补偿阀(12),具体包括哪种压力补偿阀由负载压力和流量决定;
所述电子压力补偿阀是比例电磁铁控制的压力补偿阀或直线电机控制的压力补偿阀或旋转电机驱动滚珠丝杠控制的压力补偿阀,电子压力补偿阀是比例电磁铁控制的压力补偿阀时包含有位移传感器(13)、第Ⅱ比例电磁铁(14)、补偿阀体(15)、补偿阀芯(16)、弹簧(17)、进油口(A1)、出油口(B1)、第Ⅰ控制腔(PF)和第Ⅱ控制腔(PE);补偿阀芯布置在补偿阀体之中,弹簧一端作用在补偿阀芯左端面C上,另一端作用在补偿阀体上、并与补偿阀芯形成第Ⅰ控制腔PF,第Ⅱ比例电磁铁与补偿阀体连接、作用在补偿阀芯右端面D上,并与补偿阀芯、补偿阀体形成第Ⅱ控制腔PE,位移传感器与第Ⅱ比例电磁铁集成安装;
电子压力补偿阀是直线电机控制的压力补偿阀时,包括位移传感器、补偿阀体、补偿阀芯、弹簧、直线电机(18)、进油口(A1)、出油口(B1)、第Ⅰ控制腔(PF)和第Ⅱ控制腔(PE);补偿阀芯布置在补偿阀体之中,弹簧一端作用在补偿阀芯左端面C上,另一端作用在补偿阀体上、并与补偿阀芯形成第Ⅰ控制腔PF,位移传感器通过补偿阀体安设在补偿阀芯上,直接检测阀芯的位置X和速度XV,直线电机与补偿阀体连接、安设在补偿阀芯右端面D上,并与补偿阀体、补偿阀芯形成第Ⅱ控制腔PE。或者
电子压力补偿阀是旋转电机驱动滚珠丝杠控制的压力补偿阀时,包括位移传感器、补偿阀体、补偿阀芯、弹簧、旋转电机(19)、滚珠丝杠(20)、连杆(21)、进油口(A1)、出油口(B1)、第Ⅰ控制腔(PF)和第Ⅱ控制腔(PE);补偿阀芯布置在补偿阀体之中,弹簧一端作用在补偿阀芯左端面C上,另一端作用在补偿阀体上、并与补偿阀芯形成第Ⅰ控制腔PF,位移传感器通过补偿阀体安设在补偿阀芯上,直接检测阀芯的位置X和速度XV,旋转电机与补偿阀体连接、并与补偿阀体、补偿阀芯形成第Ⅱ控制腔PE,旋转电机伸出轴与滚珠丝杠的螺杆连接,滚珠丝杠的螺母与连杆连接,旋转电机带动滚珠丝杠旋转,通过滚珠丝杠将电机的旋转运动转换为直线运动,从而驱动连杆输出不同的力和位移;
所述电液压力补偿阀包括位移传感器、补偿阀体、补偿阀芯、弹簧、进油口(A)、出油口(B)、第Ⅰ控制腔(PF)、第Ⅱ控制腔(PE)和第Ⅲ控制腔(PG);补偿阀芯布置在补偿阀体之中,弹簧一端作用在补偿阀芯左端面C上,另一端作用在补偿阀体上、并与补偿阀芯形成第Ⅰ控制腔PF,位移传感器通过补偿阀体安设在补偿阀芯上,直接检测阀芯的位置X和速度XV,补偿阀芯另一端分别与补偿阀体形成第Ⅱ控制腔PE和第Ⅲ控制腔PG
电子压力补偿阀或电液压力补偿阀与主阀的连接方式为:
电子压力补偿阀或电液压力补偿阀出油口B1与主阀进油口PA、电子压力补偿阀或电液压力补偿阀第Ⅰ控制腔PF连通,主阀出油口PB与电子压力补偿阀或电液压力补偿阀第Ⅱ控制腔PE连通;
当采用电液压力补偿阀时,比例流量阀进一步还包含有先导比例减压阀(22),电液压力补偿阀的进油口A1与先导比例减压阀的进油口连通,先导比例减压阀的出油口与油箱连通,先导比例减压阀的工作油口与电液压力补偿阀的第Ⅲ控制腔PG连通。
所述的电子压力补偿阀和电液压力补偿阀是常开式和常闭式中的一种。
所述的位移传感器是集成在第Ⅱ比例电磁铁上,通过检测第Ⅱ比例电磁铁来检测阀芯位置X和速度XV,或是安设在补偿阀芯上,直接检测阀芯的位置X和速度XV。
所述的第Ⅱ比例电磁铁是单向比例电磁铁和双向比例电磁铁中的一种。
所述的旋转电机是直流电机、同步电机和异步电机中的一种。
与现有技术相比,本发明具有以下有益效果:
本发明设计了新型元件电子压力补偿阀和电液压力补偿阀,实现了比例流量阀补偿压差实时连续调控,增大了比例流量阀流量调控范围,改了动态特性,克服了传统比例流量阀在低工作压力范围内可控性差的问题。
本发明设计了新型元件电子压力补偿阀和电液压力补偿阀,采用电子控制单元控制和检测补偿阀芯位置,可实现补偿阀芯闭环控制,继而提高了整个阀的流量控制精度,增强了流量阀抗负载变化流量调节刚性,具有好的稳态负载特性。
本发明采用新型元件电子压力补偿阀和电液压力补偿阀,可实现补偿阀常开或常闭控制,解决了传统流量阀采用减压式补偿阀响应滞后、负载压力阶跃起动流量超调大的问题。
附图说明
图1是传统比例流量阀的结构原理示意图;
图2是传统比例流量阀的稳态流量特性曲线;
图3是传统比例流量阀的负载阶跃特性曲线;
图4是本发明电磁比例先导阀的结构组成示意图;
图5是本发明主阀的结构组成示意图;
图6是本发明电子压力补偿阀的第一结构原理图;
图7是本发明电子压力补偿阀的第二结构原理图;
图8是本发明电子压力补偿阀的第三结构原理图;
图9是本发明电液压力补偿阀的结构原理图;
图10是本发明实施方式1,采用电子压力补偿阀的比例调速阀的结构示意图;
图11是本发明实施方式2,采用电液压力补偿阀的比例调速阀的结构示意图。
图中:1-比例先导阀,2-先导阀芯,3-第Ⅰ比例电磁铁,4-先导阀弹簧,5-先导阀体,6-主阀,7-主阀芯,8-主阀套,9-主阀复位弹簧,10-第Ⅰ位移传感器,11-电子压力补偿阀,12-电液压力补偿阀,13-第Ⅱ位移传感器,14-第Ⅱ比例电磁铁,15-补偿阀体,16-补偿阀芯,17-弹簧,18-直线电机,19-旋转电机,20-滚珠丝杠,21-连杆,22-先导比例减压阀。
具体实施方式
下面结合附图及实施例对本发明一种电控补偿二通比例流量阀的原理和结构作进一步的详细说明。
实施例1
一种电控补偿二通比例流量阀,包括比例先导阀1、主阀6和第Ⅰ位移传感器10;
如图4所示,比例先导阀包括有先导阀芯2、第Ⅰ比例电磁铁3、先导阀弹簧4、先导阀体5、先导阀进油口A2和先导阀出油口B2
如图5所示,主阀包括有主阀芯7、主阀套8、主阀复位弹簧9、主阀进油口PA、主阀出油口PB和主阀控制腔PC;第Ⅰ位移传感器10安装在主阀芯7上,检测主阀芯7位移;其特征在于,还包括电子压力补偿阀11;
所述电子压力补偿阀11是比例电磁铁14控制的压力补偿阀或直线电机18控制的压力补偿阀或旋转电机19驱动滚珠丝杠20控制的压力补偿阀。
如图6所示,电子压力补偿阀11是比例电磁铁14控制的压力补偿阀时,包含有位移传感器13、第Ⅱ比例电磁铁14、补偿阀体15、补偿阀芯16、弹簧17、进油口A1、出油口B1、第Ⅰ控制腔PF和第Ⅱ控制腔PE;补偿阀芯16布置在补偿阀体15之中,弹簧17一端作用在补偿阀芯16左端面C上,另一端作用在补偿阀体15上、并与补偿阀芯16形成第Ⅰ控制腔PF,第Ⅱ比例电磁铁14与补偿阀体15连接、作用在补偿阀芯16右端面D上,并与补偿阀芯16、补偿阀体15形成第Ⅱ控制腔PE,位移传感器13与第Ⅱ比例电磁铁14集成安装;
如图7所示,电子压力补偿阀11是直线电机18控制的压力补偿阀时,包括位移传感器13、补偿阀体15、补偿阀芯16、弹簧17、直线电机18、进油口A1、出油口B1、第Ⅰ控制腔PF和第Ⅱ控制腔PE;补偿阀芯16布置在补偿阀体15之中,弹簧17一端作用在补偿阀芯16左端面C上,另一端作用在补偿阀体15上、并与补偿阀芯16形成第Ⅰ控制腔PF,位移传感器13通过补偿阀体15安设在补偿阀芯16上,直接检测阀芯的位置X和速度XV,直线电机18与补偿阀体15连接、安设在补偿阀芯16右端面D上,并与补偿阀体15、补偿阀芯16形成第Ⅱ控制腔PE。或者
如图8所示,电子压力补偿阀11是旋转电机19驱动滚珠丝杠20控制的压力补偿阀时,包括位移传感器13、补偿阀体15、补偿阀芯16、弹簧17、旋转电机19、滚珠丝杠20、连杆21、进油口A1、出油口B1、第Ⅰ控制腔PF和第Ⅱ控制腔PE;补偿阀芯16布置在补偿阀体15之中,弹簧17一端作用在补偿阀芯16左端面C上,另一端作用在补偿阀体15上、并与补偿阀芯16形成第Ⅰ控制腔PF,位移传感器13通过补偿阀体15安设在补偿阀芯16上,直接检测阀芯的位置X和速度XV,旋转电机19与补偿阀体15连接、并与补偿阀体15、补偿阀芯16形成第Ⅱ控制腔PE,旋转电机19伸出轴与滚珠丝杠20的螺杆连接,滚珠丝杠20的螺母与连杆21连接,旋转电机19带动滚珠丝杠20旋转,通过滚珠丝杠20将电机的旋转运动转换为直线运动,从而驱动连杆21输出不同的力和位移;
如图10所示,电子压力补偿阀11与主阀6的连接方式为:
电子压力补偿阀11的出油口B1与主阀进油口PA、电子压力补偿阀11的第Ⅰ控制腔PF连通,主阀6出油口PB与电子压力补偿阀11第Ⅱ控制腔PE连通;
所述的电子压力补偿阀11是常开式和常闭式中的一种。
所述的位移传感器13是集成在第Ⅱ比例电磁铁14上,通过检测第Ⅱ比例电磁铁14来检测阀芯位置X和速度XV,或是安设在补偿阀芯16上,直接检测阀芯的位置X和速度XV。
所述的第Ⅱ比例电磁铁14是单向比例电磁铁和双向比例电磁铁中的一种。
所述的旋转电机19是直流电机、同步电机和异步电机中的一种。
实施例2
本发明一种电控补偿二通比例流量阀的第二种实施方式,在结构组成、连接关系上与第一种实施方式相同,区别是采用了电液压力补偿阀12。
如图9所示,电液压力补偿阀12包括位移传感器13、补偿阀体15、补偿阀芯16、弹簧17、进油口A、出油口B、第Ⅰ控制腔PF、第Ⅱ控制腔PE和第Ⅲ控制腔PG;补偿阀芯16布置在补偿阀体15之中,弹簧17一端作用在补偿阀芯16左端面C上,另一端作用在补偿阀体15上、并与补偿阀芯16形成第Ⅰ控制腔PF,位移传感器13通过补偿阀体15安设在补偿阀芯16上,直接检测阀芯16的位置X和速度XV,补偿阀芯16另一端分别与补偿阀体15形成第Ⅱ控制腔PE和第Ⅲ控制腔PG
如图11所示,当采用电液压力补偿阀12时,比例流量阀进一步还包含有先导比例减压阀22,电液压力补偿阀12的进油口A1与先导比例减压阀22的进油口连通,先导比例减压阀22的出油口与油箱连通,先导比例减压阀22的工作油口与电液压力补偿阀12的第Ⅲ控制腔PG连通。

Claims (5)

1.一种电控补偿二通比例流量阀,包括比例先导阀(1)、主阀(6)和第Ⅰ位移传感器(10);比例先导阀包括有先导阀芯(2)、第Ⅰ比例电磁铁(3)、先导阀弹簧(4)、先导阀体(5)、先导阀进油口(A2)和先导阀出油口(B2);主阀包括有主阀芯(7)、主阀套(8)、主阀复位弹簧(9)、主阀进油口(PA)、主阀出油口(PB)和主阀控制腔(PC);第Ⅰ位移传感器安装在主阀芯上,检测主阀芯位移;其特征在于,还包括电子压力补偿阀(11)或电液压力补偿阀(12),具体包括哪种压力补偿阀由负载压力和流量决定;
所述电子压力补偿阀是比例电磁铁控制的压力补偿阀或直线电机控制的压力补偿阀或旋转电机驱动滚珠丝杠控制的压力补偿阀,电子压力补偿阀是比例电磁铁控制的压力补偿阀时包含有位移传感器(13)、第Ⅱ比例电磁铁(14)、补偿阀体(15)、补偿阀芯(16)、弹簧(17)、进油口(A1)、出油口(B1)、第Ⅰ控制腔(PF)和第Ⅱ控制腔(PE);补偿阀芯布置在补偿阀体之中,弹簧一端作用在补偿阀芯左端面(C)上,另一端作用在补偿阀体上、并与补偿阀芯形成第Ⅰ控制腔(PF),第Ⅱ比例电磁铁与补偿阀体连接、作用在补偿阀芯右端面(D)上,并与补偿阀芯、补偿阀体形成第Ⅱ控制腔(PE),位移传感器与比例电磁铁集成安装;
电子压力补偿阀是直线电机控制的压力补偿阀时,包括位移传感器、补偿阀体、补偿阀芯、弹簧、直线电机(18)、进油口(A1)、出油口(B1)、第Ⅰ控制腔(PF)和第Ⅱ控制腔(PE);补偿阀芯布置在补偿阀体之中,弹簧一端作用在补偿阀芯左端面(C)上,另一端作用在补偿阀体上、并与补偿阀芯形成第Ⅰ控制腔(PF),位移传感器通过补偿阀体安设在补偿阀芯上,直接检测阀芯的位置X和速度XV,直线电机与补偿阀体连接、安设在补偿阀芯右端面(D)上,并与补偿阀体、补偿阀芯形成第Ⅱ控制腔(PE);
电子压力补偿阀是旋转电机驱动滚珠丝杠控制的压力补偿阀时,包括位移传感器、补偿阀体、补偿阀芯、弹簧、旋转电机(19)、滚珠丝杠(20)、连杆(21)、进油口(A1)、出油口(B1)、第Ⅰ控制腔(PF)和第Ⅱ控制腔(PE);补偿阀芯布置在补偿阀体之中,弹簧一端作用在补偿阀芯左端面(C)上,另一端作用在补偿阀体上、并与补偿阀芯形成第Ⅰ控制腔(PF),位移传感器通过补偿阀体安设在补偿阀芯上,直接检测阀芯的位置X和速度XV,旋转电机与补偿阀体连接、并与补偿阀体、补偿阀芯形成第Ⅱ控制腔(PE),旋转电机伸出轴与滚珠丝杠的螺杆连接,滚珠丝杠的螺母与连杆连接,旋转电机带动滚珠丝杠旋转,通过滚珠丝杠将电机的旋转运动转换为直线运动,从而驱动连杆输出不同的力和位移;
所述的电液压力补偿阀包括位移传感器、补偿阀体、补偿阀芯、弹簧、进油口(A)、出油口(B)、第Ⅰ控制腔(PF)、第Ⅱ控制腔(PE)和第Ⅲ控制腔(PG);补偿阀芯布置在补偿阀体之中,弹簧一端作用在补偿阀芯左端面(C)上,另一端作用在补偿阀体上、并与补偿阀芯形成第Ⅰ控制腔(PF),位移传感器通过补偿阀体安设在补偿阀芯上,直接检测阀芯的位置X和速度XV,补偿阀芯另一端分别与补偿阀体形成第Ⅱ控制腔(PE)和第Ⅲ控制腔(PG);
电子压力补偿阀或电液压力补偿阀与主阀的连接方式为:
电子压力补偿阀或电液压力补偿阀出油口(B1)与主阀进油口(PA)、电子压力补偿阀或电液压力补偿阀第Ⅰ控制腔(PF)连通,主阀出油口(PB)与电子压力补偿阀或电液压力补偿阀第Ⅱ控制腔(PE)连通;
当采用电液压力补偿阀时,比例流量阀进一步还包含有先导比例减压阀(22),电液压力补偿阀的进油口(A1)与先导比例减压阀的进油口连通,先导比例减压阀的出油口与油箱连通,先导比例减压阀的工作油口与电液压力补偿阀的第Ⅲ控制腔(PG)连通。
2.根据权利要求1所述的一种电控补偿二通比例流量阀,其特征在于:所述的电子压力补偿阀和电液压力补偿阀是常开式和常闭式中的一种。
3.根据权利要求1所述的一种电控补偿二通比例流量阀,其特征在于:所述的位移传感器是集成在第Ⅱ比例电磁铁上,通过检测第Ⅱ比例电磁铁来检测阀芯位置X和速度XV,或是安设在补偿阀芯上,直接检测阀芯的位置X和速度XV。
4.根据权利要求1所述的一种电控补偿二通比例流量阀,其特征在于:所述的第Ⅱ比例电磁铁是单向比例电磁铁和双向比例电磁铁中的一种。
5.根据权利要求1所述的一种电控补偿二通比例流量阀,其特征在于:所述的旋转电机是直流电机、同步电机和异步电机中的一种。
CN201811600410.4A 2018-12-26 2018-12-26 一种电控补偿二通比例流量阀 Active CN109630491B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811600410.4A CN109630491B (zh) 2018-12-26 2018-12-26 一种电控补偿二通比例流量阀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811600410.4A CN109630491B (zh) 2018-12-26 2018-12-26 一种电控补偿二通比例流量阀

Publications (2)

Publication Number Publication Date
CN109630491A CN109630491A (zh) 2019-04-16
CN109630491B true CN109630491B (zh) 2021-01-08

Family

ID=66077674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811600410.4A Active CN109630491B (zh) 2018-12-26 2018-12-26 一种电控补偿二通比例流量阀

Country Status (1)

Country Link
CN (1) CN109630491B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110725823B (zh) * 2019-10-11 2021-07-16 太原理工大学 一种基于压力飞升速率检测器的插装式两级比例调速阀
CN111237277B (zh) * 2020-01-17 2021-10-15 太原理工大学 基于先导流量-主阀芯位移反馈机制的比例流量阀
CN111396422A (zh) * 2020-04-23 2020-07-10 太原理工大学 一种先导型比例流量阀及控制方法
CN111396391B (zh) * 2020-04-23 2022-04-15 太原理工大学 一种带扰动补偿的高精度大流量多路阀
CN111255944B (zh) * 2020-04-30 2020-08-11 星宇电子(宁波)有限公司 一种带位置和流量复合反馈功能的先导式比例流量阀
CN113819273A (zh) * 2021-09-29 2021-12-21 太原理工大学 一种新型比例换向阀
CN113833708B (zh) * 2021-09-29 2024-01-19 太原理工大学 一种具有进出口压差检测的多路阀
CN114593101B (zh) * 2022-03-25 2022-09-02 哈尔滨工业大学 一种补偿稳态液动力的多级主压逻辑控制阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1031270A (zh) * 1987-06-30 1989-02-22 日立建机株式会社 液压传动***
CN101429959A (zh) * 2008-12-05 2009-05-13 太原理工大学 电闭环控制流量调节阀
CN101929482A (zh) * 2010-08-25 2010-12-29 太原理工大学 一种先导流量闭环控制的比例流量阀
CN102155449A (zh) * 2011-03-31 2011-08-17 太原理工大学 数字控制的先导型比例流量阀
CN102425581A (zh) * 2011-12-12 2012-04-25 太原理工大学 先导流量闭环控制的流量阀及控制方法
DE102012007108A1 (de) * 2012-04-07 2013-10-10 Robert Bosch Gmbh Valvistoranordnung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090302245A1 (en) * 2008-06-09 2009-12-10 Kristian Lernmark Fluid control valve and valve body
CN103671335B (zh) * 2013-12-19 2015-12-02 杭叉集团股份有限公司 负载敏感电比例多路阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1031270A (zh) * 1987-06-30 1989-02-22 日立建机株式会社 液压传动***
CN101429959A (zh) * 2008-12-05 2009-05-13 太原理工大学 电闭环控制流量调节阀
CN101929482A (zh) * 2010-08-25 2010-12-29 太原理工大学 一种先导流量闭环控制的比例流量阀
CN102155449A (zh) * 2011-03-31 2011-08-17 太原理工大学 数字控制的先导型比例流量阀
CN102425581A (zh) * 2011-12-12 2012-04-25 太原理工大学 先导流量闭环控制的流量阀及控制方法
DE102012007108A1 (de) * 2012-04-07 2013-10-10 Robert Bosch Gmbh Valvistoranordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于先导压力补偿的插装式比例流量阀控制特性研究;赵红梅等;《液压与气动》;20161231;96-100 *

Also Published As

Publication number Publication date
CN109630491A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109630491B (zh) 一种电控补偿二通比例流量阀
CN111609012B (zh) 一种先导型比例流量阀及控制方法
CN102425581B (zh) 先导流量闭环控制的流量阀及控制方法
CN101929482B (zh) 一种先导流量闭环控制的比例流量阀
WO2014173102A1 (zh) 预拉-预扭型全桥式2d电液比例换向阀
CN108180180B (zh) 双液压缸流量补偿同步起竖装置及其控制方法
JP5870500B2 (ja) 静圧流体軸受装置
CN108612712B (zh) 主动先导级控制的电液比例流量阀及控制方法
CN101846109B (zh) 一种二通流量连续控制阀
CN107461516A (zh) 一种差动式电液比例定差减压阀
CN108661988B (zh) 主动先导级控制的电液比例流量阀与控制装置及控制方法
CN108005971B (zh) 双阀控缸带负载力控补偿协同装置及其控制方法
CN110307203B (zh) 一种液压泵马达用的伺服变量机构
CN112983916A (zh) 一种二维插装式负载敏感阀
CN107588052A (zh) 阀芯内置活塞式大流量力反馈射流管两级电液伺服阀
CN101865172B (zh) 有源先导控制的主动伺服比例阀
CN108397448B (zh) 双联阀负载独立控制式电液激振器及其电液激振装置和偏置控制方法
US3311123A (en) Electrohydraulic servo valve
CN109555740A (zh) 一种水基比例阀及其控制方法
CN108005794A (zh) 一种步进电机控制的航空发动机压气机导叶调节装置
CN208997426U (zh) 一种新型伺服控制机构
CN111396391A (zh) 一种带扰动补偿的高精度大流量多路阀
CN116906394A (zh) 一种双压电环自传感弯驱型两级滑阀式电液伺服阀
CN202326478U (zh) 一种液压控制回路中的进口压力补偿器
CN203114432U (zh) 可变气门时刻控制***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant