CN109613681B - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
CN109613681B
CN109613681B CN201811650625.7A CN201811650625A CN109613681B CN 109613681 B CN109613681 B CN 109613681B CN 201811650625 A CN201811650625 A CN 201811650625A CN 109613681 B CN109613681 B CN 109613681B
Authority
CN
China
Prior art keywords
lens
image
imaging optical
optical lens
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811650625.7A
Other languages
English (en)
Other versions
CN109613681A (zh
Inventor
孙雯
陈佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruisheng Communication Technology Changzhou Co Ltd
Original Assignee
Chengrui Optics Changzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengrui Optics Changzhou Co Ltd filed Critical Chengrui Optics Changzhou Co Ltd
Priority to CN201811650625.7A priority Critical patent/CN109613681B/zh
Publication of CN109613681A publication Critical patent/CN109613681A/zh
Priority to PCT/CN2019/108675 priority patent/WO2020140497A1/zh
Priority to JP2019201349A priority patent/JP6802612B2/ja
Priority to US16/705,170 priority patent/US11209615B2/en
Application granted granted Critical
Publication of CN109613681B publication Critical patent/CN109613681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/005Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

本发明涉及光学镜头领域,公开了一种摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有负屈折力的第三透镜,一具有正屈折力的第四透镜,一具有负屈折力的第五透镜,一具有负屈折力的第六透镜;第一透镜的折射率为n1,第四透镜的折射率为n4;第一透镜物侧面的曲率半径为R1,第一透镜像侧面的曲率半径为R2,满足下列关系式:1.09≤n4/n1≤1.30;‑2.00≤(R1+R2)/(R1‑R2)≤‑1.50。该摄像光学镜头能在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。

Description

摄像光学镜头
技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且***对成像品质的要求不断提高的情况下,六片式透镜结构逐渐出现在镜头设计当中,常见的六片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构无法满足大光圈、超薄化、广角化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有负屈折力的第三透镜,一具有正屈折力的第四透镜,一具有负屈折力的第五透镜,以及一具有负屈折力的第六透镜;第一透镜的折射率为n1,第四透镜的折射率为n4;第一透镜物侧面的曲率半径为R1,第一透镜像侧面的曲率半径为R2,满足下列关系式:1.09≤n4/n1≤1.30;-2.00≤(R1+R2)/(R1-R2)≤-1.50。
本发明实施方式相对于现有技术而言,通过上述透镜的配置方式,利用具有不同屈折力的透镜,规定了第一透镜的形状,且规定了第一透镜与第四透镜的折射率的比值,有利于矫正光学***的像差,使光学***在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
另外,第三透镜物侧面的曲率半径为R5,第三透镜像侧面的曲率半径为R6,满足下列关系式:30.00≤(R5+R6)/(R5-R6)≤50.00。
另外,第三透镜的像侧面到第四透镜的物侧面的轴上距离为d6,第四透镜的像侧面到第五透镜的物侧面的轴上距离为d8,满足下列关系式:1.10≤d6/d8≤1.40。
另外,摄像光学镜头的焦距为f,第五透镜的焦距为f5,满足下列关系式:-3.00≤f5/f≤-1.50
附图说明
图1是本发明第一实施方式中摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
图13是本发明第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示摄像光学镜头的轴向像差示意图;
图15是图13所示摄像光学镜头的倍率色差示意图;
图16是图13所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
以下为第一实施方式:
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括六个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、以及第六透镜L6。本实施方式中,优选的,在第六透镜L6和像面Si之间设置有玻璃平板GF等光学元件,其中玻璃平板GF可以是玻璃盖板,也可以是光学过滤片(filter),当然在其他可实施方式中,玻璃平板GF还可以设置在其他位置。
本实施方式中,第一透镜L1具有正屈折力,其物侧面向外凸出为凸面,其像侧面为凹面;第二透镜L2具有负屈折力,其物侧面为凸面,其像侧面为凹面;第三透镜L3具有负屈折力,其物侧面为凸面,其像侧面为凹面;第四透镜L4具有正屈折力,其物侧面为凹面,其像侧面为凸面;第五透镜L5具有负屈折力,其物侧面为凹面,像侧面为凸面;第六透镜L6具有负屈折力,其物侧面为凸面,像侧面为凹面。
在此,第一透镜L1的折射率为n1,第四透镜L4的折射率为n4,满足下列关系式:
1.09≤n4/n1≤1.30 (1)
在此,第一透镜L1物侧面的曲率半径为R1,第一透镜L1像侧面的曲率半径为R2,满足下列关系式:
-2.00≤(R1+R2)/(R1-R2)≤-1.50 (2)
其中,条件式(1)规定了第一透镜L1与第四透镜L4的折射率的比值。如此设置,在条件式范围内有助于矫正光学***的像差,实现光学镜头超薄化。
条件式(2)规定了第一透镜L1形状。如此设置,当R1与R2在条件式规定范围内时,可以有效矫正光学***球差。
本实施方式中,通过上述透镜的配置方式,且利用具有不同屈折力的各个透镜(L1、L2、L3、L4、L5、L6)、规定了第一透镜L1的形状,且规定了第一透镜L1与第四透镜L4的折射率的比值,有利于矫正光学***的像差,使光学***在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
优选的,第三透镜L3物侧面的曲率半径为R5,第三透镜L3像侧面的曲率半径为R6,满足下列关系式:
30.00≤(R5+R6)/(R5-R6)≤50.00 (3)
条件式(3)规定了第三透镜L3的形状。当R5与R6在条件式规定范围内时,避免了第三透镜L3的表面曲率过大而导致成型不良与应力产生,有助于第三透镜L3成型。
优选的,在本实施方式中,第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离为d6,第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离为d8,满足下列关系式:
1.10≤d6/d8≤1.40 (4)
条件式(4)规定了第三透镜L3到第四透镜L4的轴上距离与第四透镜L4到第五透镜L5轴上距离的比值,在条件式范围内有助于压缩光学***总长,实现超薄化效果。
优选地,摄像光学镜头的焦距为f,第五透镜L5的焦距为f5,焦距单位为毫米,满足下列关系式:
-3.00≤f5/f≤-1.50 (5)
条件式(5)规定了第五透镜L5的焦距与整体摄像光学镜头焦距的比值,合理分配第五透镜L5的光焦度,使得光学***具有较佳的成像品质和较低的敏感性。
此外,透镜的表面可以设置为非球面,非球面可以容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低本发明摄像光学镜头的总长度。本发明实施例中,各个透镜的物侧面和像侧面均为非球面。
值得一提的是,由于构成本实施方式的摄像光学透镜10的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、以及第六透镜L6具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、面型、材料以及各透镜的轴上厚度等,并因此校正了各类像差,本发明中的摄像光学镜头10的光学总长TTL,摄像光学镜头10的像高IH,满足下列关系式:TTL/IH≤1.24;摄像光学镜头10的视场角FOV,满足以下关系式:FOV≥84°。实现了在具有良好光学成像性能的同时,满足大光圈、超薄化、广角化的设计要求。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
图1是第一实施方式中摄像光学镜头10的结构示意图。以下示出了本发明第一实施方式中摄像光学镜头10的设计数据。
表1列出了本发明第一实施方式中构成摄像光学镜头10的第一透镜L1~第六镜头L6的物侧以及像侧曲率半径R、透镜的轴上厚度、透镜间的距离d、折射率nd及阿贝数vd。表2示出了摄像光学镜头10的圆锥系数k与非球面系数。需要说明的是,本实施方式中,距离、半径和中心厚度的单位为毫米(mm)。
【表1】
Figure GDA0002677019280000061
Figure GDA0002677019280000071
上表中各符号的含义如下。
R:光学面的曲率半径;
S1:光圈;
R1:第一透镜L1的物侧面;
R2:第一透镜L1的像侧面;
R3:第二透镜L2的物侧面;
R4:第二透镜L2的像侧面;
R5:第三透镜L3的物侧面;
R6:第三透镜L3的像侧面;
R7:第四透镜L4的物侧面;
R8:第四透镜L4的像侧面;
R9:第五透镜L5的物侧面;
R10:第五透镜L5的像侧面;
R11:第六透镜L6的物侧面;
R12:第六透镜L6的像侧面;
R13:玻璃平板GF的物侧面;
R14:玻璃平板GF的像侧面;
d:透镜的轴上厚度或相邻透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:玻璃平板GF的轴上厚度;
d14:玻璃平板GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的折射率;
nd2:第二透镜L2的折射率;
nd3:第三透镜L3的折射率;
nd4:第四透镜L4的折射率;
nd5:第五透镜L5的折射率;
nd6:第六透镜L6的折射率;
ndg:玻璃平板GF的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
vg:玻璃平板GF的阿贝数。
【表2】
Figure GDA0002677019280000091
在表2中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
需要说明的是,本实施方式中各透镜的非球面优选的使用下述条件式(6)所示的非球面,但是,下述条件式(6)的具体形式仅为一个示例,实际上,并不限于条件式(6)中表示的非球面多项式形式。
Y=(x2/R)/{1+[1-(1+k)(x2/R2)]1/2}+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16+A16x16+A18x18+A20x20 (6)
表3、表4示出本发明实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P2R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
Figure GDA0002677019280000101
Figure GDA0002677019280000111
【表4】
驻点个数 驻点位置1 驻点位置2
P1R1
P1R2 1 0.665
P2R1 2 0.075 0.555
P2R2
P3R1 1 0.485
P3R2 1 0.575
P4R1
P4R2
P5R1
P5R2
P6R1 2 0.305 2.225
P6R2 1 0.825
另外,在后续的表17中,还列出了第一实施方式中各种参数与条件式中已规定的参数所对应的值。
图2示出了波长为435nm、486nm、546nm、587nm、和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差示意图;图3示出了波长为435nm、486nm、546nm、587nm、和656nm的光经过第一实施方式的摄像光学镜头10后的倍率色差示意图。图4则示出了波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头10的全画角为2ω,F值为Fno,其中,2ω=84.29°,Fno=2.00,如此,摄像光学镜头10具有大光圈、超薄、广角,且具有优秀的成像性能。
以下为第二实施方式:
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像头20的设计数据。【表5】
Figure GDA0002677019280000121
【表6】
Figure GDA0002677019280000122
表7、表8示出本发明实施例的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4
P1R1 1 0.805
P1R2 1 0.375
P2R1 1 0.435
P2R2
P3R1 1 0.285
P3R2 4 0.335 0.915 1.005 1.105
P4R1 1 1.205
P4R2 3 0.835 1.115 1.475
P5R1 1 1.615
P5R2 1 1.815
P6R1 3 0.175 1.275 2.365
P6R2 3 0.395 2.215 2.525
【表8】
驻点个数 驻点位置1 驻点位置2
P1R1
P1R2 1 0.725
P2R1 1 0.575
P2R2
P3R1 1 0.485
P3R2 1 0.575
P4R1
P4R2
P5R1
P5R2
P6R1 2 0.295 2.225
P6R2 1 0.815
在后续的表17中,还列出了第二实施方式中各种参数与条件式中已规定的参数所对应的值。
图6示出了波长为435nm、486nm、546nm、587nm、和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差示意图;图7示出了波长为435nm、486nm、546nm、587nm、和656nm的光经过第一实施方式的摄像光学镜头10后的倍率色差示意图。图8则示出了波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式的摄像光学镜头20中,2ω=84.22°,Fno=2.00,如此,摄像光学镜头20具有大光圈、超薄、广角,且具有优秀的成像性能。
以下为第三实施方式:
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出了本发明第三实施方式的摄像光学镜头30的设计数据。【表9】
Figure GDA0002677019280000141
【表10】
Figure GDA0002677019280000142
Figure GDA0002677019280000151
表11、表12示出本发明实施例的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.825
P1R2 1 0.265
P2R1 1 0.395
P2R2 1 0.205
P3R1 1 0.275
P3R2 1 0.255
P4R1 1 0.945
P4R2 1 1.145
P5R1 2 0.485 1.495
P5R2 1 0.405
P6R1 2 0.365 1.315
P6R2 2 0.505 2.315
【表12】
Figure GDA0002677019280000152
Figure GDA0002677019280000161
在后续的表17中,还列出了第三实施方式中各种参数与条件式中已规定的参数所对应的值。
图10示出了波长为435nm、486nm、546nm、587nm、和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差示意图;图11示出了波长为435nm、486nm、546nm、587nm、和656nm的光经过第一实施方式的摄像光学镜头10后的倍率色差示意图。图12则示出了波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式的摄像光学镜头30中,2ω=84.79°,Fno=2.00,如此,摄像光学镜头30具有大光圈、超薄、广角,且具有优秀的成像性能。
以下为第四实施方式:
图13是第四实施方式中摄像光学镜头40的结构示意图,第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表13、表14示出了本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure GDA0002677019280000162
Figure GDA0002677019280000171
【表14】
Figure GDA0002677019280000172
表15、表16示出本发明实施例的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
Figure GDA0002677019280000173
Figure GDA0002677019280000181
【表16】
驻点个数 驻点位置1 驻点位置2
P1R1
P1R2 1 0.665
P2R1 1 0.575
P2R2
P3R1 1 0.475
P3R2 1 0.555
P4R1
P4R2
P5R1
P5R2
P6R1 2 0.315 2.205
P6R2 1 0.825
在后续的表17中,还列出了第四实施方式中各种参数与条件式中已规定的参数所对应的值。
图14示出了波长为435nm、486nm、546nm、587nm、和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差示意图;图15示出了波长为435nm、486nm、546nm、587nm、和656nm的光经过第一实施方式的摄像光学镜头10后的倍率色差示意图。图16则示出了波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图。图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式的摄像光学镜头40中,2ω=84.16°,Fno=2.00,如此,摄像光学镜头40具有大光圈、超薄、广角,且具有优秀的成像性能。
以下表17按照上述条件式列出了第一实施方式、第二实施方式和第三实施方式、第四实施方式中对应各条件式(1)、(2)、(3)、(4)、(5)的数值,以及其他相关参数的取值。
【表17】
实施例1 实施例2 实施例3 实施例4 备注
n4/n1 1.13 1.10 1.30 1.13 条件式(1)
(R1+R2)/(R1-R2) -1.99 -1.99 -1.51 -1.97 条件式(2)
(R5+R6)/(R5-R6) 41.70 49.75 30.59 45.10 条件式(3)
d6/d8 1.28 1.11 1.39 1.36 条件式(4)
f5/f -2.13 -2.11 -2.99 -1.52 条件式(5)
Fno 2.00 2.00 2.00 2.00
84.29 84.22 84.79 84.16
f 3.486 3.513 3.492 3.514
f1 3.067 3.069 2.662 3.073
f2 -11.891 -12.089 -9.973 -12.498
f3 -247.888 -343.520 -179.520 -291.179
f4 3.846 4.154 73.676 3.592
f5 -7.442 -7.425 -10.425 -5.339
f6 -4.184 -4.418 -19.234 -4.233
TTL 4.031 4.030 4.065 4.017
IH 3.282 3.282 3.282 3.282
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (4)

1.一种摄像光学镜头,其特征在于,所述摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有负屈折力的第三透镜,一具有正屈折力的第四透镜,一具有负屈折力的第五透镜,以及一具有负屈折力的第六透镜;
所述第一透镜的折射率为n1,所述第四透镜的折射率为n4;所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,满足下列关系式:
1.09≤n4/n1≤1.30;
-2.00≤(R1+R2)/(R1-R2)≤-1.50。
2.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:
30.00≤(R5+R6)/(R5-R6)≤50.00。
3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,满足下列关系式:
1.10≤d6/d8≤1.40。
4.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,满足下列关系式:
-3.00≤f5/f≤-1.50。
CN201811650625.7A 2018-12-31 2018-12-31 摄像光学镜头 Active CN109613681B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201811650625.7A CN109613681B (zh) 2018-12-31 2018-12-31 摄像光学镜头
PCT/CN2019/108675 WO2020140497A1 (zh) 2018-12-31 2019-09-27 摄像光学镜头
JP2019201349A JP6802612B2 (ja) 2018-12-31 2019-11-06 撮像光学レンズ
US16/705,170 US11209615B2 (en) 2018-12-31 2019-12-05 Camera optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811650625.7A CN109613681B (zh) 2018-12-31 2018-12-31 摄像光学镜头

Publications (2)

Publication Number Publication Date
CN109613681A CN109613681A (zh) 2019-04-12
CN109613681B true CN109613681B (zh) 2020-11-27

Family

ID=66015889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811650625.7A Active CN109613681B (zh) 2018-12-31 2018-12-31 摄像光学镜头

Country Status (4)

Country Link
US (1) US11209615B2 (zh)
JP (1) JP6802612B2 (zh)
CN (1) CN109613681B (zh)
WO (1) WO2020140497A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613681B (zh) * 2018-12-31 2020-11-27 诚瑞光学(常州)股份有限公司 摄像光学镜头
TWI696860B (zh) 2019-09-06 2020-06-21 大立光電股份有限公司 攝影用光學鏡頭、取像裝置及電子裝置
CN111812819B (zh) * 2020-09-10 2020-11-27 瑞泰光学(常州)有限公司 摄像光学镜头
CN111812820B (zh) * 2020-09-10 2020-11-27 瑞泰光学(常州)有限公司 摄像光学镜头
CN111929872B (zh) * 2020-09-21 2021-01-05 常州市瑞泰光电有限公司 摄像光学镜头

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005070A (ja) * 2001-06-18 2003-01-08 Konica Corp ズームレンズ
JP2003043352A (ja) * 2001-08-03 2003-02-13 Canon Inc 原稿読取用レンズ
TWI447473B (zh) * 2011-03-25 2014-08-01 Largan Precision Co Ltd 攝影用光學鏡頭組
TWI435138B (zh) * 2011-06-20 2014-04-21 Largan Precision Co 影像拾取光學系統
JP2013054294A (ja) * 2011-09-06 2013-03-21 Ricoh Co Ltd 画像読取レンズ、画像読取装置及び画像形成装置
US9429736B2 (en) * 2012-09-10 2016-08-30 Samsung Electro-Mechanics Co., Ltd. Optical system
TWI448725B (zh) * 2012-10-22 2014-08-11 Largan Precision Co Ltd 影像擷取光學鏡片系統
TWI477803B (zh) * 2013-03-05 2015-03-21 Largan Precision Co Ltd 攝像系統透鏡組
TWI461779B (zh) * 2013-04-25 2014-11-21 Largan Precision Co Ltd 結像鏡組
TWI467218B (zh) * 2013-10-29 2015-01-01 Largan Precision Co Ltd 成像光學鏡頭、取像裝置及可攜式電子裝置
JP6226376B2 (ja) * 2013-12-25 2017-11-08 カンタツ株式会社 撮像レンズ
TWI500959B (zh) * 2014-07-01 2015-09-21 Largan Precision Co Ltd 攝像用光學鏡頭、取像裝置以及電子裝置
JP6351171B2 (ja) * 2014-09-30 2018-07-04 カンタツ株式会社 7枚の光学素子構成の撮像レンズ
TWI519809B (zh) * 2014-12-05 2016-02-01 大立光電股份有限公司 取像光學鏡片組、取像裝置及電子裝置
TWI531815B (zh) * 2014-12-30 2016-05-01 大立光電股份有限公司 攝像光學鏡片組、取像裝置及電子裝置
TWI541539B (zh) * 2014-12-30 2016-07-11 大立光電股份有限公司 成像光學鏡片組、取像裝置及電子裝置
KR101823223B1 (ko) * 2016-01-28 2018-01-29 삼성전기주식회사 촬상 광학계
JP6017086B1 (ja) * 2016-07-19 2016-10-26 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
CN106526789B (zh) * 2016-08-26 2019-03-22 玉晶光电(厦门)有限公司 光学成像镜头
JP6482509B2 (ja) * 2016-08-29 2019-03-13 カンタツ株式会社 撮像レンズ
US10302911B2 (en) * 2016-09-12 2019-05-28 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN107219613B (zh) * 2017-07-31 2022-10-28 浙江舜宇光学有限公司 光学成像镜头
CN208297813U (zh) * 2018-07-10 2018-12-28 南昌欧菲精密光学制品有限公司 摄像镜头、取像装置及电子装置
CN109613681B (zh) * 2018-12-31 2020-11-27 诚瑞光学(常州)股份有限公司 摄像光学镜头

Also Published As

Publication number Publication date
US20200209540A1 (en) 2020-07-02
US11209615B2 (en) 2021-12-28
WO2020140497A1 (zh) 2020-07-09
CN109613681A (zh) 2019-04-12
JP2020109492A (ja) 2020-07-16
JP6802612B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
CN109613679B (zh) 摄像光学镜头
CN109828361B (zh) 摄像光学镜头
CN109491051B (zh) 摄像光学镜头
CN109581627B (zh) 摄像光学镜头
CN109709660B (zh) 摄像光学镜头
CN109683294B (zh) 摄像光学镜头
CN109839726B (zh) 摄像光学镜头
CN109828354B (zh) 摄像光学镜头
CN110161652B (zh) 摄像光学镜头
CN109445076B (zh) 摄像光学镜头
CN109613681B (zh) 摄像光学镜头
CN110471167B (zh) 摄像光学镜头
CN109613680B (zh) 摄像光学镜头
CN109491050B (zh) 摄像光学镜头
CN111399196B (zh) 摄像光学镜头
CN110398824B (zh) 摄像光学镜头
CN110346910B (zh) 摄像光学镜头
CN110361848B (zh) 摄像光学镜头
CN111736305B (zh) 摄像光学镜头
CN111025592B (zh) 摄像光学镜头
CN109655999B (zh) 摄像光学镜头
CN110531492B (zh) 摄像光学镜头
CN109856763B (zh) 摄像光学镜头
CN109828353B (zh) 摄像光学镜头
CN109061832B (zh) 摄像光学镜头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200426

Address after: 213000 Xinwei Road, Changzhou Export Processing Zone, Jiangsu Province

Applicant after: Ruisheng Communication Technology (Changzhou) Co., Ltd.

Address before: 518057 Guangdong Province, Shenzhen City Southern District of Nanshan District high tech Zone Three Road No. 6 Shenzhen Yuexing Nanjing University research building block A

Applicant before: AAC ACOUSTIC TECHNOLOGIES (SHENZHEN) Co.,Ltd.

CB02 Change of applicant information
CB02 Change of applicant information

Address after: 213000 Xinwei 1st Road, Changzhou Comprehensive Bonded Zone, Jiangsu Province

Applicant after: Chengrui optics (Changzhou) Co., Ltd

Address before: 213000 Xinwei Road, Changzhou Export Processing Zone, Jiangsu Province

Applicant before: Ruisheng Communication Technology (Changzhou) Co.,Ltd.

GR01 Patent grant
GR01 Patent grant