CN109388140B - 一种改进的用于地面车辆路径跟踪的纯追踪控制方法 - Google Patents

一种改进的用于地面车辆路径跟踪的纯追踪控制方法 Download PDF

Info

Publication number
CN109388140B
CN109388140B CN201811066889.8A CN201811066889A CN109388140B CN 109388140 B CN109388140 B CN 109388140B CN 201811066889 A CN201811066889 A CN 201811066889A CN 109388140 B CN109388140 B CN 109388140B
Authority
CN
China
Prior art keywords
vehicle
delta
course
small
circular arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811066889.8A
Other languages
English (en)
Other versions
CN109388140A (zh
Inventor
王爱臣
魏新华
卢林
沈建炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201811066889.8A priority Critical patent/CN109388140B/zh
Publication of CN109388140A publication Critical patent/CN109388140A/zh
Application granted granted Critical
Publication of CN109388140B publication Critical patent/CN109388140B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种改进的用于地面车辆路径跟踪的纯追踪控制方法,涉及地面车辆导航控制领域,该方法根据车辆导航***提供的导航参数,判断车辆航向偏差与理想直线校正航向角之间的关系,并结合横向偏差的正负选择采用小圆弧路径跟踪算法还是大圆弧路径跟踪算法,可根据车辆实时运动状态对车辆前进方向进行动态调整,尤其能够解决前轮期望转角较大时过度调节的情况,能够实现稳定性好、精度高的路径跟踪控制。

Description

一种改进的用于地面车辆路径跟踪的纯追踪控制方法
技术领域
本发明涉及地面车辆导航控制领域,尤其涉及一种改进的用于地面车辆路径跟踪的纯追踪控制方法。
背景技术
近年来随着自动控制技术、导航技术和传感探测技术的快速发展,地面车辆自动驾驶技术得到了长足进步。在商业和农业领域,车辆自动驾驶技术能够解放人力,提高通行或作业效率。地面车辆自动驾驶的关键在于两个方面,车辆位置的精确测量和控制。其中车辆位置的精确测量可通过现代导航技术完成,已可实现厘米级定位测量,而车辆位置的精确控制还存在一定的挑战。车辆位置精确控制的关键在于路径跟踪控制,目前已有的路径跟踪控制方法主要包括PID控制、模糊控制、最优控制和纯追踪控制。PID控制基于误差生成控制策略,不依赖具体数学模型,应用广泛,但控制参数整定困难,需要一定的经验和大量实验;模糊控制不依赖车辆模型,但需要专家的经验制定控制规则,跟踪误差大且难以快速修正;最优控制依赖精确的车辆运动学和动力学模型,针对不同车辆行驶的不同路况,车辆运动学和动力学模型鲁棒性和适应性较差;纯追踪方法是一种几何方法,控制参数少,算法设计模拟人的驾驶行为,具有预见性,但前视距离的影响较大,即使使用动态调整方法进行自适应选择,在前轮期望转角较大时,仍会出现调节过度导致路径跟踪误差震荡的出现。
公开号为CN105867377A的发明公开了一种农业机械自动导航控制方法,该方法考虑了车速和规划路径的弯度,并基于此实现前视距离的动态调整,然后将模糊控制与纯追踪算法相结合得到前轮期望转角,实现农业机械的路径跟踪控制。该方法没有考虑前轮期望转角较大会导致路径跟踪误差会出现震荡的情况,在期望转角较大时难以实现规划路径的稳定准确跟踪。为解决上述问题,陈宁等(参见陈宁等,一种纯追踪模型改进算法,轻工机械,2014,32(4):69-72.)在分析纯追踪模型算法误差原理的基础上,提出了一种改进的纯追踪算法,将路径跟踪分解为三步,并分别计算出了每步的前轮期望转角。该方法能够在一定程度上提高路径跟踪精度,但该方法在计算每步的前轮期望转角时通过简化模型和近似获得,所得参数较为粗略,无法根据实际行驶情况进行动态调整,而且所得参数也是针对特性情况进行的优化,缺乏通用性。
发明内容
为了克服上述技术方法的缺点,本发明的目的在于提供一种改进的用于地面车辆路径跟踪的纯追踪控制方法。该方法综合车辆横向偏差的正负和车辆航向偏差与理想直线校正航向角之间的关系选择合适的路径跟踪方法,实现稳定性好、精度高的路径跟踪控制。
为了达到上述目的,本发明所采用的技术方案如下:
一种改进的用于地面车辆路径跟踪的纯追踪控制方法,该方法根据车辆导航***提供的导航参数,判断航向偏差与理想直线校正航向角之间的关系,并结合横向偏差的正负,选择采用小圆弧路径跟踪算法还是大圆弧路径跟踪算法:以田块任意垂直的两条边界为x和y轴,以两边界交点为原点o建立田块平面坐标系xoy,车辆当前位置为C(xc,yc)、期望位置为C’(xc’,yc’)、第一预瞄点为P(xp,yp)、第二预瞄点为P’(xp’,yp’),C’P为规划路径(从C’指向P为规划路径正方向),当前位置C与期望位置C’的横坐标差值为横向偏差Δx,当前位置C相比于期望位置C’偏左时Δx为负值,车辆当前位置C相比于期望位置C’偏右时Δx为正值;线段CP为车辆轨迹的理想直线校正航向,正方向从C指向P,CP正方向与规划路径C’P正方向所成夹角为理想直线校正航向角,CP正方向相对于C’P正方向偏左时理想直线校正航向角为负值,偏右时理想直线校正航向角为正值;车辆实时航向为CE,正方向从C指向E,CE正方向与规划路径C’P正方向所成夹角为航向偏差Δθ,CE正方向相对于C’P正方向偏左时Δθ为负值,偏右时Δθ为正值;圆弧CP为弧线校正路径;当车辆航向偏差Δθ大于理想直线校正航向角,即CE在CP右侧,且横向偏差为正时,采用小圆弧路径跟踪算法;当车辆航向偏差Δθ大于理想直线校正航向角,即CE在CP右侧,且横向偏差为负时,采用大圆弧路径跟踪算法;当车辆航向偏差Δθ小于理想直线校正航向角,即CE在CP左侧,且横向偏差为负时,采用小圆弧路径跟踪算法;车辆航向偏差Δθ小于理想直线校正航向角,即CE在CP左侧,且横向偏差为正时,采用大圆弧路径跟踪算法;当车辆航向偏差Δθ等于理想直线校正航向角时,方向盘回正,按当前航向角行驶。
进一步的,所述的小圆弧路径跟踪算法通过以下步骤进行实现与修正:
(1)每个控制周期为1个外循环大周期,1个外循环大周期包含多个内循环小周期,内循环次数默认设置为4,并可根据实际需要进行调整;
(2)在新的外循环周期内得到第一组导航定位数据,确定第一预瞄点P点坐标,计算小圆弧所对应的圆心半径,并换算为前轮期望转角;
(3)按前轮期望转角控制车辆前轮转向,车辆开始沿CP圆弧航线行驶;
(4)在内循环小周期①内监测车辆航向偏差Δθ和横向偏差Δx,如果Δθ*Δx>0,则继续沿CP圆弧航线行驶,同时判断车辆位置在CP圆弧的内侧还是外侧,并根据判断结果对前轮转向进行小幅度调整校正车辆实际轨迹;如果Δθ*Δx≤0,则进入内循环小周期②;
(5)在内循环小周期②内,将预瞄点由第一预瞄点P点改为第二预瞄点P’点,并判断车辆实时航向CE与新的理想直线校正航向CP’的关系和横向偏差Δx的正负,如果CE在CP’左侧且Δx<0,或CE在CP’右侧且Δx>0,则继续沿CP圆弧航向行驶;如果CE在CP’左侧且Δx>0,或CE在CP’右侧且Δx<0,则进入内循环小周期③;
(6)在内循环小周期③内,控制前轮回正,车辆按照新的理想直线航向CP’行驶,并根据车辆实时位置与CP’的相对位置关系对其实际轨迹进行小幅度调整;
(7)重复以上步骤(4)~(6),直至外循环大周期结束。
进一步的,所述的大圆弧路径跟踪算法通过以下步骤进行实现:
(1)每个控制周期为1个外循环,1个外循环大周期包含多个内循环小周期,内循环次数默认设置为4,并可根据实际需要进行调整;
(2)在新的外循环大周期内得到第一组导航定位数据,确定第一预瞄点P,计算大圆弧所对应的圆心半径,并换算为前轮期望转角;
(3)按前轮期望转角控制车辆前轮转向,车辆开始沿CP圆弧航线行驶;
(4)在内循环小周期①内监测车辆航向偏差Δθ和横向偏差Δx,如果Δθ*Δx<0,则继续沿CP圆弧航线行驶,同时判断车辆位置在CP圆弧的内侧还是外侧,并根据判断结果对前轮转向进行小幅度调整校正车辆实际轨迹;如果Δθ*Δx≥0,则进入内循环小周期②;
(5)在内循环小周期②内,控制车辆前轮回正,直接按0°航向角继续行驶,并根据车辆实时位置对其实际轨迹进行小幅调整;
(6)重复以上步骤(4)~(5),直至外循环大周期结束。
所述的预瞄点确定方法为:前视距离可以为预设值或通过考虑车辆速度和规划路径弯度的动态计算方法获得,在规划路径上搜索离车辆当前位置最近的点,以此为起点向前截取前视距离得到第一预瞄点P,向前截取2倍前视距离得到第二预瞄点P’。
本发明的有益效果是:
本发明对纯追踪算法进行了改进,综合考虑车辆横向偏差的正负和车辆航向偏差与理想直线校正航向角之间的关系选择合适的路径跟踪方法,可根据车辆实时运动状态对车辆前进方向进行动态调整,尤其能够解决前轮期望转角较大时过度调节的情况,能够实现稳定性好、精度高的路径跟踪控制。
附图说明
图1A是当Δx>0且CE在CP右侧时小圆弧路径跟踪算法原理图;
图1B是当Δx<0且CE在CP左侧时小圆弧路径跟踪算法原理图;
图2A是当Δx>0且CE在CP左侧时大圆弧路径跟踪算法原理图;
图2B是当Δx<0且CE在CP右侧时大圆弧路径跟踪算法原理图;
图3是小圆弧路径跟踪算法流程图;
图4是大圆弧路径跟踪算法流程图。
具体实施方式
为对本发明有进一步的了解,下面结合说明书附图和实施例对本发明作进一步说明,但本发明并不局限于以下实施例。
结合附图1A、1B、图2A、2B所示,以田块任意垂直的两条边界为x和y轴,以两边界交点为原点o建立田块平面坐标系xoy,车辆当前位置为C(xc,yc)、期望位置为C’(xc’,yc’)、第一预瞄点为P(xp,yp)、第二预瞄点为P’(xp’,yp’),C’P为规划路径(从C’指向P为规划路径正方向),当前位置C与期望位置C’的横坐标差值为横向偏差Δx,当前位置C相比于期望位置C’偏左时Δx为负值,车辆当前位置C相比于期望位置C’偏右时Δx为正值;线段CP为车辆轨迹的理想直线校正航向(从C指向P为理想直线校正航向为正方向),CP正方向与规划路径C’P正方向所成夹角为理想直线校正航向角,CP正方向相对于C’P正方向偏左时理想直线校正航向角为负值,偏右时理想直线校正航向角为正值;车辆实时航向为CE(从C指向E为车辆实时航向正方向),CE正方向与规划路径C’P正方向所成夹角为航向偏差Δθ,CE正方向相对于C’P正方向偏左时Δθ为负值,偏右时Δθ为正值;圆弧CP为弧线校正路径。
一种改进的用于地面车辆路径跟踪的纯追踪控制方法,其特征在于,该方法根据车辆导航***提供的导航参数,判断车辆航向偏差与理想直线校正航向角之间的关系,并结合横向偏差的正负,选择采用小圆弧路径跟踪算法还是大圆弧路径跟踪算法:当CE在CP右侧且Δx>0时,采用小圆弧路径跟踪算法;当CE在CP右侧且Δx<0时,采用大圆弧路径跟踪算法;当CE在CP左侧且Δx<0时,采用小圆弧路径跟踪算法;当CE在CP左侧且Δx>0时,采用大圆弧路径跟踪算法;当航向偏差等于理想直线校正航向角时,方向盘回正,按当前航向角行驶。
结合附图1A、1B、图3所示,虽然车辆沿圆弧CP行驶可以到达第一预瞄点P点,但在P点附近的航向偏差太大,通过P点后必然出现过调节导致横向偏差增大,所以必须在P点之前航向偏差还不太大时就提前开始P点之后的第二预瞄点P’,并逐渐偏离圆弧CP而向第二预瞄点P’行驶。因此,小圆弧路径跟踪算法通过以下步骤进行实现与修正:
(1)每个控制周期为1个外循环大周期,1个外循环大周期包含多个内循环小周期,内循环次数默认设置为4,并可根据实际需要进行调整;
(2)在新的外循环周期内得到第一组导航定位数据,确定第一预瞄点P点坐标,计算小圆弧所对应的圆心半径,并换算为前轮期望转角;
(3)按前轮期望转角控制车辆前轮转向,车辆开始沿CP圆弧航线行驶;
(4)在内循环小周期①内监测车辆航向偏差Δθ和横向偏差Δx,如果Δθ*Δx>0,则继续沿CP圆弧航线行驶,同时判断车辆位置在CP圆弧的内侧还是外侧,并根据判断结果对前轮转向进行小幅度调整校正车辆实际轨迹;如果Δθ*Δx≤0,则进入内循环小周期②;
(5)在内循环小周期②内,将预瞄点由P点改为下一预瞄点P’,并判断车辆实时航向CE与新的理想直线校正航向CP’的关系和横向偏差Δx的正负,如果CE在CP’左侧且Δx<0,或CE在CP’右侧且Δx>0,则继续沿CP圆弧航向行驶;如果CE在CP’左侧且Δx>0,或CE在CP’右侧且Δx<0,则进入内循环小周期③;
(6)在内循环小周期③内,控制前轮回正,车辆按照新的理想直线航向CP’行驶,并根据车辆实时位置与CP’的相对位置关系对其实际轨迹进行小幅度调整;
(7)重复以上步骤(4)~(6),直至外循环大周期结束。
结合图2A、2B、图4所示,由于大圆弧轨迹在第一预瞄点P点处与规划路径偏离不大,无需进行再次修正,大圆弧路径跟踪算法通过以下步骤进行实现:
(1)每个控制周期为1个外循环,1个外循环大周期包含多个内循环小周期,内循环次数默认设置为4,并可根据实际需要进行调整;
(2)在新的外循环大周期内得到第一组导航定位数据,确定第一预瞄点P点坐标,计算大圆弧所对应的圆心半径,并换算为前轮期望转角;
(3)按前轮期望转角控制车辆前轮转向,车辆开始沿CP圆弧航线行驶;
(4)在内循环小周期①内监测车辆航向偏差Δθ和横向偏差Δx,如果Δθ*Δx<0,则继续沿CP圆弧航线行驶,同时判断车辆位置在CP圆弧的内侧还是外侧,并根据判断结果对前轮转向进行小幅度调整校正车辆实际轨迹;如果Δθ*Δx≥0,则进入内循环小周期②;
(5)在内循环小周期②内,控制车辆前轮回正,直接按0°航向角继续行驶,并根据车辆实时位置对其实际轨迹进行小幅调整;
(6)重复以上步骤(4)~(5),直至外循环大周期结束。
所述的预瞄点确定方法为:前视距离可以为预设值或通过考虑车辆速度和规划路径弯度的动态计算方法获得,在规划路径上搜索离车辆当前位置最近的点,以此为起点向前截取前视距离得到第一预瞄点P,向前截取2倍前视距离得到第二预瞄点P’;前视距离预设值通过公式L=T*V计算,其中L为前视距离,T为控制外循环大周期时间,V为车辆行驶速度;前视距离动态计算方法为L=Lp+k1V+k2Ω,其中Lp为前视距离的基数,k1为速度系数,数值为正,k2为弯度系数,数值为负,Ω为车辆规划路径弯度。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (5)

1.一种改进的用于地面车辆路径跟踪的纯追踪控制方法,其特征在于,该方法根据车辆导航***提供的导航参数,判断车辆实时航向角与理想直线校正航向角之间的关系,并结合横向偏差的正负,选择采用小圆弧路径跟踪算法还是大圆弧路径跟踪算法:以田块任意垂直的两条边界为x和y轴,以两边界交点为原点o建立田块平面坐标系xoy,车辆当前位置为C(xc,yc)、期望位置为C’(xc’,yc’)、第一预瞄点为P(xp,yp)、第二预瞄点为P’(xp’,yp’),C’P为规划路径,从C’指向P为规划路径正方向,当前位置C与期望位置C’的横坐标差值为横向偏差Δx,当前位置C相比于期望位置C’偏左时Δx为负值,车辆当前位置C相比于期望位置C’偏右时Δx为正值;线段CP为车辆轨迹的理想直线校正航向,正方向从C指向P,CP正方向与规划路径C’P正方向所成夹角为理想直线校正航向角,CP正方向相对于C’P正方向偏左时理想直线校正航向角为负值,偏右时理想直线校正航向角为正值;车辆实时航向为CE,正方向从C指向E,CE正方向与规划路径C’P正方向所成夹角为航向偏差Δθ,CE正方向相对于C’P正方向偏左时Δθ为负值,偏右时Δθ为正值;圆弧CP为弧线校正路径;在田块平面坐标系xoy中,车辆当前位置为C(xc,yc)、期望位置为C’(xc’,yc’)、预瞄点位置为P’(xp,yp)、横向偏差为Δx、航向偏差为Δθ、线段CP为车辆轨迹的理想直线校正航向、圆弧CP为弧线校正航向、线段CE为车辆实时航向;
当车辆航向偏差Δθ大于理想直线校正航向角,即CE在CP右侧,且横向偏差Δx为正值时,采用小圆弧路径跟踪算法;
当车辆航向偏差Δθ大于理想直线校正航向角,即CE在CP右侧,且横向偏差Δx为负值时,采用大圆弧路径跟踪算法;
当车辆航向偏差Δθ小于理想直线校正航向角,即CE在CP左侧,且横向偏差Δx为负值时,采用小圆弧路径跟踪算法;
当车辆航向偏差Δθ小于理想直线校正航向角,即CE在CP左侧,且横向偏差Δx为正值时,采用大圆弧路径跟踪算法;
当车辆航向偏差Δθ等于理想直线校正航向角时,方向盘回正,按当前航向角行驶。
2.根据权利要求1所述的改进的用于地面车辆路径跟踪的纯追踪控制方法,其特征在于,所述的小圆弧路径跟踪算法通过以下步骤进行实现与修正:
步骤一)每个控制周期为1个外循环大周期,1个外循环大周期包含多个内循环小周期,内循环次数默认设置为4,并可根据实际需要进行调整;
步骤二)在新的外循环周期内得到第一组导航定位数据,确定第一预瞄点P点坐标,计算小圆弧所对应的圆心半径,并换算为前轮期望转角;
步骤三)按前轮期望转角控制车辆前轮转向,车辆开始沿CP圆弧航线行驶;
步骤四)在内循环小周期①内监测车辆航向偏差Δθ和横向偏差Δx,如果Δθ*Δx>0,则继续沿CP圆弧航线行驶,同时判断车辆位置在CP圆弧的内侧还是外侧,并根据判断结果对前轮转向进行小幅度调整校正车辆实际轨迹;如果Δθ*Δx≤0,则进入内循环小周期②;
步骤五)在内循环小周期②内,将预瞄点由第一预瞄点P点改为第二预瞄点P’点,并判断车辆实时航向CE与新的理想直线校正航向CP’的关系和横向偏差Δx的正负,如果CE在CP’左侧且Δx<0,或CE在CP’右侧且Δx>0,则继续沿CP圆弧航向行驶;如果CE在CP’左侧且Δx>0,或CE在CP’右侧且Δx<0,则进入内循环小周期③;
步骤六)在内循环小周期③内,控制前轮回正,车辆按照新的理想直线航向CP’行驶,并根据车辆实时位置与CP’的相对位置关系对其实际轨迹进行小幅度调整;
步骤七)重复以上步骤四)~步骤六),直至外循环大周期结束。
3.根据权利要求1所述的改进的用于地面车辆路径跟踪的纯追踪控制方法,其特征在于,所述的大圆弧路径跟踪算法通过以下步骤进行实现:
步骤一)每个控制周期为1个外循环,1个外循环大周期包含多个内循环小周期,内循环次数默认设置为4,并可根据实际需要进行调整;
步骤二)在新的外循环大周期内得到第一组导航定位数据,确定第一预瞄点P,计算大圆弧所对应的圆心半径,并换算为前轮期望转角;
步骤三)按前轮期望转角控制车辆前轮转向,车辆开始沿CP圆弧航线行驶;
步骤四)在内循环小周期①内监测车辆航向偏差Δθ和横向偏差Δx,如果Δθ*Δx<0,则继续沿CP圆弧航线行驶,同时判断车辆位置在CP圆弧的内侧还是外侧,并根据判断结果对前轮转向进行小幅度调整校正车辆实际轨迹;如果Δθ*Δx≥0,则进入内循环小周期②;
步骤五)在内循环小周期②内,控制车辆前轮回正,直接按0°航向角继续行驶,并根据车辆实时位置对其实际轨迹进行小幅调整;
步骤六)重复以上步骤四)~步骤五),直至外循环大周期结束。
4.根据权利要求2-3任一项所述的改进的用于地面车辆路径跟踪的纯追踪控制方法,其特征在于,预瞄点确定方法为:先确定前视距离,后在规划路径上搜索离车辆当前位置最近的点,以此最近的点为起点向前截取前视距离得到第一预瞄点P,向前截取两倍前视距离得到第二预瞄点P’。
5.根据权利要求4所述的改进的用于地面车辆路径跟踪的纯追踪控制方法,其特征在于,前视距离可以为预设值,也可以通过考虑车辆速度和规划路径弯度的动态计算方法获得。
CN201811066889.8A 2018-09-13 2018-09-13 一种改进的用于地面车辆路径跟踪的纯追踪控制方法 Active CN109388140B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811066889.8A CN109388140B (zh) 2018-09-13 2018-09-13 一种改进的用于地面车辆路径跟踪的纯追踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811066889.8A CN109388140B (zh) 2018-09-13 2018-09-13 一种改进的用于地面车辆路径跟踪的纯追踪控制方法

Publications (2)

Publication Number Publication Date
CN109388140A CN109388140A (zh) 2019-02-26
CN109388140B true CN109388140B (zh) 2021-08-03

Family

ID=65418917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811066889.8A Active CN109388140B (zh) 2018-09-13 2018-09-13 一种改进的用于地面车辆路径跟踪的纯追踪控制方法

Country Status (1)

Country Link
CN (1) CN109388140B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955245B (zh) * 2019-12-09 2021-06-08 深圳市银星智能科技股份有限公司 路径追踪方法、装置、移动机器人及非暂态计算机可读存储介质
CN113460033B (zh) * 2020-03-31 2023-04-07 华为技术有限公司 一种自动泊车方法以及装置
CN112540617B (zh) * 2020-12-16 2022-10-18 天奇自动化工程股份有限公司 移动平台的导航纠偏方法
CN112678726B (zh) * 2020-12-18 2022-07-29 江苏智库智能科技有限公司 基于叉车式agv运动学模型的取货定位方法及***
CN112527000B (zh) * 2020-12-23 2021-10-26 中南大学 矿井下智能驾驶的局部路径规划方法及***
CN113252040B (zh) * 2021-05-08 2022-10-18 云南财经大学 一种改进的agv小车二维码弧线导航方法
CN113467460B (zh) * 2021-07-09 2024-03-12 江苏大学 一种基于双圆形前视距离的农业机械路径跟踪方法及***
CN113741463B (zh) * 2021-09-07 2023-11-10 北京理工大学 一种无人地面机动平台的定点定向停车控制方法及***
CN114093164B (zh) * 2021-11-15 2022-08-19 上海市城乡建设和交通发展研究院 基于车辆轨迹的动态交通流识别校正方法、装置及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993156A (en) * 1975-02-19 1976-11-23 Robert Bosch G.M.B.H. Guidance system for guiding trackless vehicles along a path defined by an A-C energized conductor
JP2008230484A (ja) * 2007-03-22 2008-10-02 Yokogawa Denshikiki Co Ltd 自動操舵装置および自動操舵方法
CN105892459A (zh) * 2016-04-01 2016-08-24 清华大学 一种非时间参考的差速驱动机器人定点跟踪控制方法
CN106950955A (zh) * 2017-03-17 2017-07-14 武汉理工大学 基于改进los引导算法的船舶航迹控制方法
CN107643763A (zh) * 2017-09-20 2018-01-30 中国航空工业集团公司沈阳飞机设计研究所 一种飞机无动力返场能量轨迹综合控制方法
CN107656527A (zh) * 2017-10-13 2018-02-02 南京农业大学 农用车辆路径跟踪的增益切换非线性控制方法
CN107943060A (zh) * 2017-12-29 2018-04-20 上海司南卫星导航技术股份有限公司 一种自动驾驶仪、沿着跟踪直线引导车辆的方法以及计算机可读介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993156A (en) * 1975-02-19 1976-11-23 Robert Bosch G.M.B.H. Guidance system for guiding trackless vehicles along a path defined by an A-C energized conductor
JP2008230484A (ja) * 2007-03-22 2008-10-02 Yokogawa Denshikiki Co Ltd 自動操舵装置および自動操舵方法
CN105892459A (zh) * 2016-04-01 2016-08-24 清华大学 一种非时间参考的差速驱动机器人定点跟踪控制方法
CN106950955A (zh) * 2017-03-17 2017-07-14 武汉理工大学 基于改进los引导算法的船舶航迹控制方法
CN107643763A (zh) * 2017-09-20 2018-01-30 中国航空工业集团公司沈阳飞机设计研究所 一种飞机无动力返场能量轨迹综合控制方法
CN107656527A (zh) * 2017-10-13 2018-02-02 南京农业大学 农用车辆路径跟踪的增益切换非线性控制方法
CN107943060A (zh) * 2017-12-29 2018-04-20 上海司南卫星导航技术股份有限公司 一种自动驾驶仪、沿着跟踪直线引导车辆的方法以及计算机可读介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
交通信息影响下的动态路径选择模型研究;石小法等;《公路交通科技》;20000831;第17卷(第4期);第35-37页 *
吊舱推进的小型水面无人船航迹控制***设计;燕聃聃等;《船海工程》;20170831;第46卷(第4期);第210-214页 *
拖拉机路径跟踪的变论域模糊控制;陈志刚等;《江苏农业科学》;20180716;第46卷(第13期);第216-219页 *

Also Published As

Publication number Publication date
CN109388140A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
CN109388140B (zh) 一种改进的用于地面车辆路径跟踪的纯追踪控制方法
CN108725585B (zh) 车辆自主泊车的轨迹跟踪控制方法及装置
CN113204236B (zh) 一种智能体路径跟踪控制方法
CN104571112B (zh) 基于转弯曲率估计的无人车横向控制方法
US20160107682A1 (en) System and method for vehicle steering control
CN110109451B (zh) 一种考虑路径曲率的新型几何学路径跟踪算法
CN107544520A (zh) 一种用于四轮载具自动驾驶的控制方法
KR101196374B1 (ko) 이동 로봇의 경로 생성 시스템
US11334083B2 (en) Route tracking method for mobile vehicle
CN109947123A (zh) 一种基于视线导引律的无人机路径跟踪与自主避障方法
CN108732921B (zh) 一种自动驾驶汽车横向可拓预瞄切换控制方法
CN107037818A (zh) 一种无人驾驶汽车的路径跟踪方法
CN110006419A (zh) 一种基于预瞄的车辆轨迹跟踪点确定方法
CN109656250A (zh) 一种激光叉车的路径跟踪方法
CN111487976B (zh) 一种倒车轨迹跟踪方法
CN113815646B (zh) 车辆的智能驾驶方法、车辆和可读存储介质
CN111158379B (zh) 一种方向盘零偏自学习的无人车轨迹跟踪方法
CN106647770A (zh) 用于农机无人驾驶的田间掉头路径规划及其控制方法
CN110789530B (zh) 一种四轮独立转向-独立驱动车辆轨迹跟踪方法和***
CN110928290A (zh) 五次曲线路径规划方法及车道中心线维护方法
CN112109732A (zh) 一种智能驾驶自适应曲线预瞄方法
CN113406960B (zh) 一种农用无人车辆地头转向的实时路径规划与控制方法
CN113844535B (zh) 基于方向盘转矩的主动转向控制方法
Wang et al. Path tracking control for autonomous harvesting robots based on improved double arc path planning algorithm
CN113467475B (zh) 一种麦克纳姆轮全向移动机器人轨迹跟踪滑模控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant