CN109406386B - 超低摩擦系数测量用异形截面悬臂梁探针设计及加工方法 - Google Patents

超低摩擦系数测量用异形截面悬臂梁探针设计及加工方法 Download PDF

Info

Publication number
CN109406386B
CN109406386B CN201711033488.8A CN201711033488A CN109406386B CN 109406386 B CN109406386 B CN 109406386B CN 201711033488 A CN201711033488 A CN 201711033488A CN 109406386 B CN109406386 B CN 109406386B
Authority
CN
China
Prior art keywords
micro
special
shaped cross
section
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711033488.8A
Other languages
English (en)
Other versions
CN109406386A (zh
Inventor
钱林茂
江亮
林斌
雒建斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Southwest Jiaotong University
Original Assignee
Tsinghua University
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Southwest Jiaotong University filed Critical Tsinghua University
Priority to CN201711033488.8A priority Critical patent/CN109406386B/zh
Priority to PCT/CN2017/109864 priority patent/WO2019084983A1/zh
Publication of CN109406386A publication Critical patent/CN109406386A/zh
Priority to US16/290,981 priority patent/US10739379B2/en
Application granted granted Critical
Publication of CN109406386B publication Critical patent/CN109406386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/16Probe manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/26Friction force microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明提供了一种应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计及加工方法,其设计方法是首先建立具有普适性的摩擦系数测量理论模型;再结合异形横截面微悬臂梁探针的结构特性,建立适用于异形横截面微悬臂梁探针的摩擦系数测量理论模型;在此基础上,结合摩擦系数分辨率、可加载的最大正压力或可测量的最小摩擦力以及原子力显微镜特性等约束条件,设计满足测量要求的异形横截面微悬臂梁探针。采用本发明提出的方法设计、加工出的探针,能够显著提高摩擦系数测量分辨率,实现10‑6及以上量级分辨率的超低摩擦系数测量,保证超滑过程定量分析的真实性和可靠性,为深入***研究超滑理论和技术提供了一种重要的测量手段。

Description

超低摩擦系数测量用异形截面悬臂梁探针设计及加工方法
技术领域
本发明属于仪器仪表技术中的分析及测量控制技术领域,具体涉及一种应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计及加工方法。
背景技术
随着世界经济的快速增长,各行业摩擦磨损造成的损失也相应增大,能源危机日益严峻。根据国外统计资料显示,摩擦消耗掉全世界30%的一次性能源,约有80%的机器零部件因为磨损而失效。据不完全统计,我国每年由于摩擦磨损造成的经济损失达上万亿元。发掘新型减摩和润滑技术,已成为节约能源和资源的重要研究领域。近年来,超滑现象的发现为解决能源消耗这一难题提供了新的重要途径。一般认为,滑动摩擦系数在0.001量级或更低(称为超低摩擦系数)的润滑状态即为超滑态。在超滑状态下,摩擦系数较常规的油润滑成数量级的降低,磨损率极低,接近于零。超滑状态的实现和普遍应用,将会大幅度降低能源与资源消耗,显著提高关键运动部件的服役品质。
事实上,由于影响超滑状态的因素众多且相互耦合,超滑理论和技术的深入研究受到了严重制约。纳米级单点接触(即接触区尺寸为纳米量级)可以排除宏观多点接触等多种外界因素干扰,便于超滑过程的定量分析。然而,目前纳米级单点接触状态下的超低摩擦系数测量是一个公认的技术难题,主要体现在以下两个方面:首先,纳米级单点接触通常采用原子力显微镜实现,而原子力显微镜主要应用于表面形貌扫描、力学性能测试等方面,基本未关注超低摩擦系数测量;其次,文献中报道的摩擦系数分辨率通常为0.01量级,远未实现10-6及以上量级(<10-6的更高精度)分辨率的摩擦系数测量。当摩擦系数进一步减小至10-6及以上量级时,摩擦力信号会被***噪音完全掩盖,无法测量得到。
由此可见,优化改进现有的纳米级单点接触摩擦系数测量技术,实现10-6及以上量级分辨率的超低摩擦系数测量显得至关重要。
发明内容
本发明的目的旨在针对上述现有技术中存在的问题,提供一种应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,通过该方法设计出的探针能够实现10-6及以上量级分辨率的超低摩擦系数测量。本发明进一步通过理论计算、有限元仿真等方法证明,采用本发明提出的方法设计出的探针,能够显著提高摩擦系数测量分辨率,实现超低摩擦系数测量,从而保证超滑过程定量分析的真实性和可靠性,为深入***研究超滑理论和技术提供一种重要的测量手段。
基于上述异形横截面微悬臂梁探针设计方法,本发明进一步提供了一种依据设计得到的异形横截面微悬臂梁探针尺寸进行加工的方法。
本发明基于原子力显微镜的测量原理,通过微悬臂梁探针的扭转和弯曲来分别测量摩擦力和正压力,建立具有普适性的摩擦系数测量理论模型;再结合异形横截面微悬臂梁探针的结构特性,建立适用于异形横截面微悬臂梁探针的摩擦系数测量理论模型;在此基础上,结合摩擦系数分辨率、可加载的最大正压力或可测量的最小摩擦力、原子力显微镜特性以及探针可加工性等约束条件,依据理论模型计算、设计满足测量要求的异形横截面微悬臂梁探针,并采用有限元仿真校核验证。本发明进一步提出了一种采用聚焦离子束切割和聚焦离子束焊接等工序加工具有设计尺寸的异形横截面微悬臂梁探针的实现方式,以加工出应用于样品超滑状态下的纳米级单点接触超低摩擦系数测量的探针。
为了达到上述目的,本发明采用以下技术方案来实现。
本发明提供了一种应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,所述探针的异形横截面微悬臂梁轴线为直线,且沿着轴线方向为等横截面,为了便于反射激光和提高探针可加工性,所述横截面为由若干个等壁厚狭长矩形组合而成的异形横截面;所述探针设计方法包括以下步骤:
步骤(1)建立微悬臂梁探针测量摩擦系数的普适理论模型
根据原子力显微镜的测量原理,通过微悬臂梁探针的扭转和弯曲来分别测量摩擦力和正压力,即
FL=KT×InvOLSL×UL (1)
FN=KN×InvOLSN×UN (2)
式中,FL、FN分别为摩擦力、正压力;KT、KN分别为微悬臂梁探针的扭转弹性系数、法向弹性系数;InvOLSL、InvOLSN分别为横向光杠杆灵敏度的倒数、法向光杠杆灵敏度的倒数;UL、UN分别为光电探测器的横向输出电压、法向输出电压;
进而建立微悬臂梁探针测量摩擦系数的普适理论模型,如下式所示:
Figure GDA0002623293360000021
式中,μ为摩擦系数;
步骤(2)建立异形横截面微悬臂梁探针测量摩擦系数的理论模型
根据光路***的测量原理,横向光杠杆灵敏度的倒数InvOLSL、法向光杠杆灵敏度的倒数InvOLSN表示为:
Figure GDA0002623293360000031
Figure GDA0002623293360000032
式中,H为光电探测器的光敏面长度,d为光路长度,l为微悬臂梁的长度,Usum为激光在光电探测器四个象限产生的总电压,αsum、αL、αN分别为光电探测器的总输出电流、横向输出电流、法向输出电流经过电流/电压转换器后的放大倍数,单位为V/A;
基于薄板弹性力学和材料力学理论,异形横截面微悬臂梁探针的扭转弹性系数KT表示为:
Figure GDA0002623293360000033
式中,
Figure GDA0002623293360000034
为摩擦力FL作用下异形横截面微悬臂梁探针的扭转角,G为微悬臂梁材料的剪切模量,It为异形横截面的扭转惯性矩,htip为针尖高度,e1为异形横截面的形心到底边的距离;
异形横截面微悬臂梁探针的法向弹性系数KN表示为:
Figure GDA0002623293360000035
式中,υtip为正压力FN作用下异形横截面微悬臂梁探针的挠度,E为微悬臂梁材料的弹性模量,由于微悬臂梁材料可能为各向异性(如硅),因此常规的G=E/2(1+ν)(ν为泊松比)不一定成立,IxC为异形横截面对中性轴xC(中性层与横截面的交线,通过横截面形心)的惯性矩;
将式(4)~(7)代入步骤(1)建立的普适理论模型(3),计算得到异形横截面微悬臂梁探针测量摩擦系数的理论模型,如下式所示:
Figure GDA0002623293360000036
式中,IL为光电探测器的横向输出电流,IL=ULL,IN为光电探测器的法向输出电流,IN=UNN
步骤(3)设计满足超低摩擦系数测量要求的异形横截面微悬臂梁探针
依据步骤(2),令μ为摩擦系数分辨率μmin,FN为可加载的最大正压力FNmax或FL为可测量的最小摩擦力FLmin,结合摩擦系数分辨率μmin、可加载的最大正压力FNmax或可测量的最小摩擦力FLmin、原子力显微镜特性等约束条件,联立式(1)~(8)计算、设计出满足测量要求的异形横截面微悬臂梁探针尺寸,包括长度l、组成异形横截面的第i个分矩形的宽度wi、壁厚t等;
上述应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,所述异形横截面微悬臂梁主要由以下两部分组成:用于反射激光的第一梁以及与第一梁固定连接、用于支撑固定的第二梁。
上述应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,所述异形横截面的形状包括但不限于口型、工型、H型、倒T型、U型等。不难看出,上述异形横截面包括构成第一梁的水平边和构成第二梁的垂直边,水平边和垂直边的数量至少为一条,水平边和垂直边主要为等壁厚狭长矩形。
上述应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,所述步骤(2)中,当htip远大于e1时,上述理论模型简化如下:
Figure GDA0002623293360000041
上述应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,所述步骤(3)中,主要包括以下分步骤:
a)依据给定的摩擦系数分辨率μmin,由于通常htip远大于e1,因此根据式(8)或(9)计算得到异形横截面微悬臂梁的长度l、扭转惯性矩It、对中性轴xC的惯性矩IxC的定量关系1;其中,htip与微观摩擦实验目的有关,在设计初始,针尖高度和材料即已根据对磨副设计要求予以确定;G和E与选择的异形横截面微悬臂梁材料有关,常规的异形横截面微悬臂梁材料为硅或氮化硅,硅的G为50GPa,E为169GPa,氮化硅的G为61GPa,E为156GPa,不难发现,硅和氮化硅的G、E基本相等,当材料选定后,G和E就可以确定;IL和IN与选择的原子力显微镜光电探测器有关,当原子力显微镜选定后,IL的最小值和IN的最大值就可以确定。
b)依据给定的可加载的最大正压力FNmax或可测量的最小摩擦力FLmin,根据式(1)~(7)计算得到异形横截面微悬臂梁的长度l、扭转惯性矩It、或/和对中性轴xC的惯性矩IxC的定量关系2。
c)依据异形横截面微悬臂梁的结构参数,得到扭转惯性矩It、对中性轴xC的惯性矩IxC与组成异形横截面的第i个分矩形的宽度wi、壁厚t的关系式,并将其分别代入步骤a)和步骤b)得到的l、It、IxC的定量关系1和定量关系2,得到l、wi、t的定量关系1′和定量关系2′;进一步地,第i个分矩形的宽度wi包括用于反射激光的第一梁的宽度(即异形横截面水平边的宽度)wR、用于支撑固定的第二梁的宽度(即异形横截面垂直边的宽度)wH
d)依据原子力显微镜特性等约束条件,给出异形横截面微悬臂梁的长度l、第i个分矩形的宽度wi、壁厚t的取值范围。原子力显微镜特性的约束条件包括:使激光光斑完全落在反射面内设定的异形横截面微悬臂梁的宽度w和长度l的取值范围,以及依据异形横截面微悬臂梁材料设定的异形横截面微悬臂梁的壁厚t的取值范围等。对于常规的商用原子力显微镜(如美国牛津仪器生产的MFP-3D),其约束条件为:1)激光光斑大小为微米量级,为了使激光光斑完全落在反射面内,用于反射激光的梁的宽度wR应不小于20μm,长度l应不小于50μm;2)硅微悬臂梁的壁厚t通常为1μm-7.8μm,氮化硅微悬臂梁的壁厚t通常为0.2μm-0.6μm,若壁厚t超出上述范围,则难加工成型或者加工成型后材料性能无法满足使用要求,存在残余应力、微裂纹等缺陷。
如后所述,本专利提出首先采用聚焦离子束切割加工用于反射激光的第一梁和用于支撑固定的第二梁,然后采用聚焦离子束焊接将切割获得的用于支撑固定的第二梁焊接到用于反射激光的第一梁,获得异形横截面微悬臂梁。为了提高探针可加工性,同时基于现有的加工精度,为了节约加工成本,用于反射激光的梁的宽度wR、壁厚t与商用探针一致。
e)依据异形横截面微悬臂梁的长度l、第i个分矩形的宽度wi、壁厚t的取值范围,设定异形横截面微悬臂梁的长度l、第i个分矩形的宽度wi、壁厚t中的至少两个参数,并依据定量关系1′和/或定量关系2′,计算得到异形横截面微悬臂梁的长度l、第i个分矩形的宽度wi、壁厚t中剩余的未知参数,得到异形横截面微悬臂梁探针的设计尺寸。
上述应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,为了验证所述步骤(3)中设计的异形横截面微悬臂梁探针能够满足超低摩擦系数测量要求,所述步骤(3)中,进一步将得到的异形横截面微悬臂梁探针设计尺寸代入有限元仿真模型,判定仿真得到的摩擦系数分辨率、可加载的最大正压力或可测量的最小摩擦力、最大应力、共振频率等摩擦系数测量关键指标是否满足设定要求,若满足,则确定异形横截面微悬臂梁探针的设计尺寸;若不满足,则更换异形横截面微悬臂梁材料或/和反射面涂层,返回步骤(3);或更换原子力显微镜,以保证具有合适的光路***和光电探测器及其附属电流/电压转换器,返回步骤(3),直至仿真得到的摩擦系数分辨率、可加载的最大正压力或可测量的最小摩擦力、最大应力、共振频率等摩擦系数测量关键指标满足设定要求。
本发明进一步提供了一种应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针加工方法,依据前面得到的异形横截面微悬臂梁探针设计尺寸进行加工,得到异形横截面微悬臂梁探针,微悬臂梁末端设计有针尖。
上述应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针加工方法,为了适应现有原子力显微镜的应用环境,降低少批量、定制的异形横截面微悬臂梁探针的加工成本,提高加工效率,以接近异形横截面微悬臂梁探针设计尺寸的商用探针为加工对象,首先采用聚焦离子束切割加工用于反射激光的第一梁和用于支撑固定的第二梁,然后采用聚焦离子束焊接将切割获得的用于支撑固定的第二梁焊接到用于反射激光的第一梁,最后将针尖粘结在加工后的微悬臂梁末端,完成探针制作。
上述应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针加工方法,根据实验要求,针尖材料选自硅、氮化硅、二氧化硅、金刚石、类金刚石、三氧化二铝、二氧化锆、二氧化钛、二氧化铈、石墨、金以及石墨烯、二硫化钼、六方氮化硼中的至少一种。
依据本发明提出的设计及加工方法制作的异形横截面微悬臂梁探针应用于样品超滑状态下的纳米级单点接触超低摩擦系数的测量。
与现有微悬臂梁探针的设计及加工方法相比,本发明提供的方法具有以下有益效果:
1、本发明建立的异形横截面微悬臂梁探针测量摩擦系数的理论模型证明了摩擦系数分辨率与微悬臂梁的长度l、异形横截面的扭转惯性矩It与异形横截面对中性轴xC的惯性矩IxC的比值It/IxC成正比,从而提出了一种具有高摩擦系数分辨率的异形横截面微悬臂梁探针设计及加工方法,通过该方法能够制作出应用于纳米级单点接触超低摩擦系数测量的探针;
2、基于本发明提出的方法设计、加工出的探针,能够显著提高摩擦系数测量分辨率,实现10-6及以上量级分辨率的超低摩擦系数测量,保证超滑过程定量分析的真实性和可靠性,为深入***研究超滑理论和技术提供了一种重要的测量手段;
3、基于本发明建立的异形横截面微悬臂梁探针测量摩擦系数的理论模型,不仅可以通过优化改进微悬臂梁探针结构来提高摩擦系数分辨率,也可以通过其他方式来提高摩擦系数分辨率,如优化改进光路***。同时,该理论模型也可应用于其他与摩擦学相关的研究,具有很高的实用价值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,以下描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图所示实施例得到其它的实施例及其附图。
图1为本发明实施例提供的应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法流程图。
图2为本发明实施例提供的微悬臂梁探针测量摩擦系数示意图。
图3为本发明实施例提供的口型(a)、工型(b)、H型(c)、倒T型(d)、U型(e)横截面结构参数示意图。其中,1为水平边,2为垂直边。
图4为本发明实施例提供的U型横截面微悬臂梁探针有限元仿真结果。其中,(a)为加载25μN正压力(安全系数为10)时最大应力截面处的应力分布图,(b)为加载0~5μN正压力时法向弹性系数的有限元仿真结果,(c)为加载2.5μN正压力、0~0.25μN摩擦力时扭转弹性系数的有限元仿真结果。
图5为本发明实施例提供的U型横截面微悬臂梁探针加工过程示意图。
图6为本发明实施例提供的U型横截面微悬臂梁探针有限元仿真结果。其中,(a)为加载250μN正压力(安全系数为10)时最大应力截面处的应力分布图,(b)为加载0~50μN正压力时法向弹性系数的有限元仿真结果,(c)为加载25μN正压力、0~0.25μN摩擦力时扭转弹性系数的有限元仿真结果。
具体实施方式
以下将结合附图对本发明各实施例的技术方案进行清楚、完整的描述,显然,所描述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。
实施例1
本实施例设计的异形横截面微悬臂梁探针,其异形横截面微悬臂梁主要由以下两部分组成:用于反射激光的第一梁以及与第一梁固定连接、用于支撑固定的第二梁;轴线为直线,且沿着轴线方向为等横截面,为了便于反射激光和提高探针可加工性,所述横截面为由若干个等壁厚狭长矩形组合而成的异形横截面。本实施例选定五种形状的横截面作为设计基础,包括口型、工型、H型、倒T型和U型,对异形横截面微悬臂梁探针的设计方法作详细描述,但这五种形状并不构成对本发明异形横截面微悬臂梁探针的任何限定。不难看出,这些异形横截面均包括构成第一梁的水平边1和构成第二梁的垂直边2,水平边和垂直边的数量至少为一条,水平边和垂直边主要为等壁厚狭长矩形,其宽度为wi(i=R,H),壁厚为t。
本实施例根据以下超低摩擦系数测量要求设计异形横截面微悬臂梁探针:1)实现10-6及以上量级分辨率的超低摩擦系数测量;2)可加载的最大正压力等于或接近2.5μN;3)微悬臂梁材料为氮化硅;4)针尖高度为23μm,针尖材料为石墨烯包覆二氧化硅微球;5)实验平台为MFP-3D原子力显微镜。
本实施例MFP-3D原子力显微镜特性如下所示:1)激光光斑大小为微米量级,为了使激光光斑完全落在反射面内,构成待设计探针微悬臂梁的用于反射激光的第一梁的宽度(即异形横截面水平边的宽度)wR应不小于20μm,待设计探针微悬臂梁的长度l应不小于50μm;2)氮化硅微悬臂梁的壁厚(即异形横截面水平边和垂直边的壁厚)t通常为0.2μm-0.6μm;3)经测量,光路***中法向光杠杆灵敏度的倒数InvOLSN与微悬臂梁的长度l、激光在光电探测器四个象限产生的总电压Usum的拟合关系式为InvOLSN(nm/V)=0.00274×l/Usum+24.7,横向光杠杆灵敏度的倒数InvOLSL与Usum的拟合关系式为InvOLSL(rad/V)=0.0697/Usum+0.00879(4.5V<Usum<5.8V);4)光电探测器的电压分辨率ULmin为0.01mV(此外,参考文献J.Li,C.Zhang,P.Cheng,X.Chen,W.Wang and J.Luo,Langmuir,32,5593(2016)中报道MFP-3D原子力显微镜的ULmin为0.002mV,本发明暂不采用),电压量程UNmax为20V;5)光电探测器的电流分辨率ILmin与量程INmax的比值ILmin/INmax为7×10-6
如图1所示,本实施例提供了一种应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,包括以下步骤:
步骤(1)建立微悬臂梁探针测量摩擦系数的普适理论模型
根据原子力显微镜的测量原理,如图2所示,通过微悬臂梁探针的扭转和弯曲来分别测量摩擦力和正压力,即
FL=KT×InvOLSL×UL (1)
FN=KN×InvOLSN×UN (2)
式中,FL、FN分别为摩擦力、正压力;KT、KN分别为微悬臂梁探针的扭转弹性系数、法向弹性系数;InvOLSL、InvOLSN分别为横向光杠杆灵敏度的倒数、法向光杠杆灵敏度的倒数;UL、UN分别为光电探测器的横向输出电压、法向输出电压;
进而建立微悬臂梁探针测量摩擦系数的普适理论模型,如下式所示:
Figure GDA0002623293360000081
式中,μ为摩擦系数;
步骤(2)建立异形横截面微悬臂梁探针测量摩擦系数的理论模型
根据光路***的测量原理,横向光杠杆灵敏度的倒数InvOLSL、法向光杠杆灵敏度的倒数InvOLSN表示为:
Figure GDA0002623293360000082
Figure GDA0002623293360000083
式中,H为光电探测器的光敏面长度,d为光路长度,l为微悬臂梁的长度,Usum为激光在光电探测器四个象限产生的总电压,αsum、αL、αN分别为光电探测器的总输出电流、横向输出电流、法向输出电流经过电流/电压转换器后的放大倍数,单位为V/A;
基于薄板弹性力学和材料力学理论,异形横截面微悬臂梁探针的扭转弹性系数KT表示为:
Figure GDA0002623293360000091
式中,
Figure GDA0002623293360000092
为摩擦力FL作用下异形横截面微悬臂梁探针的扭转角,G为微悬臂梁材料的剪切模量,It为异形横截面的扭转惯性矩,htip为针尖高度,e1为异形横截面的形心到底边的距离。
异形横截面微悬臂梁探针的法向弹性系数KN表示为:
Figure GDA0002623293360000093
式中,υtip为正压力FN作用下异形横截面微悬臂梁探针的挠度,E为微悬臂梁材料的弹性模量,由于微悬臂梁材料可能为各向异性(如硅),因此常规的G=E/2(1+ν)(ν为泊松比)不一定成立,IxC为异形横截面对中性轴xC(中性层与横截面的交线,通过横截面形心)的惯性矩。
将式(4)~(7)代入步骤(1)建立的普适理论模型(3),计算得到异形横截面微悬臂梁探针测量摩擦系数的理论模型,如下式所示:
Figure GDA0002623293360000094
式中,IL为光电探测器的横向输出电流,IL=ULL,IN为光电探测器的法向输出电流,IN=UNN
本实施例中htip远大于e1时,上述理论模型简化如下:
Figure GDA0002623293360000095
步骤(3)设计满足超低摩擦系数测量要求的异形横截面微悬臂梁探针
依据步骤(2),令μ为摩擦系数分辨率μmin,FN为可加载的最大正压力FNmax或FL为可测量的最小摩擦力FLmin,结合摩擦系数分辨率μmin、可加载的最大正压力FNmax或可测量的最小摩擦力FLmin、原子力显微镜特性等约束条件,联立式(1)~(9)以及异形横截面的结构特性计算、设计满足测量要求的异形横截面微悬臂梁探针尺寸,包括长度l、第i个分矩形的宽度wi、壁厚t等,并采用有限元仿真校核验证;
本实施例设计满足纳米级单点接触超低摩擦系数测量要求的异形横截面微悬臂梁探针的具体过程如下:
a)本实施例给定的摩擦系数分辨率μmin≤10-6,即
Figure GDA0002623293360000101
式中,ILmin、INmax分别为光电探测器的电流分辨率、量程。其中,氮化硅的G为61GPa,E为156GPa,针尖高度htip为23μm,ILmin/INmax为7×10-6,将上述参数代入式(10)计算得到l、It、IxC的定量关系1,即
Figure GDA0002623293360000102
式中,长度单位取μm。
b)本实施例给定的可加载的最大正压力FNmax等于或接近2.5μN,即
FNmax=(KN×InvOLSN×UN)max=KN×InvOLSN×UNmax≈2.5 (12)
式中,UNmax为光电探测器的电压量程。如前所述,本实施例MFP-3D原子力显微镜的光电探测器的电压量程UNmax为20V,法向光杠杆灵敏度的倒数InvOLSN与微悬臂梁的长度l、激光在光电探测器四个象限产生的总电压Usum的拟合关系式表示为:
InvOLSN(nm/V)=0.00274×l/Usum+24.7 (13)
本实施例异形横截面微悬臂梁的反射面涂层为金,激光经过金涂层反射在光电探测器四个象限产生的总电压Usum约为5V,代入式(13)计算得到:
InvOLSN(nm/V)=0.000548×l+24.7 (14)
将式(7)、(14)代入式(12)计算得到l、IxC的定量关系2,即
Figure GDA0002623293360000103
式中,长度单位取μm。
c)It为异形横截面的扭转惯性矩,与横截面的结构参数有关,包括用于反射激光的第一梁的宽度(即异形横截面水平边的宽度)wR、用于支撑固定的第二梁的宽度(即异形横截面垂直边的宽度)wH、壁厚t;IxC为异形横截面对中性轴xC的惯性矩,与横截面的结构参数有关,包括wR、wH、t;依据异形横截面的结构参数,分别得到It、IxC与wR、wH、t的关系式。
如图3所示,对于口型横截面,由两条对称设置的水平边以及与两条水平边两端固定连接的垂直边组成,其扭转惯性矩It、对中性轴xC的惯性矩IxC、形心到底边的距离e1分别表示为:
Figure GDA0002623293360000111
Figure GDA0002623293360000112
Figure GDA0002623293360000113
如图3所示,对于工型横截面,由两条对称设置的水平边以及固定连接于两条水平边中间位置的垂直边组成,其扭转惯性矩It、对中性轴xC的惯性矩IxC、形心到底边的距离e1分别表示为:
Figure GDA0002623293360000114
Figure GDA0002623293360000115
Figure GDA0002623293360000116
如图3所示,对于H型横截面,由两条对称设置的垂直边以及固定连接于两条垂直边中间位置的水平边组成,其扭转惯性矩It、对中性轴xC的惯性矩IxC、形心到底边的距离e1分别表示为:
Figure GDA0002623293360000117
Figure GDA0002623293360000118
Figure GDA0002623293360000119
如图3所示,对于倒T型横截面,由一条水平边和固定连接于水平边中间位置的垂直边组成,且垂直边位于水平边上方,其扭转惯性矩It、对中性轴xC的惯性矩IxC、形心到底边的距离e1分别表示为:
Figure GDA00026232933600001110
Figure GDA00026232933600001111
Figure GDA0002623293360000121
如图3所示,对于U型横截面,由两条对称设置的垂直边以及与两条垂直边下端固定连接的水平边组成,其扭转惯性矩It、对中性轴xC的惯性矩IxC、形心到底边的距离e1分别表示为:
Figure GDA0002623293360000122
Figure GDA0002623293360000123
Figure GDA0002623293360000124
将式(16)~(30)分别代入定量关系1【式(11)】和定量关系2【式(15)】,计算得到口型、工型、H型、倒T型、U型横截面微悬臂梁的长度l、用于反射激光的第一梁的宽度wR、用于支撑固定的第二梁的宽度wH、壁厚t的定量关系1′和定量关系2′。
d)依据原子力显微镜特性以及探针可加工性等约束条件,给出异形横截面微悬臂梁的长度l、用于反射激光的第一梁的宽度wR、壁厚t的取值范围。
依据前面所述的MFP-3D原子力显微镜特性,本实施例构成待设计探针微悬臂梁的用于反射激光的第一梁的宽度(即异形横截面水平边的宽度)wR应不小于20μm,待设计探针微悬臂梁的长度l应不小于50μm;氮化硅微悬臂梁的壁厚(即异形横截面水平边和垂直边的壁厚)t通常为0.2μm-0.6μm。
e)首先由式(9)可以推断得出异形横截面微悬臂梁探针的摩擦系数分辨率μmin与微悬臂梁的长度l成正比,为了给横截面尺寸设计留出尽可能多的余量,微悬臂梁的长度l应尽可能小,结合步骤d)给出的微悬臂梁的长度l的取值范围,本实施例微悬臂梁的长度l取最小值50μm。再者,为了方便加工,本实施例用于反射激光的第一梁的宽度wR与商用探针一致,目前商用氮化硅探针常用的宽度为35μm,因此设计用于反射激光的第一梁的宽度wR为35μm;将设定的微悬臂梁的长度l和用于反射激光的第一梁的宽度wR代入定量关系1′和/或定量关系2′,计算得到用于支撑固定的第二梁的宽度wH和壁厚t的定量关系;结合步骤d)给出的微悬臂梁的壁厚t的取值范围,考虑加工的便利性,确定壁厚t为0.2μm;再根据用于wH和t的定量关系,计算得到用于支撑固定的第二梁的宽度wH的数值。
由于设计过程中涉及有效数字取舍,因此重新代入计算,口型、工型、H型、倒T型、U型横截面的理论计算结果如表1所示。
Figure GDA0002623293360000131
再者,将得到的异形横截面微悬臂梁探针设计尺寸代入有限元仿真模型,使用有限元软件NX Nastran仿真得到摩擦系数分辨率、可加载的最大正压力或可测量的最小摩擦力、最大应力、共振频率,有限元仿真结果如表1和图4所示。可以看出,除口型横截面外,工型、H型、倒T型、U型横截面均完全满足设定要求。对于口型横截面,可以采用更换原子力显微镜的方式,以保证具有合适的光路***和光电探测器及其附属电流/电压转换器,进而使摩擦系数测量关键指标满足设定要求。鉴于本实施例中工型、H型、倒T型、U型横截面均完全满足设定要求,因此不再赘述口型横截面的优化过程。
实施例2
本实施例根据以下超低摩擦系数测量要求设计异形横截面微悬臂梁探针:1)实现10-6及以上量级分辨率的超低摩擦系数测量;2)可加载的最大正压力等于或接近25μN;3)微悬臂梁材料为氮化硅;4)针尖高度为23μm,针尖材料为石墨烯包覆二氧化硅微球;5)实验平台为MFP-3D原子力显微镜。
本实施例异形横截面微悬臂梁探针的设计步骤与实施例1的步骤一致,理论计算和有限元仿真结果如表1和图6所示。可以看出,除口型横截面外,工型、H型、倒T型、U型横截面均完全满足设定要求。对于口型横截面,可以采用更换原子力显微镜的方式,以保证具有合适的光路***和光电探测器及其附属电流/电压转换器,进而使摩擦系数测量关键指标满足设定要求。鉴于本实施例中工型、H型、倒T型、U型横截面均完全满足设定要求,因此不再赘述口型横截面的优化过程。
至此,实施例1和2从理论计算、有限元仿真两方面均验证了异形横截面微悬臂梁探针设计方法的可行性和准确性。
实施例3
本实施例提供了一种满足纳米级单点接触超低摩擦系数测量要求的异形横截面微悬臂梁探针加工方法。考虑到探针加工的便利性,以加工U型横截面微悬臂梁探针为例。选择2根与U型横截面设计尺寸接近的商用探针HYDRA2R-50NG-TL(美国AppliedNanoStructures公司生产)作为加工对象。如图5所示,首先采用聚焦离子束从其中1根HYDRA2R-50NG-TL商用探针上切割加工2块用于支撑固定的第二梁,然后采用聚焦离子束焊接将2块切割获得的用于支撑固定的第二梁焊接到另外1根未切割的HYDRA2R-50NG-TL商用探针(即用于反射激光的第一梁)上;最后在MFP-3D原子力显微镜上使用AB胶(或者紫外固化胶等)将针尖粘结在微悬臂梁末端,完成探针制作。
本发明的一种应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计及加工方法,显著提高了摩擦系数测量分辨率,实现10-6及以上量级分辨率的超低摩擦系数测量,保证超滑过程定量分析的真实性和可靠性,为超滑理论的建立及超滑技术在我国航空航天、先进制造、能源等重要领域的应用提供一种重要的测量手段。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (7)

1.一种应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,其特征在于所述探针的异形横截面微悬臂梁轴线为直线,且沿着轴线方向为等横截面;所述异形横截面的形状包括工型、H型、倒T型、U型;所述异形横截面微悬臂梁主要由以下两部分组成:用于反射激光的第一梁以及与第一梁固定连接、用于支撑固定的第二梁,异形横截面包括构成第一梁的水平边和构成第二梁的垂直边,水平边和垂直边的数量至少为一条,水平边和垂直边为等壁厚狭长矩形;所述探针设计方法包括以下步骤:
步骤(1)建立微悬臂梁探针测量摩擦系数的普适理论模型
根据原子力显微镜的测量原理,通过微悬臂梁探针的扭转和弯曲来分别测量摩擦力和正压力,即
FL=KT×InvOLSL×UL (1)
FN=KN×InvOLSN×UN (2)
式中,FL、FN分别为摩擦力、正压力;KT、KN分别为微悬臂梁探针的扭转弹性系数、法向弹性系数;InvOLSL、InvOLSN分别为横向光杠杆灵敏度的倒数、法向光杠杆灵敏度的倒数;UL、UN分别为光电探测器的横向输出电压、法向输出电压;
进而建立微悬臂梁探针测量摩擦系数的普适理论模型,如下式所示:
Figure FDA0002623293350000011
式中,μ为摩擦系数;
步骤(2)建立异形横截面微悬臂梁探针测量摩擦系数的理论模型
根据光路***的测量原理,横向光杠杆灵敏度的倒数InvOLSL、法向光杠杆灵敏度的倒数InvOLSN表示为:
Figure FDA0002623293350000012
Figure FDA0002623293350000013
式中,H为光电探测器的光敏面长度,d为光路长度,l为微悬臂梁的长度,Usum为激光在光电探测器四个象限产生的总电压,αsum、αL、αN分别为光电探测器的总输出电流、横向输出电流、法向输出电流经过电流/电压转换器后的放大倍数,单位为V/A;
基于薄板弹性力学和材料力学理论,异形横截面微悬臂梁探针的扭转弹性系数KT表示为:
Figure FDA0002623293350000021
式中,
Figure FDA0002623293350000022
为摩擦力FL作用下异形横截面微悬臂梁探针的扭转角,G为微悬臂梁材料的剪切模量,It为异形横截面的扭转惯性矩,htip为针尖高度,e1为异形横截面的形心到底边的距离;
异形横截面微悬臂梁探针的法向弹性系数KN表示为:
Figure FDA0002623293350000023
式中,υtip为正压力FN作用下异形横截面微悬臂梁探针的挠度,E为微悬臂梁材料的弹性模量,IxC为异形横截面对中性轴xC的惯性矩;
将式(4)~(7)代入步骤(1)建立的普适理论模型(3),计算得到异形横截面微悬臂梁探针测量摩擦系数的理论模型,如下式所示:
Figure FDA0002623293350000024
式中,IL为光电探测器的横向输出电流,IL=ULL,IN为光电探测器的法向输出电流,IN=UNN
步骤(3)设计满足超低摩擦系数测量要求的异形横截面微悬臂梁探针
依据步骤(2),令μ为摩擦系数分辨率μmin,FN为可加载的最大正压力FNmax或FL为可测量的最小摩擦力FLmin,结合摩擦系数分辨率μmin、可加载的最大正压力FNmax或可测量的最小摩擦力FLmin、原子力显微镜特性约束条件,联立式(1)~(8)计算、设计出满足测量要求的异形横截面微悬臂梁探针尺寸,包括长度l、组成异形横截面的第i个分矩形的宽度wi、壁厚t;
该步骤主要包括以下分步骤:
a)依据给定的摩擦系数分辨率μmin,根据式(8)或(9)计算得到异形横截面微悬臂梁的长度l、扭转惯性矩It、对中性轴xC的惯性矩IxC的定量关系1;
b)依据给定的可加载的最大正压力FNmax或可测量的最小摩擦力FLmin,根据式(1)~(7)计算得到异形横截面微悬臂梁的长度l、扭转惯性矩It、或/和对中性轴xC的惯性矩IxC的定量关系2;
c)依据异形横截面微悬臂梁的结构参数,得到扭转惯性矩It、对中性轴xC的惯性矩IxC与组成异形横截面的第i个分矩形的宽度wi、壁厚t的关系式,并将其分别代入步骤a)和步骤b)得到的l、It、IxC的定量关系1和定量关系2,得到l、wi、t的定量关系1′和定量关系2′,第i个分矩形的宽度wi包括用于反射激光的第一梁的宽度wR、用于支撑固定的第二梁的宽度wH
d)依据原子力显微镜特性约束条件,出异形横截面微悬臂梁的长度l、第i个分矩形的宽度wi、壁厚t的取值范围;
e)依据异形横截面微悬臂梁的长度l、第i个分矩形的宽度wi、壁厚t的取值范围,设定异形横截面微悬臂梁的长度l、第i个分矩形的宽度wi、壁厚t中的至少两个参数,并依据定量关系1′和/或定量关系2′,计算得到异形横截面微悬臂梁的长度l、第i个分矩形的宽度wi、壁厚t中剩余的未知参数,得到异形横截面微悬臂梁探针的设计尺寸;
通过上述步骤所设计的探针摩擦系数测量分辨率达到10-6及以上量级。
2.根据权利要求1所述的应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,其特征在于所述步骤(2)中,当htip远大于e1时,上述理论模型简化如下:
Figure FDA0002623293350000031
3.根据权利要求1所述的应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法,其特征在于所述步骤(3)中,将得到的异形横截面微悬臂梁探针设计尺寸代入有限元仿真模型,判定仿真得到的摩擦系数分辨率、可加载的最大正压力或可测量的最小摩擦力、最大应力、共振频率这些摩擦系数测量关键指标是否满足设定要求,若满足,则确定异形横截面微悬臂梁探针的设计尺寸;若不满足,则更换异形横截面微悬臂梁材料或/和反射面涂层,返回步骤(3);或更换原子力显微镜,返回步骤(3),直至仿真得到的摩擦系数分辨率、可加载的最大正压力或可测量的最小摩擦力、最大应力、共振频率这些摩擦系数测量关键指标满足设定要求。
4.一种应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针加工方法,其特征在于依据权利要求1至3任一权利要求所述的应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计方法进行加工,得到异形横截面微悬臂梁,再在微悬臂梁末端安装针尖。
5.根据权利要求4所述的应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针加工方法,其特征在于以接近异形横截面微悬臂梁探针设计尺寸的商用探针为加工对象,首先采用聚焦离子束切割加工用于反射激光的第一梁和用于支撑固定的第二梁,然后采用聚焦离子束焊接将切割获得的用于支撑固定的第二梁焊接到用于反射激光的第一梁,最后将针尖粘结在加工后的微悬臂梁末端,完成探针制作。
6.根据权利要求4或5所述的应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针加工方法,所述针尖材料选自硅、氮化硅、二氧化硅、金刚石、类金刚石、三氧化二铝、二氧化锆、二氧化钛、二氧化铈、石墨、金以及石墨烯、二硫化钼、六方氮化硼中的至少一种。
7.一种异形横截面微悬臂梁探针的应用,其特征在于异形横截面微悬臂梁探针依据权利要求4至6任一权利要求所述加工方法制作,其主要应用于样品超滑状态下的纳米级单点接触超低摩擦系数的测量。
CN201711033488.8A 2017-10-30 2017-10-30 超低摩擦系数测量用异形截面悬臂梁探针设计及加工方法 Active CN109406386B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711033488.8A CN109406386B (zh) 2017-10-30 2017-10-30 超低摩擦系数测量用异形截面悬臂梁探针设计及加工方法
PCT/CN2017/109864 WO2019084983A1 (zh) 2017-10-30 2017-11-08 应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计及加工方法
US16/290,981 US10739379B2 (en) 2017-10-30 2019-03-04 Methods for designing and processing a microcantilever-based probe with an irregular cross section applied in an ultra-low friction coefficient measurement at a nanoscale single-point contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711033488.8A CN109406386B (zh) 2017-10-30 2017-10-30 超低摩擦系数测量用异形截面悬臂梁探针设计及加工方法

Publications (2)

Publication Number Publication Date
CN109406386A CN109406386A (zh) 2019-03-01
CN109406386B true CN109406386B (zh) 2020-10-23

Family

ID=65462962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711033488.8A Active CN109406386B (zh) 2017-10-30 2017-10-30 超低摩擦系数测量用异形截面悬臂梁探针设计及加工方法

Country Status (3)

Country Link
US (1) US10739379B2 (zh)
CN (1) CN109406386B (zh)
WO (1) WO2019084983A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488044B (zh) * 2019-07-29 2020-09-22 清华大学 一种实现锥形针尖的afm探针与石墨表面之间超滑的方法
CN112461748B (zh) * 2020-11-25 2022-07-22 西南科技大学 一种超低摩擦的轮-阜结构摩擦副
CN113109252A (zh) * 2021-05-25 2021-07-13 中国人民解放军空军工程大学 一种抗强电磁干扰的附面层摩擦阻力测量装置与方法
CN113917190B (zh) * 2021-10-08 2023-04-07 中国科学院上海微***与信息技术研究所 基于fib设备定制afm探针的方法及原子力显微镜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055597A1 (en) * 1999-03-17 2000-09-21 Seiko Instruments Inc. Optical micro cantilever, method of manufacture thereof, and micro cantilever holder
CN101003356A (zh) * 2007-01-12 2007-07-25 哈尔滨工业大学 基于原子力显微镜恒高模式的纳米微小结构加工方法
CN106526242A (zh) * 2016-12-09 2017-03-22 湘潭大学 Afm探针横向力标定系数测量方法及横向力标定方法
US9612258B2 (en) * 2013-10-29 2017-04-04 Imec Probe configuration and method of fabrication thereof

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500373B2 (ja) * 1993-11-09 1996-05-29 工業技術院長 原子間力顕微鏡及び原子間力顕微鏡における試料観察方法
JP2000146806A (ja) * 1998-11-11 2000-05-26 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JP3261451B2 (ja) * 1999-03-10 2002-03-04 独立行政法人産業技術総合研究所 摩擦力検出用カンチレバー
US6609308B2 (en) * 2001-11-02 2003-08-26 Q-Mark Manufacturing, Inc. Drilled silicon nitride ball
JP2005083886A (ja) * 2003-09-08 2005-03-31 Lion Corp 微少領域の摩擦力および摩擦係数測定方法
JP2007046974A (ja) * 2005-08-09 2007-02-22 Ritsumeikan マルチプローブを用いた変位量測定装置及びそれを用いた変位量測定方法
WO2007129587A1 (ja) * 2006-05-09 2007-11-15 Kyoto University 分子配向装置及び分子配向方法
JP2007327917A (ja) * 2006-06-09 2007-12-20 Tokyo Univ Of Marine Science & Technology 金属材料の摩擦係数測定方法及び摩擦係数測定装置
CN101187624B (zh) * 2007-12-13 2010-11-10 西安理工大学 一种回转副动态摩擦检测***
JP2009192659A (ja) * 2008-02-13 2009-08-27 Oki Data Corp 無端状ベルト、転写ユニット及び画像形成装置
ES2365884B1 (es) * 2008-12-16 2012-09-12 Airbus Operations, S.L. Superficies móviles de aeronaves con ranuras selladas.
JP5410880B2 (ja) * 2009-08-07 2014-02-05 株式会社日立ハイテクサイエンス 摩擦力測定方法および摩擦力測定装置
US8701211B2 (en) * 2009-08-26 2014-04-15 Advanced Diamond Technologies, Inc. Method to reduce wedge effects in molded trigonal tips
US20120047610A1 (en) * 2010-04-09 2012-02-23 Boise State University Cantilever-based optical interface force microscope
CN102430124B (zh) * 2011-11-24 2013-03-20 清华大学 一种具有超低摩擦系数的药丸涂层及其制备方法
CN102718182B (zh) * 2012-07-10 2015-05-20 西南交通大学 一种多点接触模式下的大面积摩擦诱导微米级加工设备
CN103616532B (zh) * 2013-11-06 2015-10-28 中国科学技术大学 低回差高重复扫描探针显微镜独立扫描器
CN104071746B (zh) * 2014-07-21 2015-09-30 厦门大学 一种适用于原子力显微镜的金属探针制备方法
CN104181099B (zh) * 2014-08-11 2016-06-22 桂林电子科技大学 一种金属管材液压成形时导向区摩擦系数的测量装置及其测量方法
WO2016085989A1 (en) * 2014-11-25 2016-06-02 The Trustees Of The University Of Pennsylvania In situ tribometer and methods of use
KR101628557B1 (ko) * 2014-12-05 2016-06-08 현대자동차주식회사 시편 표면의 마찰계수 측정방법
KR20160070627A (ko) * 2014-12-10 2016-06-20 삼성전자주식회사 스캐닝 프로브 현미경을 사용하여 시료의 표면을 분석하는 방법 및 그를 위한 스캐닝 프로브 현미경
CN104749400B (zh) * 2015-03-23 2017-09-29 中国科学院半导体研究所 一种扫描探针及其制作方法
FR3039280B1 (fr) * 2015-07-22 2019-05-17 Vmicro S.A.S Sonde pour microscopie a force atomique a faible encombrement et microscope a force atomique comprenant une telle sonde
CN105182007B (zh) * 2015-09-02 2018-05-25 南京大学 一种超声激励下纳米材料表面力学参量表征的方法
CN106324291B (zh) * 2016-08-15 2018-10-30 清华大学 用于原子力显微镜的石墨烯膜球探针及摩擦系数的获取方法
CN106815404B (zh) * 2016-12-19 2019-06-28 华中科技大学 一种原子力显微镜探针模态形状优化设计方法
CN106918723A (zh) * 2017-01-19 2017-07-04 西南交通大学 一种基于原子力显微镜的可控气氛下的多探针探测方法
US10794930B2 (en) * 2017-01-26 2020-10-06 Ozgur Sahin AFM with suppressed parasitic signals
CN107085127B (zh) * 2017-03-14 2019-05-21 广州市本原纳米仪器有限公司 一种新型扫描探针显微镜的检测方法和***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055597A1 (en) * 1999-03-17 2000-09-21 Seiko Instruments Inc. Optical micro cantilever, method of manufacture thereof, and micro cantilever holder
CN101003356A (zh) * 2007-01-12 2007-07-25 哈尔滨工业大学 基于原子力显微镜恒高模式的纳米微小结构加工方法
US9612258B2 (en) * 2013-10-29 2017-04-04 Imec Probe configuration and method of fabrication thereof
CN106526242A (zh) * 2016-12-09 2017-03-22 湘潭大学 Afm探针横向力标定系数测量方法及横向力标定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《On eigenmodes,stiffness,and sensitivity of atomic force microscope cantilevers in air versus lipuids》;Daniel Kiracofe等;《JOURNAL OF APPLIED PHYSICS 107》;20100202;第003506页 *

Also Published As

Publication number Publication date
CN109406386A (zh) 2019-03-01
US10739379B2 (en) 2020-08-11
WO2019084983A1 (zh) 2019-05-09
US20190204353A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
CN109406386B (zh) 超低摩擦系数测量用异形截面悬臂梁探针设计及加工方法
CN109406831B (zh) 一种应用于纳米级单点接触超低摩擦系数测量的矩形微悬臂梁探针设计及加工方法
JP4546535B2 (ja) 測定プローブ、試料表面測定装置、及び試料表面測定方法
Cumpson et al. Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs
Geng et al. Sidewall imaging of microarray-based biosensor using an orthogonal cantilever probe
Geng et al. Processing outcomes of the AFM probe-based machining approach with different feed directions
CN110514138A (zh) 一种基于探针自身重力的形貌测量***及方法
KR100612595B1 (ko) 나노 압입 시험 기능을 갖는 afm 캔틸레버
CN106503378B (zh) 一种基于横向加速度和竖向加速度的道路平竖线形力学性能评价方法
Thiesler et al. True 3D-AFM sensor for nanometrology
Tian et al. Structure design and experimental investigation of a multi-function stylus profiling system for characterization of engineering surfaces at micro/nano scales
Sumetpipat et al. Mathematical methods on atomic force microscope cantilever systems
Quan et al. High precision roughness sensor based on annular core optical fiber
Guo et al. Development of a large-range atomic force microscope measuring system for optical free form surface characterization
Liu et al. The Observation of interface effects presented on micrometer-scale sphere tips of fiber Bragg grating-based probes
Muralikrishnan et al. Micro-feature dimensional and form measurements with the NIST fiber probe on a CMM
Noell et al. Microfabrication of new sensors for scanning probe microscopy
Lin et al. Surface Measurement and Evaluation of Fiber Woven Composites
Cheneler et al. Fabrication and analysis of cylindrical resin AFM microcantilevers
Liu et al. Numerical Study on Tip Shape of Near-Field Optical Fiber Probe for Detecting Electric Field Intensity of Whispering Gallery Mode Resonance
ARTICL Design and realization of 3D printed fiber-tip microcantilever beam probes applied to hydrogen sensing
Chen et al. AFM probe with the U-shaped cross-sectional cantilever for measuring the ultra-low coefficient of friction of 10− 6
Frühauf et al. Silicon standards for assessment and calibration of stylus probes
Feng et al. A Novel Harmonic Atomic Force Microscopy With Tip-Sample Couplings
Chung Quantitative Measurement of Nano-scale Force using Atomic Force Microscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200910

Address after: 610031 Sichuan, Chengdu, Jinniu District, No. two North Ring Road, No. 1, No. 111

Applicant after: SOUTHWEST JIAOTONG University

Applicant after: TSINGHUA University

Address before: 610031 Sichuan, Chengdu, Jinniu District, No. two North Ring Road, No. 1, No. 111

Applicant before: SOUTHWEST JIAOTONG University

GR01 Patent grant
GR01 Patent grant