CN109596711B - 一种检测大规格铸造铝合金冶金缺陷的方法 - Google Patents

一种检测大规格铸造铝合金冶金缺陷的方法 Download PDF

Info

Publication number
CN109596711B
CN109596711B CN201910022718.3A CN201910022718A CN109596711B CN 109596711 B CN109596711 B CN 109596711B CN 201910022718 A CN201910022718 A CN 201910022718A CN 109596711 B CN109596711 B CN 109596711B
Authority
CN
China
Prior art keywords
minutes
short bar
bar stock
deformation
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910022718.3A
Other languages
English (en)
Other versions
CN109596711A (zh
Inventor
黄玉亭
李晓婷
陈苏冬
洪鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Turbine Blade Co Ltd
Original Assignee
Wuxi Turbine Blade Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Turbine Blade Co Ltd filed Critical Wuxi Turbine Blade Co Ltd
Priority to CN201910022718.3A priority Critical patent/CN109596711B/zh
Publication of CN109596711A publication Critical patent/CN109596711A/zh
Application granted granted Critical
Publication of CN109596711B publication Critical patent/CN109596711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Forging (AREA)

Abstract

本发明提供了一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段长度的短棒料;2)将短棒料加热到300℃~500℃,并保温一定时间,然后进行平板模锻造变形,变形量在50%~90%之间;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在400℃~500℃之间,保温一定时间后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。上述检测大规格铸造铝合金冶金缺陷的方法在大规格棒料上切取短棒料,对短棒料进行平板模锻造和固溶热处理后超声波探伤。不仅方法简单,易于实现;而且避免造成超大的不合格缺陷和产品大批量的不合格。

Description

一种检测大规格铸造铝合金冶金缺陷的方法
技术领域
本发明属于铸造铝合金冶金缺陷检测方法,尤其涉及一种检测大规格铸造铝合金冶金缺陷的方法。
背景技术
铸造铝合金棒料中不可避免的会存在氧化物夹杂等冶金缺陷,常用的检测方法为超声波探伤,当缺陷尺寸超过一定值时即可以在探伤设备中发现。但对于大规格的棒材,由于棒材尺寸较大,超声波探伤具有一定的局限性,不能有效的发现一些缺陷。但这些缺陷在经过后道的锻造变形和热处理之后,在锻件产品中凸显,成为超大的不合格缺陷,同时造成了产品大批量的不合格。
发明内容
本发明的目的在于提供一种检测大规格铸造铝合金冶金缺陷的方法,以解决现有技术中大规格铸造铝合金检测冶金缺陷存在的上述问题。
为达此目的,本发明采用以下技术方案:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:
1)从大规格铸造铝合金棒料上切取一段长度的短棒料;
2)将短棒料加热到300℃~500℃,并保温200分钟~500分钟,然后进行平板模锻造变形,变形量在50%~90%之间;
3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在400℃~500℃之间,保温300分钟~500分钟后空冷;
4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
特别地,所述步骤2)中短棒料加热到320℃~480℃,并保温250分钟~450分钟,然后进行平板模锻造变形,变形量在60%~80%,所述步骤3)中热处理温度为400℃~500℃,保温350分钟~450分钟后空冷。
特别地,所述步骤2)中短棒料加热到350℃~450℃,并保温250分钟~450分钟,然后进行平板模锻造变形,变形量在70%~80%,所述步骤3)中热处理温度为400℃~500℃,保温400分钟~450分钟后空冷。
特别地,所述短棒料的长度为100mm~200mm,所述步骤2)中短棒料加热到300℃,并保温200分钟,然后进行平板模锻造变形,变形量在50%,所述步骤3)中热处理温度为400℃,保温300分钟后空冷。
特别地,所述短棒料的长度为100mm~200mm,所述步骤2)中短棒料加热到320℃,并保温250分钟,然后进行平板模锻造变形,变形量在50%,所述步骤3)中热处理温度为410℃,保温350分钟后空冷。
特别地,所述短棒料的长度为100mm~200mm,所述步骤2)中短棒料加热到350℃,并保温280分钟,然后进行平板模锻造变形,变形量在60%,所述步骤3)中热处理温度为430℃,保温380分钟后空冷。
特别地,所述短棒料的长度为100mm~200mm,所述步骤2)中短棒料加热到400℃,并保温350分钟,然后进行平板模锻造变形,变形量在70%,所述步骤3)中热处理温度为480℃,保温450分钟后空冷。
特别地,所述短棒料的长度为100mm~200mm,所述步骤2)中短棒料加热到450℃,并保温400分钟,然后进行平板模锻造变形,变形量在80%,所述步骤3)中热处理温度为500℃,保温500分钟后空冷。
特别地,所述短棒料的长度为100mm~200mm,所述步骤2)中短棒料加热到500℃,并保温500分钟,然后进行平板模锻造变形,变形量在90%,所述步骤3)中热处理温度为500℃,保温500分钟后空冷。
特别地,所述短棒料的长度为100mm~200mm,所述步骤2)中短棒料加热到500℃,并保温400分钟,然后进行平板模锻造变形,变形量在90%,所述步骤3)中热处理温度为450℃,保温400分钟后空冷。
本发明的有益效果为,与现有技术相比所述检测大规格铸造铝合金冶金缺陷的方法在大规格棒料上切取短棒料,短棒料在经过平板模锻造变形后,缺陷也随之产生了形状的改变。若短棒料中存在一定尺寸的氧化物冶金缺陷,此时在超声波探伤中可发现此类缺陷。不仅方法简单,易于实现;而且避免造成超大的不合格缺陷和产品大批量的不合格。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例一:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段100mm长度的短棒料;2)将短棒料加热到300℃,并保温200分钟,然后进行平板模锻造变形,变形量在50%;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在400℃,保温300分钟后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
实施例二:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段100mm长度的短棒料;2)将短棒料加热到320℃,并保温250分钟,然后进行平板模锻造变形,变形量在50%;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在410℃,保温350分钟后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
实施例三:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段150mm长度的短棒料;2)将短棒料加热到350℃,并保温280分钟,然后进行平板模锻造变形,变形量在60%;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在430℃,保温380分钟后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
实施例四:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段150mm长度的短棒料;2)将短棒料加热到380℃,并保温300分钟,然后进行平板模锻造变形,变形量在60%;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在450℃,保温400分钟后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
实施例五:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段200mm长度的短棒料;2)将短棒料加热到400℃,并保温350分钟,然后进行平板模锻造变形,变形量在70%;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在480℃,保温450分钟后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
实施例六:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段200mm长度的短棒料;2)将短棒料加热到450℃,并保温400分钟,然后进行平板模锻造变形,变形量在80%;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在500℃,保温500分钟后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
实施例七:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段200mm长度的短棒料;2)将短棒料加热到480℃,并保温450分钟,然后进行平板模锻造变形,变形量在80%;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在480℃,保温400分钟后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
实施例八:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段150mm长度的短棒料;2)将短棒料加热到500℃,并保温500分钟,然后进行平板模锻造变形,变形量在90%;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在500℃,保温500分钟后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
实施例九:
一种检测大规格铸造铝合金冶金缺陷的方法,其包括以下步骤:1)从大规格铸造铝合金棒料上切取一段150mm长度的短棒料;2)将短棒料加热到500℃,并保温400分钟,然后进行平板模锻造变形,变形量在90%;3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在450℃,保温400分钟后空冷;4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种检测大规格铸造铝合金冶金缺陷的方法,其特征在于,其包括以下步骤:
1)从大规格铸造铝合金棒料上切取一段长度的短棒料;
2)将短棒料加热到300℃~500℃,并保温200分钟~500分钟,然后进行平板模锻造变形,变形量在50%~90%之间;
3)将经过平板模锻造变形的短棒料进行固溶热处理,热处理温度在400℃~500℃之间,保温300分钟~500分钟后空冷;
4)对经过步骤3)处理的短棒料表面进行粗加工后进行超声波探伤。
2.如权利要求1所述的检测大规格铸造铝合金冶金缺陷的方法,其特征在于,所述步骤2)中短棒料加热到320℃~480℃,并保温250分钟~450分钟,然后进行平板模锻造变形,变形量在60%~80%,所述步骤3)中热处理温度为400℃~500℃,保温350分钟~450分钟后空冷。
3.如权利要求1所述的检测大规格铸造铝合金冶金缺陷的方法,其特征在于,所述步骤2)中短棒料加热到350℃~450℃,并保温250分钟~450分钟,然后进行平板模锻造变形,变形量在70%~80%,所述步骤3)中热处理温度为400℃~500℃,保温400分钟~450分钟后空冷。
4.如权利要求1所述的检测大规格铸造铝合金冶金缺陷的方法,其特征在于,所述步骤2)中短棒料加热到300℃,并保温200分钟,然后进行平板模锻造变形,变形量在50%,所述步骤3)中热处理温度为400℃,保温300分钟后空冷。
5.如权利要求1所述的检测大规格铸造铝合金冶金缺陷的方法,其特征在于,所述步骤2)中短棒料加热到320℃,并保温250分钟,然后进行平板模锻造变形,变形量在50%,所述步骤3)中热处理温度为410℃,保温350分钟后空冷。
6.如权利要求1所述的检测大规格铸造铝合金冶金缺陷的方法,其特征在于,所述步骤2)中短棒料加热到350℃,并保温280分钟,然后进行平板模锻造变形,变形量在60%,所述步骤3)中热处理温度为430℃,保温380分钟后空冷。
7.如权利要求1所述的检测大规格铸造铝合金冶金缺陷的方法,其特征在于,所述步骤2)中短棒料加热到400℃,并保温350分钟,然后进行平板模锻造变形,变形量在70%,所述步骤3)中热处理温度为480℃,保温450分钟后空冷。
8.如权利要求1所述的检测大规格铸造铝合金冶金缺陷的方法,其特征在于,所述步骤2)中短棒料加热到450℃,并保温400分钟,然后进行平板模锻造变形,变形量在80%,所述步骤3)中热处理温度为500℃,保温500分钟后空冷。
9.如权利要求1所述的检测大规格铸造铝合金冶金缺陷的方法,其特征在于,所述步骤2)中短棒料加热到500℃,并保温500分钟,然后进行平板模锻造变形,变形量在90%,所述步骤3)中热处理温度为500℃,保温500分钟后空冷。
10.如权利要求1所述的检测大规格铸造铝合金冶金缺陷的方法,其特征在于,所述步骤2)中短棒料加热到500℃,并保温400分钟,然后进行平板模锻造变形,变形量在90%,所述步骤3)中热处理温度为450℃,保温400分钟后空冷。
CN201910022718.3A 2019-01-10 2019-01-10 一种检测大规格铸造铝合金冶金缺陷的方法 Active CN109596711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910022718.3A CN109596711B (zh) 2019-01-10 2019-01-10 一种检测大规格铸造铝合金冶金缺陷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910022718.3A CN109596711B (zh) 2019-01-10 2019-01-10 一种检测大规格铸造铝合金冶金缺陷的方法

Publications (2)

Publication Number Publication Date
CN109596711A CN109596711A (zh) 2019-04-09
CN109596711B true CN109596711B (zh) 2021-12-28

Family

ID=65965980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910022718.3A Active CN109596711B (zh) 2019-01-10 2019-01-10 一种检测大规格铸造铝合金冶金缺陷的方法

Country Status (1)

Country Link
CN (1) CN109596711B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1796044A (zh) * 2004-12-24 2006-07-05 中国科学院金属研究所 一种镍基高温合金管材的加工工艺
CN101959625A (zh) * 2008-03-28 2011-01-26 株式会社神户制钢所 铝合金厚板及其制造方法
CN103741083A (zh) * 2014-01-09 2014-04-23 宁夏新和新材科技有限公司 一种制备高性能大尺寸高精度铍铜管材的铸管坯轧制法
CN104805319A (zh) * 2015-04-30 2015-07-29 广西南南铝加工有限公司 一种2xxx系超大规格铝合金圆锭的制造方法
CN106541060A (zh) * 2015-09-22 2017-03-29 首都航天机械公司 一种超大直径铝合金整体环的轧制生产方法
CN107999687A (zh) * 2017-11-29 2018-05-08 无锡透平叶片有限公司 一种铝合金叶片锻件及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1801208C (ru) * 1990-10-16 1993-03-07 Центральный научно-исследовательский институт конструкционных материалов "Прометей" Способ ультразвукового контрол сплошности изделий
CN100431781C (zh) * 2006-12-06 2008-11-12 重庆长征重工有限责任公司 锻压设备用锤杆的制造方法
CN101435798B (zh) * 2007-11-14 2011-06-08 北京有色金属研究总院 一种颗粒增强铝基复合材料品质一致性的超声波快速检测方法
US20100263450A1 (en) * 2009-04-16 2010-10-21 Bobrek Richard S System and method for producing and testing metal parts
CN102357633B (zh) * 2011-09-27 2013-11-06 上海宏钢电站设备铸锻有限公司 镍基高温合金锻件的制造方法
CN102628858B (zh) * 2011-12-30 2014-07-02 二重集团(德阳)重型装备股份有限公司 大型锻件内部缺陷分析方法
CN104597137B (zh) * 2014-12-31 2017-03-22 广西南南铝加工有限公司 铝合金预拉伸板残余应力超声检测试块组及其使用方法
CN104777225A (zh) * 2015-04-30 2015-07-15 南京迪威尔高端制造股份有限公司 一种钢锭内部缺陷的超声波a扫描识别方法
CN106932477B (zh) * 2015-12-30 2019-08-13 西安核设备有限公司 一种大厚度奥氏体不锈钢焊接接头超声波探伤方法
CN106425294A (zh) * 2016-09-21 2017-02-22 宝鸡鑫诺新金属材料有限公司 磁致伸缩牙科专用tc4合金棒材的制备工艺
CN206362265U (zh) * 2016-12-27 2017-07-28 无锡透平叶片有限公司 一种大型结构件快速检测工装
CN108237197B (zh) * 2017-12-07 2019-10-18 陕西宏远航空锻造有限责任公司 一种改善结构钢大型环形件探伤的锻造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1796044A (zh) * 2004-12-24 2006-07-05 中国科学院金属研究所 一种镍基高温合金管材的加工工艺
CN101959625A (zh) * 2008-03-28 2011-01-26 株式会社神户制钢所 铝合金厚板及其制造方法
CN103741083A (zh) * 2014-01-09 2014-04-23 宁夏新和新材科技有限公司 一种制备高性能大尺寸高精度铍铜管材的铸管坯轧制法
CN104805319A (zh) * 2015-04-30 2015-07-29 广西南南铝加工有限公司 一种2xxx系超大规格铝合金圆锭的制造方法
CN106541060A (zh) * 2015-09-22 2017-03-29 首都航天机械公司 一种超大直径铝合金整体环的轧制生产方法
CN107999687A (zh) * 2017-11-29 2018-05-08 无锡透平叶片有限公司 一种铝合金叶片锻件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
超大规格300M钢棒超声波探伤及缺陷分析;盛伟 等;《宇航材料工艺》;20170215;第81-84页 *

Also Published As

Publication number Publication date
CN109596711A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN109371344B (zh) Gh4169合金棒材的锻造工艺
CN107955893B (zh) 一种铝合金转向节的锻造成型方法
CN105908110B (zh) 一种降低高强铝合金复杂模锻件残余应力的方法
JP2018512281A (ja) 均質化鍛造品を製造する構築成形方法
CN102284835B (zh) M12以上十点九级车用螺栓的生产方法
CN103060733B (zh) 一种tc2钛合金大规格棒材的制备方法
CN109794570B (zh) 一种双法兰大阀体的简易胎模锻造方法
CN113198956B (zh) 一种超高硅含量奥氏体不锈钢的锻造方法
CN102941435B (zh) 一种不规则形状钢部件的成形方法
CN108823384B (zh) 一种大型不锈钢环件高温锻造细化晶粒方法
US10815558B2 (en) Method for preparing rods from titanium-based alloys
CN111112527B (zh) 一种大型管板类锻件的锻造方法
CN104907770A (zh) 一种四角螺母加工工艺
CN102319853A (zh) 一种ta19钛合金板条的制备方法
CN109226431B (zh) 一种超高强韧性铝-镁系合金及其管材的旋压方法
CN100371490C (zh) 用铸轧坯料生产超薄铝箔工艺中的轧制加工及热处理方法
CN109596711B (zh) 一种检测大规格铸造铝合金冶金缺陷的方法
CN109317679B (zh) 一种铝合金薄板材生产方法
CN110976512A (zh) 一种tc4钛合金丝材冷轧方法
CN104439986B (zh) 一种利用铸锻热连续生产大型长轴类锻件的方法
CN112011749A (zh) 一种无孤岛组织的镍基合金n08120环件的加工工艺
CN114798999B (zh) 细晶粒高强塑性Ti80G锻件及其制备方法
CN111100976A (zh) 玻璃模具用钢锻后防止开裂的热处理工艺
CN104259769A (zh) 一种六角螺母的加工工艺
CN114182186A (zh) 一种提高近β钛合金紧固件棒坯组织均匀性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant