CN109338470B - 一种锰铜矿结构CuMnO2晶体材料的形貌调控方法 - Google Patents

一种锰铜矿结构CuMnO2晶体材料的形貌调控方法 Download PDF

Info

Publication number
CN109338470B
CN109338470B CN201810280842.5A CN201810280842A CN109338470B CN 109338470 B CN109338470 B CN 109338470B CN 201810280842 A CN201810280842 A CN 201810280842A CN 109338470 B CN109338470 B CN 109338470B
Authority
CN
China
Prior art keywords
cumno
copper
crystal material
manganese
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810280842.5A
Other languages
English (en)
Other versions
CN109338470A (zh
Inventor
李广社
付思贤
李莉萍
景元成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810280842.5A priority Critical patent/CN109338470B/zh
Publication of CN109338470A publication Critical patent/CN109338470A/zh
Application granted granted Critical
Publication of CN109338470B publication Critical patent/CN109338470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种锰铜矿结构CuMnO2晶体材料的形貌调控方法,在碱性条件下,将金属前驱体和表面活性剂加入到溶剂中,搅拌均匀后置于反应釜中进行不同温度下的溶剂热反应,一段时间后得到不同形貌的CuMnO2材料,形貌包括三角片、纳米线、六棱柱和八面体。这些CuMnO2晶体材料具有良好的电化学储能特性,其中纳米线形貌的CuMnO2电化学活性位点最为丰富,展现出最优异稳定的储能性能,在准固态超级电容器领域具有广阔的应用前景;本发明具有操作简单,反应条件易于控制,可实现规模化生产等优点。

Description

一种锰铜矿结构CuMnO2晶体材料的形貌调控方法
技术领域
本发明涉及超级电容器材料合成领域,尤其涉及一种锰铜矿结构CuMnO2晶体材料的形貌调控方法。
背景技术
随着混合动力车和可再生能源的快速发展,发展先进的高容量储能器件成为了世界关注的焦点。超级电容器作为一种可快速充放电的储能器件,与电池相比拥有超高的功率密度和循环稳定性,被认为是最有潜力的能量转化与储存器件。但是仍受限于低能量密度,因此赝电容材料被广泛研究。目前,RuO2赝电容材料由于高电导率和化学稳定性而被商业广泛使用。但超高的成本又限制了它的普及,因此,发展既拥有高能量密度又价格低廉的过渡金属氧化物赝电容材料极为迫切。CuMnO2作为一种典型双过渡金属氧化物,在一些重要领域已开展研究。
目前报道的传统高温固相法合成的CuMnO2材料尺寸较大且形貌不均一,十分不利于电解液传输,使得与材料的晶体形貌、尺寸相关的电化学性质的纳米效应未能得到充分体现。所以急需开展纳米级ABO2结构CuMnO2材料的形貌调控工艺研究,全面实现可控化电化学储能,进一步应用于各种超级电容器器件中。
发明内容
本发明的目的就在于为了解决上述问题而提供一种锰铜矿结构CuMnO2晶体材料的形貌调控方法。
本发明通过以下技术方案来实现上述目的:
根据本发明的一个方面,提供了不同种形貌的CuMnO2晶体材料(三角片、纳米线、六棱柱和八面体),这些材料用于超级电容器中具有良好的电化学储能特性。
所述CuMnO2晶体材料,形貌包括三角片、纳米线、六棱柱和八面体。
所述三角片状CuMnO2晶体材料等边长为250nm~300nm;纳米线状CuMnO2晶体材料横截面上相距最远两点的距离为5nm~10nm;六棱柱状CuMnO2晶体材料粒径为5μm~10μm;八面体状CuMnO2晶体材料粒径为30nm~100nm。
本发明的另一个方面,提供了所述的CuMnO2晶体材料的形貌调控方法,至少包括以下步骤:
将含有阳离子表面活性剂和铜、锰的前驱体在碱性条件下加入到溶剂中,搅拌均匀后置于反应釜中,分别在130~150℃、150~170℃、170~190℃、 190~210℃温度区间得到三角片状、纳米线状、六棱柱状、八面体状CuMnO2晶体材料。
所述铜、锰的前驱体的摩尔比为1:1;且浓度均为0.1mol/L。优选地,调
控所述CuMnO2晶体材料的方法,至少包括以下步骤:在溶剂中溶解阳离子表面活性剂,然后依次加入碱液、锰前驱体、铜前驱体;搅拌均匀后转移入反应釜,进行130~210℃温度下的溶剂热反应。
优选地,所述铜前驱体选自乙酸铜、硝酸铜、氯化铜、硫酸铜中的至少一种;锰前驱体选自乙酸锰、硝酸锰、氯化锰、硫酸锰中的至少一种。
优选地,所述阳离子表面活性剂选自十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基三甲基溴化铵、十二烷基三甲基氯化铵、十二烷基苯磺酸钠中的至少一种。
优选地,所述溶剂为体积比为1:1的乙醇和去离子水的混合溶液。
优选地,所述溶剂热反应温度控制在130~150℃之间,反应时间为24h,得到三角片状CuMnO2晶体材料。
优选地,所述溶剂热反应温度控制在150~170℃之间,反应时间为24h,得到纳米线状CuMnO2晶体材料。
优选地,所述溶剂热反应温度控制在170~190℃之间,反应时间为24h,得到六棱柱状CuMnO2晶体材料。
优选地,所述溶剂热反应温度控制在190~210℃之间,反应时间为24h,得到八面体状CuMnO2晶体材料。
本发明的又一方面,提供了一种超级电容器电极材料,所述电极材料包含所述的不同形貌CuMnO2晶体材料或/和所述形貌调控方法得到的CuMnO2晶体材料。即,所述CuMnO2晶体材料作为超级电容器电极材料的应用。
优选地,所述电极材料用于三电极下的赝电容储能。从而促进高容量储能器件的发展。
本发明的有益效果在于:
本发明是一种锰铜矿结构CuMnO2晶体材料的形貌调控方法,与现有技术相比,本发明以Cu(NO3)2为铜前驱体,Mn(CH3COO)2为锰前驱体,阳离子表面活性剂做修饰;采用溶剂热反应的方法,通过调控反应温度控制合成了不同形貌的 CuMnO2材料,形貌包括三角片、纳米线、六棱柱和八面体。本发明所提供的不同形貌CuMnO2晶体材料,其作为电极材料用于超级电容器具有高良好的电化学储能特性,其中纳米线状CuMnO2电化学活性位点最为丰富,展现出最优异稳定的储能性能,优于商业用RuO2;该方法操作简单,反应条件易于控制,可实现规模化生产且对环境友好。该方法所用原料来源广泛且价格低廉,相较于商业用RuO2电极材料成本很低。
附图说明
图1为实施例1、2、3、4所制备产物的X射线衍射谱图。
图2为实施例1中样品1#的TEM图。
图3为实施例2中样品2#的TEM图。
图4为实施例3中样品3#的TEM图。
图5为实施例4中样品4#的TEM图。
图6为实施例1、2、3、4所制备产物在碱性条件下,超级电容器电极的线性扫描伏安曲线图。
图7为实施例1、2、3、4所制备产物在碱性条件下,超级电容器电极的恒电流充放电曲线图。
具体实施方式
下面结合附图对本发明作进一步说明:
本发明利用日本Rigaku公司的miniflex600粉末X射线衍射仪进行结构分析;荷兰FEI公司的Tecnai G2S-Twin F20透射电子显微镜进行TEM形貌分析。
实施例1制备三角片状CuMnO2晶体材料
将0.15g的十六烷基三甲基溴化铵溶于25ML水和25ML乙醇的混合溶液中,然后加入5ML NaOH溶液(浓度2mol/L),随后依次加入2.5ML Mn(CH3COO)2·4H2O溶液(浓度0.1mol/L)和2.5ML Cu(NO3)2·3H2O溶液(浓度0.1 mol/L)。充分搅拌2h至混合均匀,转移至100ML反应釜,在130~150℃的条件下反应24小时。反应结束后待其自然冷却,取出样品分别用水和乙醇洗涤,重复此步骤三次,置于70℃烘箱干燥6h,得到三角片状CuMnO2晶体材料,记为1#。
实施例2制备纳米线状CuMnO2晶体材料
将0.15g的十六烷基三甲基溴化铵溶于25ML水和25ML乙醇的混合溶液中,然后加入5ML NaOH溶液(浓度2mol/L),随后依次加入2.5ML Mn(CH3COO)2·4H2O溶液(浓度0.1mol/L)和2.5ML Cu(NO3)2·3H2O溶液(浓度0.1 mol/L)。充分搅拌2h至混合均匀,转移至100ML反应釜,在150~170℃的条件下反应24小时。反应结束后待其自然冷却,取出样品分别用水和乙醇洗涤,重复此步骤三次,置于70℃烘箱干燥6h,得到纳米线状CuMnO2晶体材料,记为2#。
实施例3制备六棱柱状CuMnO2晶体材料
将0.15g的十六烷基三甲基溴化铵溶于25ML水和25ML乙醇的混合溶液中,然后加入5ML NaOH溶液(浓度2mol/L),随后依次加入2.5ML Mn(CH3COO)2·4H2O溶液(浓度0.1mol/L)和2.5ML Cu(NO3)2·3H2O溶液(浓度0.1 mol/L)。充分搅拌2h至混合均匀,转移至100ML反应釜,在170~190℃的条件下反应24小时。反应结束后待其自然冷却,取出样品分别用水和乙醇洗涤,重复此步骤三次,置于70℃烘箱干燥6h,得到六棱柱状CuMnO2晶体材料,记为3#。
实施例4制备八面体状CuMnO2晶体材料
将0.15g的十六烷基三甲基溴化铵溶于25ML水和25ML乙醇的混合溶液中,然后加入5ML NaOH溶液(浓度2mol/L),随后依次加入2.5ML Mn(CH3COO)2·4H2O溶液(浓度0.1mol/L)和2.5ML Cu(NO3)2·3H2O溶液(浓度0.1 mol/L)。充分搅拌2h至混合均匀,转移至100ML反应釜,在190~210℃的条件下反应24小时。反应结束后待其自然冷却,取出样品分别用水和乙醇洗涤,重复此步骤三次,置于70℃烘箱干燥6h,得到八面体状CuMnO2晶体材料,记为4#。
实施例5样品的结构、形貌表征
采用粉末X射线对样品1#~样品4#进行结构分析如图1所示,结果表明,所合成的样品均为锰铜矿结构的CuMnO2。通过透射电子显微镜对样品1#~样品 4#进行形貌分析,分别如图2至图5所示,样品1#为三角片状,样品2#为纳米线状,样品3#为六棱柱状,样品4#为八面体状。
实施例6电化学储能测试
采用三电极***测试材料的电化学储能特性,选取6mol/L KOH溶液作为电解液。测试电极是由CuMnO2晶体材料、乙炔黑、聚四氟乙烯按照8:1:1的比例配制研磨,并均匀涂1cm2于镍网上,压片烘干后得到的。Pt作为对电极,饱和甘汞电极作参比。电化学工作站选择上海晨华Chi760e。工作模式选择线性扫描伏安法;电势范围选择0~0.4V(vs SCE)。
将样片1#~样品4#按照上述电化学测试条件得到的线性扫描伏安曲线如图6所示,恒电流充放电曲线如图7所示。由图7计算出在2A/g电流密度下,三角片状样品1#的比电容为122F/g;纳米线状样品的比电容为691F/g;六棱柱状样品的比电容为177F/g;八面体状样品的比电容为127F/g。
以上显示和描述了本发明的基本原理和主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (3)

1.一种锰铜矿结构CuMnO2晶体材料的形貌调控方法,其特征在于:通过控制不同温度下的溶剂热反应调控晶体形貌;具体为:在碱性条件下,控制加料顺序和速率先将阳离子表面活性剂和0.1mol/L铜、锰的前驱体加入到乙醇和去离子水体积比为1:1的混合溶剂中,搅拌均匀后置于反应釜中,在150~170℃温度下进行24h溶剂热反应,将产物经洗涤离心烘干后,即得到纳米线形貌的CuMnO2材料;所述阳离子表面活性剂为十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十二烷基三甲基溴化铵、十二烷基三甲基氯化铵、十二烷基苯磺酸钠中的一种或多种组合。
2.根据权利要求1所述的锰铜矿结构CuMnO2晶体材料的形貌调控方法,其特征在于,所述铜前驱体选自乙酸铜、硝酸铜、氯化铜、硫酸铜中的一种或多种组合;锰前驱体选自乙酸锰、硝酸锰、氯化锰、硫酸锰中的一种或多种组合;摩尔比为1:1,且浓度均为0.1mol/L。
3.根据权利要求1所述的锰铜矿结构CuMnO2晶体材料的形貌调控方法,其特征在于,所述溶剂为乙醇和去离子水的混合溶液,体积比为1:1。
CN201810280842.5A 2018-04-02 2018-04-02 一种锰铜矿结构CuMnO2晶体材料的形貌调控方法 Active CN109338470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810280842.5A CN109338470B (zh) 2018-04-02 2018-04-02 一种锰铜矿结构CuMnO2晶体材料的形貌调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810280842.5A CN109338470B (zh) 2018-04-02 2018-04-02 一种锰铜矿结构CuMnO2晶体材料的形貌调控方法

Publications (2)

Publication Number Publication Date
CN109338470A CN109338470A (zh) 2019-02-15
CN109338470B true CN109338470B (zh) 2021-04-27

Family

ID=65291341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810280842.5A Active CN109338470B (zh) 2018-04-02 2018-04-02 一种锰铜矿结构CuMnO2晶体材料的形貌调控方法

Country Status (1)

Country Link
CN (1) CN109338470B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683583B (zh) * 2019-10-23 2020-06-05 山东大学 一种氧化锰铜超级电容器电极材料的制备方法
CN113769757B (zh) * 2021-09-09 2023-06-16 武汉理工大学 原位光致热制备尖晶石结构Cu1.5Mn1.5O4催化剂的方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles;Lu Wang et al.;《Journal of Power Sources》;20170420;第355卷;第53-61页 *
Low temperature hydrothermal synthesis;Dehua Xiong et al.;《New J. Chem.》;20160520;第40卷;第6498-6504页 *
水热法制备铜铁矿型氧化物材料;周曙 et al.;《化学进展》;20100331;第22卷(第2/3期);第352-357页 *

Also Published As

Publication number Publication date
CN109338470A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
Li et al. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials
Zhao et al. Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications
Park et al. Synthesis and structural characterization of layered Li [Ni1/3Co1/3Mn1/3] O2 cathode materials by ultrasonic spray pyrolysis method
CN111628155B (zh) 一种锂离子/钠离子电池的负极材料钼锡双金属硫化物及其制备方法
Yao et al. Nanostructured transition metal vanadates as electrodes for pseudo-supercapacitors: a review
Hu et al. Facile and environmentally friendly synthesis of ultrathin nickel hydroxide nanosheets with excellent supercapacitor performances
Wang et al. Facile fabrication of ethylene glycol intercalated cobalt-nickel layered double hydroxide nanosheets supported on nickel foam as flexible binder-free electrodes for advanced electrochemical energy storage
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
Yang et al. Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach
Chen et al. Controlled synthesis of spherical hierarchical LiNi1− x− yCoxAlyO2 (0< x, y< 0.2) via a novel cation exchange process as cathode materials for High-Performance Lithium Batteries
Barkhordari et al. Facile synthesis of ZnMn 2 O 4 nanosheets via cathodic electrodeposition: characterization and supercapacitor behavior studies
CN105198007A (zh) 一种介孔四氧化三钴纳米片的制备及剥离方法
Zhang et al. In-situ grown hierarchical ZnCo2O4 nanosheets on nickel foam as binder-free anode for lithium ion batteries
Cui et al. Preparation of a peony-liked 3-D hydrotalcite and its electrochemical performance as a zinc negative electrode
CN109338470B (zh) 一种锰铜矿结构CuMnO2晶体材料的形貌调控方法
Ren et al. Facile synthesis of hierarchical porous ZnMn2O4 rugby-balls on Ni foam for lithium-ion batteries with enhanced electrochemical properties
CN112830523A (zh) 用于超级电容器的钼掺杂四氧化三钴及其制备方法
Mei et al. Enabling the fabrication of advanced NiCo/Bi alkaline battery via MOF-hydrolyzing derived cathode and anode
CN111924864A (zh) 一种锂离子电池MnO/MgO复合负极材料及其制备方法
CN111921529A (zh) 镍钴金属有机骨架/镍钴金属氢氧化物异质材料的制备方法及应用
CN108123105B (zh) 一种离子导体层修饰的锰基氧化物正极材料及制备和应用
CN104299793A (zh) 一种氧化镍/多壁碳纳米管电极材料的制备方法
Dighe et al. Development of ultrathin nanoflakes of Ni–Co LDH films by hydrothermal route for energy storage application
Yao et al. Facile route to high-mass-loading amorphous NiCo-MOFs as high-performance electrode materials for asymmetric supercapacitors
CN109473634A (zh) 固相共热合成二硒化钼/氮掺杂碳棒的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant