CN109317166B - 一种三元复合光催化剂的制备方法及应用 - Google Patents

一种三元复合光催化剂的制备方法及应用 Download PDF

Info

Publication number
CN109317166B
CN109317166B CN201811324347.6A CN201811324347A CN109317166B CN 109317166 B CN109317166 B CN 109317166B CN 201811324347 A CN201811324347 A CN 201811324347A CN 109317166 B CN109317166 B CN 109317166B
Authority
CN
China
Prior art keywords
cain
rgo
composite photocatalyst
metal
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811324347.6A
Other languages
English (en)
Other versions
CN109317166A (zh
Inventor
丁建军
陈林
田兴友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201811324347.6A priority Critical patent/CN109317166B/zh
Publication of CN109317166A publication Critical patent/CN109317166A/zh
Application granted granted Critical
Publication of CN109317166B publication Critical patent/CN109317166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种三元复合光催化剂的制备方法及应用,其制备方法为通过低温热还原法将金属M和还原氧化石墨烯RGO负载于CaIn2S4立方相中,然后通过低温热退火得到M‑RGO‑CaIn2S4复合光催化剂。金属M和还原氧化石墨烯RGO的协同负载,不仅可以提高复合光催化剂的比表面积、降低光催化反应的活化能,还能有效促进光生载流子的分离,因此可以显著增强立方相CaIn2S4的光催化性能。本发明所提供的制备方法,工艺简单,反应条件温和,产率高。本发明所涉及的制备过程简单,反应条件温和,产率高,可宏观制备,是一种环境友好的制备方法,所获得的M‑RGO‑CaIn2S4复合光催化剂在可见光下表现出良好的光催化性能,是一类具有潜在应用价值的新型复合光催化材料体系。

Description

一种三元复合光催化剂的制备方法及应用
技术领域
本发明属于光催化技术领域,尤其涉及一种三元复合光催化剂的制备方法及应用。
背景技术
自从1972 年Fujishima 和Honda在n-型半导体TiO2 单晶电极上发现了水的光解现象以来,光催化反应在环境治理和能源开发方面得到了普遍的关注。它可以将低密度的太阳能转化为高密度的化学能、电能,同时可以直接利用低密度的太阳能分解水制氢,降解和矿化水和空气中的各种有机污染物,甚至还原重金属离子。该技术具有在室温下反应、可直接利用太阳能、无二次污染等优点,对于从根本上解决环境污染和能源短缺问题具有不可估量的意义。
在众多的半导体光催化剂中,TiO2 以其化学稳定性好、光催化活性高、无毒、成本低等优点而备受人们的青睐,是目前使用最广泛的光催化材料。但是TiO2 的能带结构决定了光催化技术在推广过程中存在着局限性。TiO2 的带隙较宽(如锐钛矿结构3.2 eV),光谱响应范围较窄,只能利用太阳能中不到5%的紫外光,而不能吸收太阳能中占43%的可见光。因此需要对TiO2 进行改性研究以拓宽其光吸收范围,或者寻找新型的可见光催化剂。
硫化物可以看作是晶格中的氧原子被硫原子取代的结果。S 的3p 轨道能级比O的2p 轨道能级高,硫化物比相应的氧化物应该具有相对较窄的禁带宽度,可以吸收更多的太阳光,因此有望表现出更强的光催化活性。在我们前期工作中,首次报道了具有立方相结构的钙铟硫CaIn2S4光催化剂(International Journal of Hydrogen Energy, 2013, 38,13153),不仅能充分吸收可见光(1.68~1.84 eV),而且在可见光下表现出良好的光催化活性和稳定性。但是,对于单一组分CaIn2S4而言,在可见光下的光催化活性较低,原因在于光照下产生的光生载流子具有较高的复合几率。因此,需要通过进一步的结构设计来提高立方相CaIn2S4的光催化性能。
发明内容
本发明目的是针对立方相CaIn2S4光催化性能低的问题,提供一种基于立方相CaIn2S4的三元复合光催化剂的制备方法及其在光催化领域中的应用。该三元复合光催化剂可以充分发挥组分之间界面结构的优点,有效实现光生载流子的分离,从而高效增强立方相CaIn2S4的光催化性能,包括分解水制氢、液相降解有机染料和气相降解挥发性有机污染物。
本发明是通过以下技术方案实现的:
一种三元复合光催化剂,通过低温热还原法将金属M和还原氧化石墨烯RGO负载于立方相CaIn2S4中,然后通过低温热退火得到M-RGO-CaIn2S4复合光催化剂,并应用于分解水制氢、液相降解有机染料和气相降解挥发性有机污染物;
其中金属M为元素周期表中的IB、IIB和VIII族金属。
所述的三元复合光催化剂的制备方法包括以下步骤:
(1)首先采用水热法制备立方相CaIn2S4,并采用Hummers法制备氧化石墨烯,然后将一定量的CaIn2S4粉体、GO粉体和金属M前驱体与去离子水混合,搅拌形成均匀的悬浮液;
(2)将步骤1得到的悬浮液置于水浴搅拌加热器中,在一定的温度下进行搅拌反应,过滤、洗涤、干燥,得到粉体材料;
(3)将步骤2得到的粉体材料置于管式炉中,在通入惰性气体的条件下进行低温退火,最后得到M-RGO-CaIn2S4三元复合光催化材料。
所述步骤1中金属M为元素周期表中的IB、IIB和VIII族元素。
优选的,所述步骤1中金属M选自Au、Ag、Pt、Pd、Cu、Rh中的任意一种。
所述步骤1中金属M前驱体包括氯化物、硝酸盐和其他水溶性盐。
优选的,所述步骤1中金属M前驱体选自HAuCl4、H2PtCl6、K2PtCl6、CuCl2、RuCl3、Fe(NO3)3、Ni(NO3)2、AgNO3、Pd(NO3)2、Cu(CH3COO)2
所述步骤1中金属M的负载量为0.1-10 wt%,GO或RGO的负载量为0.5-10 wt%。
所述步骤2中反应温度为60-200℃,反应时间为0.5-10小时。
所述步骤3中退火温度为100-400℃,退火时间为0.5-6小时。
优选的,所述步骤3中惰性气体为氮气或氩气。
本发明还提供了上述技术方案所述的金属M和还原氧化石墨烯RGO共负载立方相CaIn2S4的三元复合光催化剂在光催化领域中的应用,包括分解水制氢、液相降解有机染料和气相降解挥发性有机污染物。
本发明的原理为:
本发明提供了一种由金属M和还原氧化石墨烯RGO共负载立方相CaIn2S4的三元复合光催化剂M-RGO-CaIn2S4,由金属M、还原氧化石墨烯RGO和CaIn2S4构成,其中RGO与CaIn2S4混合,金属M负载于RGO或者CaIn2S4表面,对于M-RGO-CaIn2S4复合光催化材料,RGO的负载可以显著提高复合光催化剂的比表面积,可以增强对光催化目标产物的吸附,并提供更多的光催化反应吸附位和活性位;金属M的负载可以降低光催化反应的活化能,尤其是光催化还原反应的活化能,提高光催化反应的速率;金属M和RGO的协同负载,可以进一步促进光生载流子从CaIn2S4迁移至金属M或RGO,提高光生载流子的寿命,降低光生载流子的复合几率。因此,金属M和RGO的负载可以大幅增强立方相CaIn2S4在可见光下的光催化性能,包括分解水制氢、液相降解有机染料和气相降解挥发性有机污染物,从而有效弥补单一立方相CaIn2S4光催化剂光催化性能偏低的不足。
本发明的优点是:
1、本发明所提供的制备方法非常简单,首先通过热还原法将氧化石墨烯GO和金属前驱体还原成还原氧化石墨烯RGO和金属M纳米颗粒,然后在较低的温度下进行后退火,反应过程中未用到酸性、碱性、毒性或者腐蚀性的化学试剂,操作简易,反应条件温和,且产率高,可宏观制备,是一种环境友好的制备方法。
2、本发明通过在较低的温度下利用热还原方法将金属前驱体还原成金属纳米颗粒,可以有效地阻止金属纳米颗粒的过度生长和团聚,低尺寸的金属纳米颗粒可以提供更大的比表面积和更多的表面反应活性位,因此有利于光催化性能的增强。
3、本发明通过将金属M和还原氧化石墨烯RGO协同负载到立方相CaIn2S4中,可以有效地降低光生载流子的复合几率,因此能显著增强立方相CaIn2S4的光催化性能,包括分解水制氢、液相降解有机染料和气相降解挥发性有机污染物,且具有良好的光催化稳定性,是一类具有潜在应用价值的新型复合光催化材料体系。
附图说明
图1所示为实施例1制备的CaIn2S4、Ag-CaIn2S4、RGO-CaIn2S4和Ag-RGO-CaIn2S4的X射线衍射谱图。
图2所示为实施例1制备的CaIn2S4、RGO-CaIn2S4、Ag-CaIn2S4和Ag-RGO-CaIn2S4在可见光下光催化降解亚甲基蓝的活性结果图。
图3所示为实施例2制备的Au-RGO-CaIn2S4的透射电镜图。
图4所示为实施例2制备的CaIn2S4、RGO-CaIn2S4、Au-CaIn2S4和Au-RGO-CaIn2S4在可见光下光催化制氢的活性结果。
图5所示为实施例3制备的CaIn2S4、RGO-CaIn2S4、Cu-CaIn2S4和Cu-RGO-CaIn2S4在可见光下光催化降解甲苯的活性结果图。
具体实施方式
以下结合具体的实例对本发明的技术方案做进一步说明:
实施例1
称取0.05克的GO粉末,加入到含有100毫升去离子水的烧杯中,超声1小时,让GO粉末均匀、稳定地分散于去离子水中。
向上述悬浮液中加入1克的CaIn2S4粉体和800微升硝酸银AgNO3水溶液(浓度为40克/升),然后将烧杯置于70度的水浴搅拌器中,搅拌6小时。反应结束后,过滤、洗涤、干燥。
将上述干燥后的粉末置于200℃的氮气管式炉中退火2小时,从而获得Ag-RGO-CaIn2S4复合光催化剂,其中Ag的含量为2 wt%,RGO的含量为5 wt%。
对Ag-RGO-CaIn2S4的晶体结构进行X射线衍射测试,并结合CaIn2S4、RGO-CaIn2S4和Ag-CaIn2S4进行对比,其结构如图1所示。图1中,A为立方相CaIn2S4的X射线衍射谱图,B为RGO-CaIn2S4的X射线衍射谱图,C为Ag-CaIn2S4的X射线衍射谱图,D为Ag-RGO-CaIn2S4的X射线衍射谱图。对于谱图A而言,所合成的立方相CaIn2S4与标准卡片#310272完全一致。对于谱图B、C和D而言,金属Ag和/或还原氧化石墨烯RGO的负载并没有改变立方相CaIn2S4的结构,同时也未观察到金属Ag和/或还原氧化石墨烯RGO的衍射峰。
以光催化降解亚甲基蓝来评估上述光催化剂液相降解有机染料的性能。光源为300瓦氙灯(北京泊菲莱科技有限公司,PLS-SXE300型,实际输出功率为47瓦,可见光输出功率为19.6瓦),通过外接半透半反镜和长通滤光片(波长≥420纳米),从而保证光催化反应的激发光为可见光。
具体的光催化实验步骤如下:(1)称取100毫克的光催化剂粉末,加入到含有100毫升亚甲基蓝水溶液光催化反应器中(亚甲基蓝的初始浓度为20 μmol/L),在无光照的条件下搅拌30分钟,保证亚甲基蓝在催化剂表面达到饱和吸附;(2)开始光催化反应,并打开反应器外侧的回流水,保证光催化反应过程中溶液的温度为室温;(3)每隔一段时间取一次样,然后利用分光光度计测量665 nm处的吸收强度,根据朗伯比尔定律计算出亚甲基蓝的浓度,其结果如图2所示,其中A表示无光照有光催化剂的条件下催化剂对亚甲基蓝的吸附,B表示无光催化剂有光照的条件下亚甲基蓝的光降解,C表示单一组分CaIn2S4对亚甲基蓝的降解,D表示Ag-CaIn2S4对亚甲基蓝的降解,E表示RGO-CaIn2S4对亚甲基蓝的降解,F表示Ag-RGO-CaIn2S4对亚甲基蓝的降解。从图中可以看出,光催化剂对亚甲基蓝的吸附效果非常弱,90分钟内大约只有不到5%的浓度下降。在有光照无催化剂的条件下,亚甲基蓝存在直接光降解效应,如曲线B所示,90分钟后有32%的浓度下降。在有光照有催化剂的条件下,亚甲基蓝的降解速率明显提升。对于CaIn2S4、Ag-CaIn2S4、RGO-CaIn2S4和Ag-RGO-CaIn2S4而言,90分钟的降解率分别为63.8%、75.8%、84.5%和99%。结果表明,助催化剂金属Ag或者还原氧化石墨烯RGO的负载可以提高立方相CaIn2S4在可见光下降解亚甲基蓝的性能,而金属Ag和还原氧化石墨RGO的协同负载可以进一步限制增强立方相CaIn2S4的光催化性能。
实施例2
称取0.01克的GO粉末,加入到含有120毫升去离子水的烧杯中,超声45分钟,让GO粉末均匀、稳定地分散于去离子水中。
向上述悬浮液中加入1克的CaIn2S4粉体和216微升氯金酸HAuCl4水溶液(浓度为40克/升),然后将烧杯置于80度的水浴搅拌器中,搅拌5小时。反应结束后,过滤、洗涤、干燥。
将上述干燥后的粉末置于150℃的氩气管式炉中退火3小时,从而获得Au-RGO-CaIn2S4复合光催化剂,其中Au的含量为0.5 wt%,RGO的含量为1 wt%。
对得到的Au-RGO-CaIn2S4复合光催化剂的微结构进行透射电镜分析,其结果如图3所示。立方相CaIn2S4呈片状结构,还原氧化石墨烯RGO呈二维层状结构,立方相CaIn2S4和还原氧化石墨烯RGO互相包覆在一起;金属Au呈纳米颗粒状结构,平均粒径为4-5纳米,负载于立方相CaIn2S4或还原氧化石墨烯RGO表面。金属Au、RGO和CaIn2S4之间的界面可以有效地促进光生电子从CaIn2S4的导带迁移至Au或RGO的表面,从而降解光生载流子的复合几率,增强光催化剂的性能。
以光催化分解水制氢来评估上述光催化剂的性能。光源为300瓦氙灯(北京泊菲莱科技有限公司,PLS-SXE300型,实际输出功率为47瓦,可见光输出功率为19.6瓦),通过外接半透半反镜和长通滤光片(波长≥420纳米),从而保证光催化反应的激发光为可见光。
具体的光催化实验步骤如下:(1)称取10毫克的光催化剂粉末,加入到含有100毫升去离子水的光催化反应器中,再加入3.15克亚硫酸钠Na2SO3和6克硫化钠Na2S·9H2O,搅拌均匀;(2)密封光催化反应器,通入氩气,以排尽光催化反应器中残留的空气,然后开始光催化制氢反应;(3)每隔一个小时取一次样,利用气相色谱仪(科晓GC 1690C,分子筛填充柱,氩气为载气)检测氢气产量,并计算8小时的平均产氢速率,其结果如图4所示。
图4是CaIn2S4、Au-CaIn2S4、RGO-CaIn2S4和Au-RGO-CaIn2S4在可见光光催化制氢的活性结果图。首先,对于立方相CaIn2S4而言,在可见光下的产氢速率为19.6 μmol/h。对于Au-CaIn2S4、RGO-CaIn2S4和Au-RGO-CaIn2S4而言,可见光下的产氢速率分别为61.4、39.4和461.2 μmol/h。结果表明,单一助催化剂Au或RGO的负载可以增强立方相CaIn2S4光催化制氢的性能,而双助催化剂Au和RGO的协同负载可以大幅提高立方相CaIn2S4光催化制氢的性能。对于Au-RGO-CaIn2S4而言,其产氢速率分别是CaIn2S4、Au-CaIn2S4和RGO-CaIn2S4的23.5、7.5和11.7倍。
实施例3
称取0.05克的GO粉末,加入到含有80毫升去离子水的烧杯中,超声30分钟,让GO粉末均匀、稳定地分散于去离子水中。
向上述悬浮液中加入0.5克的CaIn2S4粉体和1.84毫升硝酸铜Cu(NO3)2水溶液(浓度为40克/升),然后将烧杯置于100度的水浴搅拌器中,搅拌4小时。反应结束后,过滤、洗涤、干燥。
将上述干燥后的粉末置于250℃的氦气管式炉中退火1.5小时,从而获得Cu-RGO-CaIn2S4复合光催化剂,其中Cu的含量为5 wt%,RGO的含量为10 wt%。
以光催化降解甲苯来评估上述光催化剂光催化降解有机污染物的性能。光源为300瓦氙灯(北京泊菲莱科技有限公司,PLS-SXE300型,实际输出功率为47瓦,可见光输出功率为19.6瓦),通过外接半透半反镜和长通滤光片(波长≥420纳米),从而保证光催化反应的激发光为可见光。
具体的光催化实验步骤如下:(1)称取150毫克的光催化剂粉末,在超声的作用下将其均匀地分散在含有3克的无水乙醇的培养皿(直径5厘米)中,然后再60℃下将其烘干;(2)将上述培养皿置于光催化反应器中,在常温常压下密封反应器。反应前,以60 毫升/分钟流量的高纯空气吹扫反应器,以排除反应器和气路管道中的CO2、甲苯等气体。密封采集窗口,保持***压力为常压,其中氧气含量为22%,相对湿度为70%;(3)手动注射一定体积的甲苯气体于反应器中,等待30分钟,使反应器内甲苯气体与空气混合均匀,达到一个稳定浓度后,通过气相色谱仪(科晓GC 1690C,毛细管柱,氮气为载气,FID检测器)测定此时甲苯的初始浓度为400 ppmV;(4)开始光催化反应,并开始计时。5小时后,从反应器内采集一定体积的气体,通过气相色谱仪(科晓GC 1690C,毛细管柱,氮气为载气,FID检测器,甲烷转化炉)进行在线分析,分析光催化反应过程中甲苯的含量。
图5是CaIn2S4、Cu-CaIn2S4、RGO-CaIn2S4和Cu-RGO-CaIn2S4在可见光光催化降解甲苯的活性结果图。首先,对于立方相CaIn2S4而言,5小时对400 ppmV的甲苯的降解率为19%。对于Au-CaIn2S4、RGO-CaIn2S4和Au-RGO-CaIn2S4而言,可见光对甲苯的降解率分别为34%、64%和97%。与实施例1和实施例2相一致的是,单一助催化剂Cu或RGO的负载可以增强立方相CaIn2S4光催化降解甲苯的性能,而双助催化剂Cu和RGO的协同负载可以大幅提高立方相CaIn2S4光催化降解甲苯的性能。实施例1和实施例3与实施例2不一样的是,单一助催化剂RGO的负载更有利于立方相CaIn2S4光催化降解有机污染物(包括液相降解染料和气相降解挥发性有机污染物),而单一助催化剂金属M更有利于立方相CaIn2S4光催化制氢的性能。

Claims (8)

1.一种三元复合光催化剂,其特征在于,通过低温热还原法将金属M和还原氧化石墨烯RGO负载于立方相CaIn2S4中,然后通过低温热退火得到M-RGO-CaIn2S4复合光催化剂,并应用于分解水制氢、液相降解有机染料和气相降解挥发性有机污染物;其中金属M为元素周期表中的IB、IIB和VIII族金属;
所述的三元复合光催化剂的制备方法包括以下步骤:(1)首先采用水热法制备立方相CaIn2S4,并采用Hummers法制备氧化石墨烯,然后将一定量的CaIn2S4粉体、氧化石墨烯粉体和金属M前驱体与去离子水混合,搅拌形成均匀的悬浮液;(2)将步骤(1)得到的悬浮液置于水浴搅拌加热器中,在一定的温度下进行搅拌反应,过滤、洗涤、干燥,得到粉体材料;(3)将步骤(2)得到的粉体材料置于管式炉中,在通入惰性气体的条件下进行低温退火,最后得到M-RGO-CaIn2S4三元复合光催化材料。
2.根据权利要求1所述的三元复合光催化剂的制备方法,其特征在于,所述步骤(1)中金属M选自Au、Ag、Pt、Pd、Cu、Rh中的任意一种。
3.根据权利要求1所述的三元复合光催化剂的制备方法,其特征在于,所述步骤(1)中金属M前驱体包括氯化物、硝酸盐和其他水溶性盐。
4.根据权利要求1所述的三元复合光催化剂的制备方法,其特征在于,所述步骤(1)中金属M前驱体选自HAuCl4、H2PtCl6、K2PtCl6、CuCl2、RuCl3、Fe(NO3)3、Ni(NO3)2、AgNO3、Pd(NO3)2、Cu(CH3COO)2
5.根据权利要求1所述的三元复合光催化剂的制备方法,其特征在于,所述步骤(1)中金属M的负载量为0.1-10wt%,氧化石墨烯的负载量为0.5-10wt%。
6.根据权利要求1所述的三元复合光催化剂的制备方法,其特征在于,所述步骤(2)中反应温度为60-200℃,反应时间为0.5-10小时。
7.根据权利要求1所述的三元复合光催化剂的制备方法,其特征在于,所述步骤(3)中退火温度为100-400℃,退火时间为0.5-6小时。
8.根据权利要求1所述的三元复合光催化剂的制备方法,其特征在于,所述步骤(3)中惰性气体为氮气或氩气。
CN201811324347.6A 2018-11-08 2018-11-08 一种三元复合光催化剂的制备方法及应用 Active CN109317166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811324347.6A CN109317166B (zh) 2018-11-08 2018-11-08 一种三元复合光催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811324347.6A CN109317166B (zh) 2018-11-08 2018-11-08 一种三元复合光催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN109317166A CN109317166A (zh) 2019-02-12
CN109317166B true CN109317166B (zh) 2022-01-11

Family

ID=65260658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811324347.6A Active CN109317166B (zh) 2018-11-08 2018-11-08 一种三元复合光催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN109317166B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169791B (zh) * 2020-10-22 2022-09-02 西安理工大学 一种片层状三相复合光催化材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888849A (zh) * 2015-04-14 2015-09-09 中国石油大学(华东) 一种c5/c6正构烷烃异构化催化剂的制备及应用
CN107175115A (zh) * 2017-06-26 2017-09-19 中国科学院合肥物质科学研究院 一种空间电荷分离型复合光催化剂的制备方法和应用
CN107899600A (zh) * 2017-11-23 2018-04-13 江苏理工学院 一种Cu2‑xS/g‑C3N4异质结光催化剂及其制备方法
CN108176408A (zh) * 2017-12-18 2018-06-19 江苏大学 Au@CaIn2S4/HNTs复合光催化剂及用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888849A (zh) * 2015-04-14 2015-09-09 中国石油大学(华东) 一种c5/c6正构烷烃异构化催化剂的制备及应用
CN107175115A (zh) * 2017-06-26 2017-09-19 中国科学院合肥物质科学研究院 一种空间电荷分离型复合光催化剂的制备方法和应用
CN107899600A (zh) * 2017-11-23 2018-04-13 江苏理工学院 一种Cu2‑xS/g‑C3N4异质结光催化剂及其制备方法
CN108176408A (zh) * 2017-12-18 2018-06-19 江苏大学 Au@CaIn2S4/HNTs复合光催化剂及用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hydrothermal Synthesis of CaIn2S4‑Reduced Graphene Oxide Nanocomposites with Increased Photocatalytic Performance;Jianjun Ding等;《Applied Materials & Interfaces》;20140717;第6卷;第12877-12884页 *
Novel Au/CaIn2S4 nanocomposites with plasmon-enhanced photocatalytic performance under visible light irradiation;Jie Li等;《Applied Surface Science》;20161027;第396卷;全文 *

Also Published As

Publication number Publication date
CN109317166A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Tahir et al. Au-NPs embedded Z–scheme WO3/TiO2 nanocomposite for plasmon-assisted photocatalytic glycerol-water reforming towards enhanced H2 evolution
Saravanan et al. Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production
Wang et al. Design, modification and application of semiconductor photocatalysts
Meng et al. Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity
Xu et al. Photodecomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor
Li et al. C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for Efficient and stable NO photo-oxidation
Xiao et al. Synthesis of EDTA-bridged CdS/g-C3N4 heterostructure photocatalyst with enhanced performance for photoredox reactions
Hu et al. Visible-light upconversion carbon quantum dots decorated TiO2 for the photodegradation of flowing gaseous acetaldehyde
Wang et al. Single-atom VN charge-transfer bridge on ultrathin carbon nitride for efficient photocatalytic H2 production and formaldehyde oxidation under visible light
Meng et al. Efficient photocatalytic CO2 reduction in all-inorganic aqueous environment: cooperation between reaction medium and Cd (II) modified colloidal ZnS
Huang et al. A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction
Fan et al. A readily synthesis of oxygen vacancy-induced In (OH) 3/carbon nitride 0D/2D heterojunction for enhanced visible-light-driven nitrogen fixation
Boudjemaa et al. Fe2O3/carbon spheres for efficient photo-catalytic hydrogen production from water and under visible light irradiation
CN105413712B (zh) 金纳米棒‑CdS‑金纳米粒子复合光催化剂和应用
Cheng et al. Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction
Zhang et al. Carbon layer derived carrier transport in Co/g-C3N4 nanosheet junctions for efficient H2O2 production and NO removal
Zhang et al. TiO2 nanorods loaded with AuPt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol
Arif et al. Efficient visible light activities of Ag modified ZnO/g-C3N4 composite for CO2 conversion
CN109126784B (zh) 一种可见光-近红外光响应的金属纳米粒子/二氧化硅复合光催化剂
CN109174144B (zh) Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用
Liu et al. Heterostructured Fe2O3/BiVO4 nano-photocatalyst for the reduction of nitroarenes into amines
Choi et al. Multiple photocatalytic applications of non-precious Cu-loaded g-C3N4/hydrogenated black TiO2 nanofiber heterostructure
Zhang et al. ZIF-8-coated CdS popcorn-like photocatalyst with enhanced visible-light-driven photocatalytic activity for degradation of toluene
CN102101051B (zh) 一种能降解氮氧化物的碳纳米管负载型纳米光催化材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant