CN109489651A - 四频差动激光陀螺法拉第磁光玻璃安装方法 - Google Patents

四频差动激光陀螺法拉第磁光玻璃安装方法 Download PDF

Info

Publication number
CN109489651A
CN109489651A CN201811287531.8A CN201811287531A CN109489651A CN 109489651 A CN109489651 A CN 109489651A CN 201811287531 A CN201811287531 A CN 201811287531A CN 109489651 A CN109489651 A CN 109489651A
Authority
CN
China
Prior art keywords
optical glass
magneto
glass containing
light
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811287531.8A
Other languages
English (en)
Other versions
CN109489651B (zh
Inventor
汪之国
罗晖
赵洪常
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201811287531.8A priority Critical patent/CN109489651B/zh
Publication of CN109489651A publication Critical patent/CN109489651A/zh
Application granted granted Critical
Publication of CN109489651B publication Critical patent/CN109489651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Lasers (AREA)
  • Gyroscopes (AREA)

Abstract

本发明涉及一种四频差动激光陀螺法拉第磁光玻璃安装方法,它通过调整法拉第磁光玻璃的方位使它表面的反射光尽量能量损失最少的传播到腔外合适的位置,利用光电探测器将该光反射光转换为电信号进行稳频。由于无需利用反射镜透射出的光来进行稳频,因此可在镀膜时尽量提高反射镜的反射率,从而降低整个环形腔的损耗。这种方法的优点是充分利用了光能量,可以降低环形腔损耗,而稳频信号强度基本不变。

Description

四频差动激光陀螺法拉第磁光玻璃安装方法
技术领域
本发明涉及四频差动激光陀螺,更具体地说,本发明适合用于四频差动激光陀螺稳频的法拉第室安装方法,它包括四频差动激光陀螺腔体、法拉第磁光玻璃、反射镜、光电探测器。
背景技术
激光陀螺具有动态范围大、无加速度效应、结构简单等优越性,是惯性***尤其是捷联惯性***的理想元件,已经大量应用于军事和民用领域。激光陀螺的原理是萨格纳克(Sagnac)效应,在它的光学谐振腔内至少运行一对相向传播的光波。当激光陀螺绕敏感轴相对于惯性空间转动时,相向行波的频率产生***,形成正比于转动速率的拍频,因而通过测量拍频即可获得激光陀螺相对于惯性空间的转动信息。
由于反射镜的背向散射等原因,环形谐振腔内相向行波间的能量发生微弱的耦合,结果激光陀螺存在闭锁效应,导致它无法测量较低的转速。克服闭锁效应最常用的方法是机械抖动偏频,其原理是利用一个机械抖动装置为激光陀螺提供高频小振幅的角速度输入,即所谓的“抖动”,然后再采用信号处理技术将抖动角速度输入从激光陀螺的输出信号中扣除,从而得到实测角速度。但机械抖动装置增大了激光陀螺的随机游走、降低了信号带宽,而且机械振动还会对惯性***中的其它仪表如惯组中另外的陀螺、加速度计、光学瞄准器等仪表产生机械干扰。
另一种广泛采用的克服闭锁的方案是四频差动,它采用光学偏频的方法克服闭锁,具有很大的优越性,如带宽大、无机械干扰等优点。在四频差动激光陀螺的谐振腔内运行有四个行波模式,采用石英旋光器或非平面环形腔可使左旋偏振(LCP)行波和右旋偏振(RCP)行波产生频率***,采用法拉第偏频器件或在增益介质上施加纵向磁场可在相同偏振的相向行波间建立非互易频率***以避开闭锁区域。左旋偏振的一对行波构成一个左旋偏振的二频单陀螺(称为左旋陀螺),右旋偏振的一对行波构成一个右旋偏振的二频单陀螺(称为右旋陀螺)。
四频差动激光陀螺的增益曲线如图1所示,左旋陀螺和右旋陀螺之间的频率***称为互易***,典型值为数百MHz;每个单陀螺的两个相向运行行波之间的频率***称为非互易***,典型值为0.1MHz-3MHz。四频差动激光陀螺中至少含有四个模式,左旋偏振顺时针方向运行的模式频率为f1、振幅为A1;左旋偏振逆时针方向运行的模式频率为f2、振幅为A2;右旋偏振逆时针方向运行的模式频率为f3、振幅为A3;右旋偏振顺时针方向运行的模式频率为f4、振幅为A4。左旋陀螺两个模的频差fL为:
fL=f2-f1=F+SΩ (1)
式中F为法拉第偏频,S为环形腔的几何比例因子,Ω为输入角速度。
右旋陀螺两个模的频差fR为:
fR=f4-f3=F-SΩ (2)
采用光电探测装置以及相应的信号处理电路分别测出左、右旋陀螺的频差然后求差得到四频差动激光陀螺的最终输出为:
fout=fL-fR=2SΩ (3)
即四频差动激光陀螺的比例因子比二频激光陀螺增强一倍。
为了获得足够高的性能,四频差动激光陀螺通常需要进行稳频(或称腔长控制)以使环路程长为谐振波长的整数倍。美国专利“4963026Cavity length control apparatusfor a multi-oscillator”提出了一种直接探测四频差动激光陀螺环形腔反射镜透出的一对顺时针或逆时针模式光信号,然后进行射频放大并利用其幅度取极值进行稳频的方法。然而由于四频差动激光陀螺的反射镜镀有高反射膜,而且为了减小腔损耗,输出稳频光信号的反射镜光强透过率不会太大,稳频光信号较弱,导致稳频电路信噪比较低,影响了稳频精度。此外,一般高反膜片反射率可以做到99.998%以上,而为了使从反射镜片透射的部分光强度足够用来稳频,需要保证反射镜的透射率在100ppm左右,这就不可避免地使腔损耗增加了80ppm左右,而降低腔损是提高激光陀螺极限精度的根本手段【[5]Wang Zhiguo,Long Xingwu,Wang Fei.Quantum Limit in Low Loss Ring Laser Gyros[J].ChineseOptics Letters,2012,10(6):061404.】。
在四频差动激光陀螺中,为了进行非互易偏频,需要采用法拉第室,它由磁场产生装置如永磁体和法拉第磁光玻璃构成。为了减小法拉第磁光玻璃的反射损耗,其通光面上镀有增透膜。镀增透膜后一般剩余反射率在100ppm左右,要进一步降低反射率难度很大,因此法拉第磁光玻璃表面总会有100ppm左右的部分反射光。在通常的四频差动激光陀螺设计中,这部分反射光没有被利用而完全浪费掉。有关法拉第室的更详细信息可查阅本文引证的相关文献。
发明内容
本发明提出一种通过调整法拉第磁光玻璃方位使其表面反射光透出腔外并利用该反射光进行稳频的方法,该方法采用的设备包括四频差动激光陀螺腔体、法拉第磁光玻璃、反射镜、光电探测器。
为实现本发明采用了如下的技术方案:
在四频差动激光陀螺装配阶段安装法拉第磁光玻璃时,调整磁光玻璃表面法线使之与通过法拉第磁光玻璃的光束之间有一个小夹角,使反射光无法沿着环形腔光路传播。在确保反射光不会进入到反向光路的基础上,进一步微调法拉第磁光玻璃的方位,使反射光从合适的角度和部位透射到环形腔之外,并用光电探测器进行接收、经过放大检波等信号处理后用来实现稳频。光束经过反射并通过法拉第磁光玻璃成为透射光束,尽管磁光玻璃表面镀有增透膜,但仍有相当一部分光束被反射。适当调整磁光玻璃的方位使反射光从反射镜基片上透射。对采用石英玻璃做基底的反射镜,非膜区的透过率达96%,因此反射光得到了有效利用。在反射镜外表面放置光电探测组件将光信号转换为电信号以便进行处理进行稳频;
所述反射镜基片上设置高反射膜,非膜区的透过率达96%,因此反射光得到了有效利用;
稳频的详细原理可参考美国专利“4963026Cavity length control apparatus for amulti-oscillator”。
本发明的优点在于充分利用了法拉第磁光玻璃表面的反射光,因而尽可能地提高反射镜的反射率,从而使腔损耗降低。
附图说明
图1是四频差动激光陀螺的结构及其腔内行波的频谱示意图,
图2是利用反射镜透射光进行稳频的装置示意图,
图3是激光束在法拉第磁光玻璃表面的反射示意图,
图4是一种获得法拉第磁光玻璃表面反射光的示意图,
图5是另一种获得法拉第磁光玻璃表面反射光的示意图。
具体实施方式
下面结合附图对具体实施方式进行详细说明
图1是四频差动激光陀螺结构及其增益曲线上的模式分布示意图。在低膨胀腔体1上加工有充气和通光管道,在腔体的四个角上安装四个反射镜5、6、7、8。两个阳极2、3和一个阴极4用来提供增益。10为互易偏频装置,可由水晶片或非平面腔实现,其作用是在四频差动激光陀螺的陀螺1和2之间提供偏频以避免模竞争。9为非互易偏频元件,在四频差动激光陀螺相同偏振的两个模式间产生非互易偏频以避免闭锁。四频差动激光陀螺腔内运行有4模式,模式12和13组成陀螺1,模式14和151组成陀螺2;
图2是利用反射镜透射光进行稳频的装置示意图,四频差动激光陀螺腔内的激光从反射镜7透出一部分,入射到光电探测器15的光敏面上,采用电流-电压转换器16将探测器输出的电流转换为电压信号,并利用高频放大器19放大到合适的幅度,然后利用幅度检波器20将信号幅度检测出来。振荡器24输出一定频率的正弦波形或方波,输出信号连接到相敏检波器21的参考输入端,幅度检波器20的输出输入到相敏检波器21的信号输入端。相敏检波输出即为稳频所用的误差信号,经过PID控制器22处理后得到校正电压,经过压电陶瓷驱动器23后产生驱动压电陶瓷的电压信号。振荡器输出的振荡电压在加法器25处与压电陶瓷驱动器23的输出叠加连接到压电陶瓷上,使压电陶瓷位置移动到使幅度检波器20的信号幅度最大的位置,振荡电压用来调制压电陶瓷的位置。
图3给出了光在法拉第磁光玻璃表面反射光路图。光束40入射到法拉第磁光玻璃41表面,大部分光透射,只有少部分光43反射。反射光的位置和方向与法拉第磁光玻璃在环路中的位置与方位有关。为了避免反射光43进入到与光束40运行方向相反的光路中,法拉第磁光玻璃41表面的法线通常与光束40的方向有一个小夹角。通常情况下,反射光43透出环形腔之外的位置是随机的,而且有可能被其它部件如磁体挡住而无法透出。
在本发明中,我们通过调整法拉第磁光玻璃41的方位,使反射光43损失尽量小的透出环形腔体之外,并用光电探测器接收来作为稳频所用光信号;
一种建议的方案如图4所示。图中40为沿顺时针环路运行的光束,44为反射镜基片,其材料通常为石英玻璃,45为反射镜基片上的高反射膜。由反射镜基片和反射镜基片上的高反射膜组成的反射镜,包括图1、图2的反射镜5、6、7、8的反射镜。光束40经过反射并通过法拉第磁光玻璃41成为透射光束42,尽管磁光玻璃41表面镀有增透膜,但仍有相当一部分光束被反射。适当调整磁光玻璃的方位使反射光从反射镜基片44上透射。以图4为例,使法拉第磁光玻璃41表面与光线40构成角度θ,设法拉第磁光玻璃41表面光线入射点与高反射膜45光线入射点距离为d,则角度θ满足其中r1为高反膜半径,r2为通光管道半径;对采用石英玻璃做基底的反射镜,非膜区的透过率达96%,因此反射光43得到了有效利用。在反射镜外表面放置光电探测组件将光信号转换为电信号以便进行处理进行稳频;
考虑到在反射镜表面粘接光电探测器组件有可能在温度变化时产生热应力,以及光电探测器组件粘接时就有的机械应力,这种从反射镜透出的方案有可能会导致反射镜性能的降低,如产生应力双折射现象、反射镜变形等问题,为此我们另一种建议的方案是使法拉第磁光玻璃表面的反射光从微晶玻璃腔体其它地方透射出来,并将光电探测器组件固定在相应的位置,如图5所示。图5中从法拉第磁光玻璃表面反射的反射光43通过腔体透出腔外,在微晶玻璃腔体上加工出合适的结构放置光电探测器来接收反射光43。法拉第磁光玻璃41的夹角与开槽、以及安装光电探测组件46的位置根据光的反射定律来设计。这种方案的优点是合光组件和探测组件不是固定在反射镜上,因而不会对反射镜产生应力;
相关技术人员可以根据本专利的原理稍作修改来更好的利用反射光进行稳频,但基本原理不变。

Claims (2)

1.四频差动激光陀螺法拉第磁光玻璃安装方法,调整法拉第磁光玻璃的方位,使在其表面的反射光不损失能量的透出到腔外,并利用光电探测器将其转换为电信号,然后进一步进行信号处理来进行稳频,其特征在于,
在四频差动激光陀螺装配阶段安装法拉第磁光玻璃时,调整磁光玻璃表面法线使之与通过法拉第磁光玻璃的光束之间有一个夹角,使反射光无法沿着环形腔光路传播,在确保反射光不会进入到反向光路的基础上,进一步微调法拉第磁光玻璃的方位,使反射光透射到环形腔之外,并用光电探测器进行接收,经过放大检波信号处理后用来实现稳频;
采用石英玻璃做基底的反射镜,反射镜上设置高反射膜,法拉第磁光玻璃表面与光束构成角度θ,设法拉第磁光玻璃表面光线入射点与高反射膜光线入射点距离为d,则角度θ满足其中r1为高反膜半径,r2为通光管道半径;非膜区的透过率达96%,在反射镜外表面放置光电探测组件将光信号转换为电信号以便进行处理进行稳频。
2.根据权利要求1所述的四频差动激光陀螺法拉第磁光玻璃安装方法,其特征在于,所述光束入射到法拉第磁光玻璃表面,大部分光透射,只有少部分光反射,反射光的位置和方向与法拉第磁光玻璃在环路中的位置与方位有关,为了避免反射光进入到与光束运行方向相反的光路中,法拉第磁光玻璃表面的法线与光束的方向有一个小夹角,通过调整法拉第磁光玻璃的方位,使反射光损失尽量小的透出环形腔体之外,并用光电探测器接收来作为稳频所用光信号。
CN201811287531.8A 2018-10-31 2018-10-31 四频差动激光陀螺法拉第磁光玻璃安装方法 Active CN109489651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811287531.8A CN109489651B (zh) 2018-10-31 2018-10-31 四频差动激光陀螺法拉第磁光玻璃安装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811287531.8A CN109489651B (zh) 2018-10-31 2018-10-31 四频差动激光陀螺法拉第磁光玻璃安装方法

Publications (2)

Publication Number Publication Date
CN109489651A true CN109489651A (zh) 2019-03-19
CN109489651B CN109489651B (zh) 2020-05-01

Family

ID=65693500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811287531.8A Active CN109489651B (zh) 2018-10-31 2018-10-31 四频差动激光陀螺法拉第磁光玻璃安装方法

Country Status (1)

Country Link
CN (1) CN109489651B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986911A (zh) * 2019-11-29 2020-04-10 江西驰宇光电科技发展有限公司 一种带叉形半透半反膜的激光陀螺合光装置
CN112556679A (zh) * 2020-11-19 2021-03-26 中国人民解放军国防科技大学 一种正负旋塞曼空间四频差动激光陀螺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861689A (ja) * 1981-10-07 1983-04-12 Nec Corp 多波長リングレ−ザ−ジヤイロスコ−プ
CN101008568A (zh) * 2006-01-27 2007-08-01 泰勒斯公司 无盲区四模式稳定固态激光陀螺仪
CN102003957A (zh) * 2010-10-01 2011-04-06 中国人民解放军国防科学技术大学 四频激光陀螺零偏补偿方法
CN102023006A (zh) * 2010-10-01 2011-04-20 中国人民解放军国防科学技术大学 四频激光陀螺电子读出***
CN103033178A (zh) * 2012-09-20 2013-04-10 中国人民解放军国防科学技术大学 基于外腔回馈的激光陀螺偏频方法
CN103674487A (zh) * 2012-09-07 2014-03-26 中国航空工业第六一八研究所 一种激光陀螺超光滑反射镜背向散射测量装置及方法
CN203615937U (zh) * 2013-12-10 2014-05-28 中国航空工业第六一八研究所 一种四频差动激光陀螺光学解调装置
CN103994774A (zh) * 2013-12-16 2014-08-20 西安北方捷瑞光电科技有限公司 一种棱镜式激光陀螺双纵模自偏频检测***及检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861689A (ja) * 1981-10-07 1983-04-12 Nec Corp 多波長リングレ−ザ−ジヤイロスコ−プ
CN101008568A (zh) * 2006-01-27 2007-08-01 泰勒斯公司 无盲区四模式稳定固态激光陀螺仪
CN102003957A (zh) * 2010-10-01 2011-04-06 中国人民解放军国防科学技术大学 四频激光陀螺零偏补偿方法
CN102023006A (zh) * 2010-10-01 2011-04-20 中国人民解放军国防科学技术大学 四频激光陀螺电子读出***
CN103674487A (zh) * 2012-09-07 2014-03-26 中国航空工业第六一八研究所 一种激光陀螺超光滑反射镜背向散射测量装置及方法
CN103033178A (zh) * 2012-09-20 2013-04-10 中国人民解放军国防科学技术大学 基于外腔回馈的激光陀螺偏频方法
CN203615937U (zh) * 2013-12-10 2014-05-28 中国航空工业第六一八研究所 一种四频差动激光陀螺光学解调装置
CN103994774A (zh) * 2013-12-16 2014-08-20 西安北方捷瑞光电科技有限公司 一种棱镜式激光陀螺双纵模自偏频检测***及检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
锁高洁等: "四频差动激光陀螺法拉第片最佳入射角的研究", 《激光技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986911A (zh) * 2019-11-29 2020-04-10 江西驰宇光电科技发展有限公司 一种带叉形半透半反膜的激光陀螺合光装置
CN112556679A (zh) * 2020-11-19 2021-03-26 中国人民解放军国防科技大学 一种正负旋塞曼空间四频差动激光陀螺

Also Published As

Publication number Publication date
CN109489651B (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
KR102551725B1 (ko) 간섭형 광섬유 자이로스코프(ifog)에 대한 광자 집적 회로
EP0379520B1 (en) Fiber optic gyroscope with improved bias stability and repeatability and method
JP5690559B2 (ja) 光位相雑音誤差低減器
JP4818979B2 (ja) 外部共振器ビーム発生器を備える光共振器ジャイロ
JP5096858B2 (ja) 光学式共振器ジャイロスコープ、および共振非対称誤差を低減するための方法
EP0189907B1 (en) Angular rate sensor
US4708480A (en) Solid-state optical interferometer
JP6404656B2 (ja) 共振器の自由スペクトルレンジのトラッキング/ロッキングの方法及び装置並びに共振器光ファイバジャイロスコープへの応用
JP2007139780A (ja) 自由空間共振器を備える光ジャイロおよび慣性回転速度を感知する方法
CA1183591A (en) Ring laser gyroscope utilizing phase detector for minimizing beam lock-in
US6259089B1 (en) Integrated optics rotation sensor
JP5681455B2 (ja) 共振器光ファイバジャイロスコープにおけるレーザ位相雑音を低減するシステム及び方法
US4494873A (en) Electromagnetic wave reflections absorber
EP0483993A2 (en) Integrated optics gyroscope sensor
CN109489651A (zh) 四频差动激光陀螺法拉第磁光玻璃安装方法
JPS586190A (ja) リング・レ−ザ・ジヤイロスコ−プ
US20080285046A1 (en) System and method for improving the resolution of an optical fiber gyroscope and a ring laser gyroscope
JP2001066142A (ja) 共振型光ジャイロ
CN106507910B (zh) 基于fpga的全数字处理闭环光纤陀螺
Gossler et al. Mode-cleaning and injection optics of the gravitational-wave detector GEO600
US4652132A (en) Optical power compensated ring laser gyroscope
Strandjord et al. Resonator fiber optic gyro progress including observation of navigation grade angle random walk
Korkishko et al. Fiber optic gyro for space applications. Results of R&D and flight tests
Zhang et al. Resonant fiber optic gyroscope with hopll technique based on acousto-optic modulation
RU2532997C2 (ru) Стабилизированный твердотельный лазерный гироскоп

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant