CN109320662A - 磁性印迹交联aa/am/ba接枝酯化氰乙基木薯淀粉微球的制备及对铜离子的吸附 - Google Patents

磁性印迹交联aa/am/ba接枝酯化氰乙基木薯淀粉微球的制备及对铜离子的吸附 Download PDF

Info

Publication number
CN109320662A
CN109320662A CN201811226006.5A CN201811226006A CN109320662A CN 109320662 A CN109320662 A CN 109320662A CN 201811226006 A CN201811226006 A CN 201811226006A CN 109320662 A CN109320662 A CN 109320662A
Authority
CN
China
Prior art keywords
tapioca
cyanoethyl
added
hours
esterification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811226006.5A
Other languages
English (en)
Other versions
CN109320662B (zh
Inventor
李和平
柴建啟
耿恺
张淑芬
武晋雄
张俊
龚俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201811226006.5A priority Critical patent/CN109320662B/zh
Publication of CN109320662A publication Critical patent/CN109320662A/zh
Application granted granted Critical
Publication of CN109320662B publication Critical patent/CN109320662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的制备及对铜离子的吸附。以木薯淀粉为原料,先合成交联型AA/AM/BA‑g‑黄原酸酯化氰乙基木薯淀粉,用交联AA/AM/BA接枝酯化氰乙基木薯淀粉将四氧化三铁包裹到淀粉衍生物内部制得磁性变性淀粉微球;再以磁性变性淀粉微球用分子印迹方法与金属离子交联得到具有选择吸附性的磁性印迹聚合物。吸附Cu2+离子性能测试表明,该微球吸附容量Q=25.96mg/g,Cu2+去除率R=98.11%。本发明产物具有良好的空间网状结构,增大了比表面积,具有选择吸附性,对Cu2+的吸附性能优良。在工业污水净化、重金属吸附等方面显示较高的应用价值。

Description

磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的制备 及对铜离子的吸附
技术领域
本发明涉及精细化工技术领域,特别是磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的制备方法及在铜离子(Cu2+)吸附方面的应用。
背景技术
淀粉微球具有空间结构网状多样、比表面积大、表面粗糙多孔和可生物降解性等特点,己被广泛用作药物载体、控释剂和重金属吸附剂等。然而淀粉微球因无法定向移动和固液分离性能较差而使其应用受到了限制。磁性淀粉微球是以淀粉为载体,通过包埋或吸附四氧化三铁或其他磁性粒子而形成的一种具有磁性的功能高分子材料。与淀粉微球相比,磁性淀粉微球具有在外部磁场条件下定向移动和快速固液分离的优点。然而磁性淀粉微球表面功能基团极性较弱、种类单一,很难适用于含有多种污染物的复杂废水的处理,亟需对其进行改性以形成含有多功能基团的磁性高分子材料。
由于淀粉的复合改性集合了多种单一变性淀粉的优点,因此本发明采用酯化、接枝以及交联对其进行复合改性。变性淀粉具有磁性后使得分离易于进行,回收也较为方便。目前,关于离子印迹聚合物的报道大量集中在重金属模板离子及其在废水处理中的应用。将离子印迹技术引入到磁性复合材料不仅可以保留其对目标底物的高选择性与高识别性的特性,还可以赋予其超顺磁性,为材料的分离、回收与应用的拓展提供了可能。
本发明以木薯淀粉为主要原料,在合成交联型AA/AM/BA-g-黄原酸酯化氰乙基木薯淀粉基础上,在反乳相溶液中用交联AA/AM/BA接枝酯化氰乙基木薯淀粉将四氧化三铁包裹到淀粉衍生物内部制得磁性变性淀粉微球;再以磁性变性淀粉微球为功能材料,用分子印迹方法,进一步与金属离子交联得到具有选择吸附性的磁性印迹聚合物。所得产物对金属离子的选择性吸附、脱附、再生及回收利用等方面具有一定的应用价值。
发明内容
本发明的目的是为了增强交联型BA/AA/AM-g-黄原酸酯化氰乙基木薯淀粉对金属离子的吸附效果,提供磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的制备方法以及铜离子(Cu2+)吸附方面的应用。
本发明的具体步骤为:
(1)将5g木薯淀粉置于60℃真空恒温干燥箱中干燥24小时至恒重,得干基木薯淀粉。
(2)取4g步骤(1)所得干基木薯淀粉于250mL四口烧瓶中,加入12mL蒸馏水,并将四口烧瓶置于50℃的恒温水浴锅中配成均匀的淀粉乳液。
(3)分别称取0.03g氢氧化钠及0.2g无水硫酸钠溶于5mL蒸馏水中,在搅拌下15分钟内加入步骤(2)所得淀粉乳液中,搅拌活化30分钟,然后加入2mL分析纯丙烯腈,继续反应5小时。
(4)将步骤(3)所得反应液用15mL体积分数为95%乙醇洗涤3次,再用15mL 无水乙醇洗涤3次,抽滤得滤饼。
(5)将步骤(4)所得滤饼放入表面皿中,置于60℃烘箱中干燥12小时至恒重,得氰乙基木薯淀粉。
(6)取4g步骤(5)所得的氰乙基木薯淀粉于另一四口烧瓶中,加入12mL蒸馏水配制成氰乙基木薯淀粉溶液。
(7)取1.0mL质量分数为10%氢氧化钠溶液加入步骤(6)溶液中,搅拌下活化 30分钟。
(8)将2mL分析纯二硫化碳快速加入步骤(7)反应体系中,控制温度30℃,搅拌下进行酯化反应2小时。
(9)取0.5g硫酸镁、9.5mL蒸馏水,溶于50mL小烧杯中,然后倒入步骤(8) 物料中增加产品的稳定性,继续反应10分钟,得到酯化氰乙基木薯淀粉溶液。
(10)称量0.12g过硫酸铵和0.24g亚硫酸氢钠于50mL烧杯中,加入5mL蒸馏水搅拌均匀,得引发剂溶液。
(11)将步骤(9)所得物料升温至50℃,并移取1.5mL步骤(10)所得引发剂溶液,搅拌10分钟。
(12)分别称取2g分析纯丙烯酸、1g分析纯丙烯酸丁酯,0.5g丙烯酰胺单体于50mL小烧杯中,加入7mL分析纯丙酮,搅拌混合均匀得单体混合液,倒入 100mL恒压滴液漏斗内备用。再将步骤(11)中剩余的引发剂溶液倒入另一100mL 恒压滴液漏斗内备用。
(13)同时缓慢滴加步骤(12)所得单体混合液与引发剂溶液,控制滴加时间在 3小时同步滴加完毕。
(14)滴加完毕后向步骤(13)所得物料中加入0.08g N,N′-亚甲基双丙烯酰胺,继续反应2小时,接枝反应结束。
(15)待完成反应以后,将步骤(14)所得产物抽滤得滤饼,并依次用20mL蒸馏水、20mL无水乙醇和10mL分析纯丙酮洗涤3次,把滤饼放入表面皿中,置于50℃真空干燥箱中干燥24小时至恒重,得交联型黄原酸酯化四元接枝氰乙基木薯淀粉粗产物交联型BA/AA/AM-g-黄原酸酯化氰乙基木薯淀粉。
(16)将步骤(15)所得粗产物置于索氏抽提器内,用120mL分析纯丙酮抽提 24小时,取出抽提后的物料放入表面皿,置于50℃真空干燥箱中干燥12小时至恒重即得交联型BA/AA/AM-g-黄原酸酯化氰乙基木薯淀粉。
(17)将160mL化学纯液体石蜡加入500mL四口烧瓶内,置于60℃水浴中搅拌,然后依次加入0.5g化学纯Span 80、0.5g化学纯吐温60,搅拌乳化20~30 分钟。
(18)取2~2.5g步骤(16)所得交联型BA/AA/AM-g-黄原酸酯化氰乙基木薯淀粉置于100mL烧杯中,加入20~25mL蒸馏水,用0.2~0.5mL质量分数20%的氢氧化钠溶液调节pH为10~11,加入到步骤(17)物料中。
(19)称取0.4~0.5g四氧化三铁,1~1.2mL分析纯环氧氯丙烷依次加入步骤(18)所得体系中,在50~60℃下继续搅拌反应4~6小时。加入20~40mL的体积分数 95%的乙醇破乳,放于暗处静置12小时,抽滤分离得灰黑色滤饼,依次用 20~30mL蒸馏水和20~30mL无水乙醇交替洗涤、抽滤2~3次,再将滤饼放入表面皿,置于50℃真空干燥箱中干燥24小时,即得磁***联AA/AM/BA接枝酯化氰乙基木薯淀粉微球。
(20)取2g步骤(20)制得的磁***联AA/AM/BA接枝酯化氰乙基木薯淀粉微球加入250mL四口烧瓶中,再加入50mL的0.05mol/L的硫酸铜溶液,将烧瓶放在超声波清洗机内超声分散30分钟。
(21)待分散均匀后,向步骤(20)中的烧瓶加入2~4mL质量分数为10%的 NaOH溶液,调节pH为10~11,并把烧瓶放到50℃水浴中快速搅拌,然后加入 1.2mL分析纯环氧氯丙烷,继续搅拌5小时。
(22)反应完成后,将步骤(21)所得混合液倒入烧杯中,并分别用20~30mL 蒸馏水和20~30mL无水乙醇洗涤3~4次,然后用20~30mL 0.1mol/L EDTA溶液振荡解吸1小时,用水洗涤至无铜离子检出为止。最后把产物放入50℃恒温真空干燥箱干燥24小时,即得磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球。
(23)采用吉林大学生产的JDM-13型振动样品磁强计在常温下对步骤(22)所得目标产物磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的磁性能进行测定。方法如下:把称好质量的待测样品装入样品杯放在样品架上,逐点测量样品的比磁化强度-磁场关系曲线(先将磁场加到正向最大,退到零后反向加到最大,再加到正向最大,形成闭合曲线),由磁滞回线图得到比饱和磁化强度。
(24)对步骤(22)所得目标产物磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球进行吸附Cu2+离子性能测试,方法如下:配制pH为6,初始浓度为 635mg/L的Cu2+标准溶液。取25mL该Cu2+标准溶液于100mL锥形瓶中并加入 0.6g制备的淀粉衍生物微球,于35℃下在恒温振荡器中震荡2小时后,用孔径为30~50μm的中速定性滤纸过滤。取滤液用紫外-可见分光光度法测定其中Cu2+的质量浓度。过滤后取上层清液测定吸附后Cu2+金属离子浓度。按照下式计算吸附容量Q及金属离子去除率R(%):
式中
Q——吸附容量,单位mg·g-1
R——去除率,%;
C0——金属离子的初始浓度,单位mg·L-1
Ct——金属离子的平衡浓度,单位mg·L-1
V——吸附溶液的体积,单位L;
m——吸附剂的用量,单位g;
本发明所具有的明显优势在于:本发明制备的磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球既具有复合变性淀粉的含有多功能基团的优点,又具有磁性淀粉微球的在外部磁场条件下定向移动和快速固液分离的优点。对 Cu2+离子的吸附效果优良,可重复利用,不会造成二次污染。
附图说明
图1为原木薯淀粉的SEM照片。
图2为磁性印迹交联交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的SEM 照片。
图3为原木薯淀粉IR图。
图4为磁性印迹交联交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球IR图。
图5为原木薯淀粉的XRD图。
图6为磁性印迹交联交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球XRD 图。
图7为原木薯淀粉的TG及DTG曲线。
图8为磁性印迹交联交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的 TG-DTG曲线。
图9为磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的磁滞回线
具体实施方式
实施例:
(1)将5g木薯淀粉置于60℃真空恒温干燥箱中干燥24小时至恒重,得干基木薯淀粉。
(2)取4g步骤(1)所得干基木薯淀粉于250mL四口烧瓶中,加入12mL蒸馏水,并将四口烧瓶置于50℃的恒温水浴锅中配成均匀的淀粉乳液。
(3)分别称取0.03g氢氧化钠及0.2g无水硫酸钠溶于5mL蒸馏水中,在搅拌下15分钟内加入步骤(2)所得淀粉乳液中,搅拌活化30分钟,然后加入2mL分析纯丙烯腈,继续反应5小时。
(4)将步骤(3)所得反应液用15mL体积分数为95%乙醇洗涤3次,再用15mL 无水乙醇洗涤3次,抽滤得滤饼。
(5)将步骤(4)所得滤饼放入表面皿中,置于60℃烘箱中干燥12小时至恒重,得氰乙基木薯淀粉。
(6)取4g步骤(5)所得的氰乙基木薯淀粉于另一四口烧瓶中,加入12mL蒸馏水配制成氰乙基木薯淀粉溶液。
(7)取1.0mL质量分数为10%氢氧化钠溶液加入步骤(6)溶液中,搅拌下活化 30分钟。
(8)将2mL分析纯二硫化碳快速加入步骤(7)反应体系中,控制温度30℃,搅拌下进行酯化反应2小时。
(9)取0.5g硫酸镁、9.5mL蒸馏水,溶于50mL小烧杯中,然后倒入步骤(8) 物料中增加产品的稳定性,继续反应10分钟,得到酯化氰乙基木薯淀粉溶液。
(10)称量0.12g过硫酸铵和0.24g亚硫酸氢钠于50mL烧杯中,加入5mL蒸馏水搅拌均匀,得引发剂溶液。
(11)将步骤(9)所得物料升温至50℃,并移取1.5mL步骤(10)所得引发剂溶液,搅拌10分钟。
(12)分别称取2g分析纯丙烯酸、1g分析纯丙烯酸丁酯,0.5g丙烯酰胺单体于50mL小烧杯中,加入7mL分析纯丙酮,搅拌混合均匀得单体混合液,倒入 100mL恒压滴液漏斗内备用。再将步骤(11)中剩余的引发剂溶液倒入另一100mL 恒压滴液漏斗内备用。
(13)同时缓慢滴加步骤(12)所得单体混合液与引发剂溶液,控制滴加时间在 3小时同步滴加完毕。
(14)滴加完毕后向步骤(13)所得物料中加入0.08g N,N′-亚甲基双丙烯酰胺,继续反应2小时,接枝反应结束。
(15)待完成反应以后,将步骤(14)所得产物抽滤得滤饼,并依次用20mL蒸馏水、20mL无水乙醇和10mL分析纯丙酮洗涤3次,把滤饼放入表面皿中,置于50℃真空干燥箱中干燥24小时至恒重,得交联型黄原酸酯化四元接枝氰乙基木薯淀粉粗产物交联型BA/AA/AM-g-黄原酸酯化氰乙基木薯淀粉。
(16)将步骤(15)所得粗产物置于索氏抽提器内,用120mL分析纯丙酮抽提 24小时,取出抽提后的物料放入表面皿,置于50℃真空干燥箱中干燥12小时至恒重即得交联型BA/AA/AM-g-黄原酸酯化氰乙基木薯淀粉。
(17)将160mL化学纯液体石蜡加入500mL四口烧瓶内,置于60℃水浴中搅拌,然后依次加入0.5g化学纯Span 80、0.5g化学纯吐温60,搅拌乳化30分钟。
(18)取2g步骤(16)所得交联型BA/AA/AM-g-黄原酸酯化氰乙基木薯淀粉置于100mL烧杯中,加入2mL蒸馏水,用0.3mL质量分数20%的氢氧化钠溶液调节pH为11,加入到步骤(17)物料中。
(19)称取0.4g四氧化三铁,1mL分析纯环氧氯丙烷依次加入步骤(18)所得体系中,在50℃下继续搅拌反应4小时。加入20mL的体积分数95%的乙醇破乳,放于暗处静置12小时,抽滤分离得灰黑色滤饼,依次用20mL蒸馏水和20mL 无水乙醇交替洗涤、抽滤3次,再将滤饼放入表面皿,置于50℃真空干燥箱中干燥24小时,即得磁***联AA/AM/BA接枝酯化氰乙基木薯淀粉微球。
(20)取2g步骤(19)制得的磁***联AA/AM/BA接枝酯化氰乙基木薯淀粉微球加入250mL四口烧瓶中,再加入50mL的0.05mol/L的硫酸铜溶液,将烧瓶放在超声波清洗机内超声分散30分钟。
(21)待分散均匀后,向步骤(20)中的烧瓶加入3mL质量分数为10%的NaOH 溶液,调节pH为10~11,并把烧瓶放到50℃水浴中快速搅拌,然后加入1.2mL 分析纯环氧氯丙烷,继续搅拌5小时。
(22)反应完成后,将步骤(21)所得混合液倒入烧杯中,并分别用25mL蒸馏水和25mL无水乙醇洗涤3次,然后用25mL 0.1mol/L EDTA溶液振荡解吸1小时,用水洗涤至无铜离子检出为止。最后把产物放入50℃恒温真空干燥箱干燥 24小时,即得磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球。
(23)在25℃下磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球振动范围在-6000~6000Oe之间,比饱和磁化强度为22.46emu/g。
(24)磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球对Cu2+离子的吸附容量Q=25.96mg/g,Cu2+去除率R=98.11%。
产物经IR分析,在570~590cm-1为Fe—O的伸缩振动吸收峰,说明Fe3O4包裹成功。经TG及DTG图分析,其热稳定性发生了变化。将产物与原木薯淀粉的SEM图分析对比可知,产物呈球形,表面粗糙,孔隙增多。XRD图分析显示原木薯淀粉的晶体结构遭到破坏,产物中包裹的Fe3O4晶型结构不变。产物经 VSM分析,表明所合成的磁性印迹淀粉微球具有超顺磁性。

Claims (2)

1.一种磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的制备方法,其特征在于具体步骤为:
(1)将5g木薯淀粉置于60℃真空恒温干燥箱中干燥24小时至恒重,得干基木薯淀粉;
(2)取4g步骤(1)所得干基木薯淀粉于250mL四口烧瓶中,加入12mL蒸馏水,并将四口烧瓶置于50℃的恒温水浴锅中配成均匀的淀粉乳液;
(3)分别称取0.03g氢氧化钠及0.2g无水硫酸钠溶于5mL蒸馏水中,在搅拌下15分钟内加入步骤(2)所得淀粉乳液中,搅拌活化30分钟,然后加入2mL分析纯丙烯腈,继续反应5小时;
(4)将步骤(3)所得反应液用15mL体积分数为95%乙醇洗涤3次,再用15mL无水乙醇洗涤3次,抽滤得滤饼;
(5)将步骤(4)所得滤饼放入表面皿中,置于60℃烘箱中干燥12小时至恒重,得氰乙基木薯淀粉;
(6)取4g步骤(5)所得的氰乙基木薯淀粉于另一四口烧瓶中,加入12mL蒸馏水配制成氰乙基木薯淀粉溶液;
(7)取1.0mL质量分数为10%氢氧化钠溶液加入步骤(6)溶液中,搅拌下活化30分钟;
(8)将2mL分析纯二硫化碳快速加入步骤(7)反应体系中,控制温度30℃,搅拌下进行酯化反应2小时;
(9)取0.5g硫酸镁、9.5mL蒸馏水,溶于50mL小烧杯中,然后倒入步骤(8)物料中增加产品的稳定性,继续反应10分钟,得到酯化氰乙基木薯淀粉溶液;
(10)称量0.12g过硫酸铵和0.24g亚硫酸氢钠于50mL烧杯中,加入5mL蒸馏水搅拌均匀,得引发剂溶液;
(11)将步骤(9)所得物料升温至50℃,并移取1.5mL步骤(10)所得引发剂溶液,搅拌10分钟;
(12)分别称取2g分析纯丙烯酸、1g分析纯丙烯酸丁酯,0.5g丙烯酰胺单体于50mL小烧杯中,加入7mL分析纯丙酮,搅拌混合均匀得单体混合液,倒入100mL恒压滴液漏斗内备用;再将步骤(11)中剩余的引发剂溶液倒入另一100mL恒压滴液漏斗内备用;
(13)同时缓慢滴加步骤(12)所得单体混合液与引发剂溶液,控制滴加时间在3小时同步滴加完毕;
(14)滴加完毕后向步骤(13)所得物料中加入0.08g N,N′-亚甲基双丙烯酰胺,继续反应2小时,接枝反应结束;
(15)待完成反应以后,将步骤(14)所得产物抽滤得滤饼,并依次用20mL蒸馏水、20mL无水乙醇和10mL分析纯丙酮洗涤3次,把滤饼放入表面皿中,置于50℃真空干燥箱中干燥24小时至恒重,得交联型黄原酸酯化四元接枝氰乙基木薯淀粉粗产物交联型BA/AA/AM- g-黄原酸酯化氰乙基木薯淀粉;
(16)将步骤(15)所得粗产物置于索氏抽提器内,用120mL分析纯丙酮抽提24小时,取出抽提后的物料放入表面皿,置于50℃真空干燥箱中干燥12小时至恒重即得交联型BA/AA/AM-g-黄原酸酯化氰乙基木薯淀粉;
(17)将160mL化学纯液体石蜡加入500mL四口烧瓶内,置于60℃水浴中搅拌,然后依次加入0.5g 化学纯Span 80、0.5g化学纯吐温60,搅拌乳化20~30分钟;
(18)取2~2.5g步骤(16)所得交联型BA/AA/AM-g-黄原酸酯化氰乙基木薯淀粉置于100mL烧杯中,加入20~25mL蒸馏水,用0.2~0.5mL质量分数20%的氢氧化钠溶液调节pH为10~11,加入到步骤(17)物料中;
(19)称取0.4~0.5g四氧化三铁,1~1.2mL分析纯环氧氯丙烷依次加入步骤(18)所得体系中,在50~60℃下继续搅拌反应4~6小时;加入20~40mL的体积分数95%的乙醇破乳,放于暗处静置12小时,抽滤分离得灰黑色滤饼,依次用20~30mL蒸馏水和20~30mL无水乙醇交替洗涤、抽滤2~3次,再将滤饼放入表面皿,置于50℃真空干燥箱中干燥24小时,即得磁***联AA/AM/BA接枝酯化氰乙基木薯淀粉微球;
(20)取2g步骤(20)制得的磁***联AA/AM/BA接枝酯化氰乙基木薯淀粉微球加入250mL四口烧瓶中,再加入50mL的0.05mol/L的硫酸铜溶液,将烧瓶放在超声波清洗机内超声分散30分钟;
(21)待分散均匀后,向步骤(20)中的烧瓶加入2~4mL质量分数为10%的NaOH溶液,调节pH为10~11,并把烧瓶放到50℃水浴中快速搅拌,然后加入1.2mL分析纯环氧氯丙烷,继续搅拌5小时;
(22) 反应完成后,将步骤(21)所得混合液倒入烧杯中,并分别用20~30mL蒸馏水和20~30mL无水乙醇洗涤3~4次,然后用20~30mL 0.1mol/L EDTA溶液振荡解吸1小时,用水洗涤至无铜离子检出为止;最后把产物放入50℃恒温真空干燥箱干燥24小时,即得磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球。
2.根据权利要求1所述的磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球的应用,其特征在于磁性印迹交联AA/AM/BA接枝酯化氰乙基木薯淀粉微球应用于吸附Cu2+
CN201811226006.5A 2018-10-21 2018-10-21 磁性印迹交联aa/am/ba接枝酯化氰乙基木薯淀粉微球的制备及对铜离子的吸附 Active CN109320662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811226006.5A CN109320662B (zh) 2018-10-21 2018-10-21 磁性印迹交联aa/am/ba接枝酯化氰乙基木薯淀粉微球的制备及对铜离子的吸附

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811226006.5A CN109320662B (zh) 2018-10-21 2018-10-21 磁性印迹交联aa/am/ba接枝酯化氰乙基木薯淀粉微球的制备及对铜离子的吸附

Publications (2)

Publication Number Publication Date
CN109320662A true CN109320662A (zh) 2019-02-12
CN109320662B CN109320662B (zh) 2021-07-02

Family

ID=65262049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811226006.5A Active CN109320662B (zh) 2018-10-21 2018-10-21 磁性印迹交联aa/am/ba接枝酯化氰乙基木薯淀粉微球的制备及对铜离子的吸附

Country Status (1)

Country Link
CN (1) CN109320662B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876617A (zh) * 2021-01-20 2021-06-01 西北大学 一种多孔分子印迹缓释材料的制备方法
CN113332961A (zh) * 2021-06-28 2021-09-03 西安理工大学 一种环氧基改性的磁性淀粉吸附材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497324A (zh) * 2014-12-06 2015-04-08 桂林理工大学 交联型AM/AA接枝黄原酸酯化木薯淀粉微球的制备方法及对Cu2+的吸附
CN107486178A (zh) * 2017-09-15 2017-12-19 桂林理工大学 胺化交联型ma/aa接枝黄原酸酯化木薯淀粉磁性印迹微球的制备及对铅离子吸附
CN107722180A (zh) * 2017-10-01 2018-02-23 桂林理工大学 交联型BA/AA/AM‑g‑黄原酸酯化氰乙基木薯淀粉的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497324A (zh) * 2014-12-06 2015-04-08 桂林理工大学 交联型AM/AA接枝黄原酸酯化木薯淀粉微球的制备方法及对Cu2+的吸附
CN107486178A (zh) * 2017-09-15 2017-12-19 桂林理工大学 胺化交联型ma/aa接枝黄原酸酯化木薯淀粉磁性印迹微球的制备及对铅离子吸附
CN107722180A (zh) * 2017-10-01 2018-02-23 桂林理工大学 交联型BA/AA/AM‑g‑黄原酸酯化氰乙基木薯淀粉的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LATIKA KHURANAA,K. BALASUBRAMANIAN: "Adsorption potency of imprinted Starch/PVA polymers confined ionic liquid with molecular simulation framework", 《JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876617A (zh) * 2021-01-20 2021-06-01 西北大学 一种多孔分子印迹缓释材料的制备方法
CN113332961A (zh) * 2021-06-28 2021-09-03 西安理工大学 一种环氧基改性的磁性淀粉吸附材料的制备方法
CN113332961B (zh) * 2021-06-28 2023-03-14 西安理工大学 一种环氧基改性的磁性淀粉吸附材料的制备方法

Also Published As

Publication number Publication date
CN109320662B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
Deng et al. Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd (II) and Pb (II)
Luo et al. Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb (II) ions in real environmental water samples
Jiang et al. Adsorption of CI Reactive Blue 19 from aqueous solutions by porous particles of the grafted chitosan
Zong et al. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification
CN106188437B (zh) 一种Pickering乳液聚合制备金属有机框架粒子印迹吸附剂的方法
DE60035603T2 (de) Neue molekular geprägte und auf einen festen träger gepfropfte polymere
CN107722533A (zh) 磁***联aa/am接枝酯化氰乙基木薯淀粉微球的制备方法
RU2014133803A (ru) Селективное отделение нитрозосодержащих соединений
CN103788308A (zh) 一种Pickering乳液聚合制备大孔印迹吸附剂的方法
Anirudhan et al. Poly (methacrylic acid-co-vinyl sulfonic acid)-grafted-magnetite/nanocellulose superabsorbent composite for the selective recovery and separation of immunoglobulin from aqueous solutions
DE2938636A1 (de) Traegergebundener rezeptor und seine verwendung in einer bestimmungsmethode
JP2007217670A (ja) イオンインプリントポリマーを利用した重金属イオンの選択的分離{selectiveseparationofheavymetalionusingthemetalionimprintedpolymer(miip)}
CN109320662A (zh) 磁性印迹交联aa/am/ba接枝酯化氰乙基木薯淀粉微球的制备及对铜离子的吸附
Alver et al. Synthesis and characterization of chitosan/polyvinylpyrrolidone/zeolite composite by solution blending method
CN107486178B (zh) 胺化交联型ma/aa接枝黄原酸酯化木薯淀粉磁性印迹微球的制备及对铅离子吸附
DE69834558T2 (de) Trennmittel für optische isomere und verfahren zu ihrer herstellung
CN106749830A (zh) 一种磁性多孔分子印迹聚合物的制备方法
CN109569521A (zh) 一种罗丹宁功能化MOFs吸附剂及其制备方法和应用
CN110139708A (zh) 用于提取锂、汞和钪的分子印迹聚合物珠粒
Liu et al. Tentacle-type poly (hydroxamic acid)-modified macroporous cellulose beads: Synthesis, characterization, and application for heavy metal ions adsorption
CN112023899A (zh) 一种亲水柔性多孔硼亲和印迹水凝胶吸附剂的制备方法
CN106423081B (zh) 壳聚糖改性钠基膨润土、制备方法及应用
CN104277176B (zh) 荧光蛋白印迹磁性复合微球的制备方法
CN112300347B (zh) 一种基于磁性四氧化三铁纳米粒子光响应型印迹材料的制备方法及其用途
Altıntaş et al. Monosize magnetic hydrophobic beads for lysozyme purification under magnetic field

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190212

Assignee: Guilin Xinmei Environmental Protection Technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980044165

Denomination of invention: Preparation of Magnetic Imprinting Crosslinked AA/AM/BA Grafted Esterified Cyanoethyl Cassava Starch Microspheres and Their Adsorption on Copper Ions

Granted publication date: 20210702

License type: Common License

Record date: 20231024

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190212

Assignee: Guangxi Kaitian agricultural new technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980045085

Denomination of invention: Preparation of Magnetic Imprinting Crosslinked AA/AM/BA Grafted Esterified Cyanoethyl Cassava Starch Microspheres and Their Adsorption on Copper Ions

Granted publication date: 20210702

License type: Common License

Record date: 20231030

Application publication date: 20190212

Assignee: Guangxi conglomeration Energy Technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980045081

Denomination of invention: Preparation of Magnetic Imprinting Crosslinked AA/AM/BA Grafted Esterified Cyanoethyl Cassava Starch Microspheres and Their Adsorption on Copper Ions

Granted publication date: 20210702

License type: Common License

Record date: 20231030

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190212

Assignee: Guilin Yifen Food Technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980046005

Denomination of invention: Preparation of Magnetic Imprinting Crosslinked AA/AM/BA Grafted Esterified Cyanoethyl Cassava Starch Microspheres and Their Adsorption on Copper Ions

Granted publication date: 20210702

License type: Common License

Record date: 20231106