CN109307038A - 一种基于巨电流变液剪切阀式的多层极板的阻尼器 - Google Patents

一种基于巨电流变液剪切阀式的多层极板的阻尼器 Download PDF

Info

Publication number
CN109307038A
CN109307038A CN201811517303.5A CN201811517303A CN109307038A CN 109307038 A CN109307038 A CN 109307038A CN 201811517303 A CN201811517303 A CN 201811517303A CN 109307038 A CN109307038 A CN 109307038A
Authority
CN
China
Prior art keywords
pole plate
outer cylinder
axis
rheological liquid
giant electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811517303.5A
Other languages
English (en)
Other versions
CN109307038B (zh
Inventor
蒲华燕
楚刘峰
孙翊
王敏
杨毅
罗均
彭艳
刘媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201811517303.5A priority Critical patent/CN109307038B/zh
Publication of CN109307038A publication Critical patent/CN109307038A/zh
Application granted granted Critical
Publication of CN109307038B publication Critical patent/CN109307038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/532Electrorheological [ER] fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本发明公开了一种基于巨电流变液剪切阀式的多层极板的阻尼器,包括外筒,所述外筒一端设置有上端盖,所述外筒另一端设置有下端盖,所述外筒内设置有轴,所述轴贯穿所述上端盖且能够相对所述上端盖滑动,所述轴上设置有若干极板,所述外筒内填充有巨电流变液,所述极板与所述外筒通极性相反的电。本发明通过轴与需要吸振的装置连接,极板通正电,外筒通负电,轴带动极板作上下运动,巨电流变液受剪切作用,巨电流变液在外加电场的作用下,其流变性能发生改变,粘度增加、阻尼系数变大,产生一定的阻尼效果,从而实现吸振,本发明的阻尼力的大小可以通过改变对各层极板输入的电压进行调节,进而实现半主动控制和主动控制。

Description

一种基于巨电流变液剪切阀式的多层极板的阻尼器
技术领域
本发明涉及阻尼器技术领域,特别是涉及一种基于巨电流变液剪切阀式的多层极板的阻尼器。
背景技术
电流变液是由高介电常数的小颗粒分散在低介电常数的溶剂中形成的悬浮液体。这种悬浮液体在外加电场作用下可以在毫秒级的瞬间使固体颗粒极化而相互作用,形成平行于电场的链状或者柱状结构,从而使液体表现为具有一定屈服应力的类似固体的本构状态,使表观粘度增大几个数量级。这种使流体改变状态的效应叫做电流变效应。
电流变阻尼器是一种应用非常广泛的消能减振控制装置,可用于机械、建筑等领域。其控制机理是通过对阻尼器中的电流变效应,将结构的部分振动能量通过阻尼材料耗散掉,达到缓解外载的冲击、减小结构振动、保护结构安全的目的。
巨电流变液是由可极化介电微粒均匀分散于巨电流变液的基液中形成的一种悬浮液,当对其施加电场时,其粘度、剪切强度等性能瞬时变化,其粘度、强度等大小随电场调节连续可调,可调范围大,甚至达到几个数量级,可由低粘度流体转换为高粘度流体,甚至固体。当外加电场撤去以后,它又可以在毫秒时间内恢复到流体状态,这种介于液体和固体的属性间可控、可逆、连续的转变,可以通过电场实现力矩的可控传递和机构的在线无级、可逆控制,能替代传统的电一机械转换元器件,在机电一体化的自适应控制机构工业领域有着广泛的应用前景,特别在国防建设、交通工具、液压设备、机械制造业、传感器技术等领域具有更为广阔的应用基础和应用需求,是阻尼减振领域急需发展的关键材料之一。
根据香港科技大学温维佳教授所做的研究工作,目前研制的新型巨电流变液在5KV/mm的电场强度下可以达到130kPa以上的屈服强度,完全可以满足工程需要。但是,这种新型的巨电流变液的粘滞系数仅为普通电流变液的1/10,仅仅为0.1Pa·s,而一般的电流变液的粘滞系数为1Pa·s。因此,同样条件下,普通电流变液提供的粘滞阻尼力远远大于新型巨电流变液提供的粘性阻尼力。
各种建筑或机械结构在服役过程中,振动或冲击载荷会严重影响其安全性及使用寿命。在结构上安装可以耗能减振的阻尼器件是减小其振动或冲击响应、增加其安全性和稳定性的有效手段。传统的被动控制阻尼器(如液压阻尼器)仅能提供不可调节的阻尼力,其振动控制效果不理想。
发明内容
本发明的目的是提供一种基于巨电流变液剪切阀式的多层极板的阻尼器,以解决上述现有技术存在的问题,使阻尼力的大小可调节。
为实现上述目的,本发明提供了如下方案:
本发明提供了一种基于巨电流变液剪切阀式的多层极板的阻尼器,包括外筒,所述外筒一端设置有上端盖,所述外筒另一端设置有下端盖,所述外筒内设置有轴,所述轴贯穿所述上端盖且能够相对所述上端盖滑动,所述轴上设置有若干极板,所述外筒内填充有巨电流变液,所述极板与所述外筒通极性相反的电。
优选的,所述极板与所述轴之间设置有绝缘板,所述轴的下端设置有压块,所述压块用于固定所述极板和所述绝缘板,所述压块、所述轴均采用绝缘材料制成。
优选的,所述轴为中空轴,所述绝缘板上设置有通孔,所述通孔与所述中空轴相连通;还包括导线,所述极板分别连接一所述导线的一端,所述导线的另一端穿过所述通孔、所述中空轴与电源连接。
优选的,所述极板与所述外筒的内壁的间隙为1-3mm。
优选的,所述极板上设置有若干凹坑。
优选的,所述外筒的内部还设置有浮动活塞,所述浮动活塞位于所述压块的下方,所述浮动活塞与所述下端盖之间为补偿腔,所述补偿腔内不填充所述巨电流变液。
优选的,所述浮动活塞与所述外筒之间、所述外筒与所述上端盖之间、所述外筒与所述下端盖之间均设置有O型密封圈。
优选的,所述极板通正电,所述外筒通负电。
本发明相对于现有技术取得了以下技术效果:
本发明通过轴与需要吸振的装置连接,极板通正电,外筒通负电,轴带动极板作上下运动,巨电流变液受剪切作用,巨电流变液在外加电场的作用下,其流变性能发生改变,粘度增加、阻尼系数变大,产生一定的阻尼效果,从而实现吸振,本发明的阻尼力的大小可以通过改变对各层极板输入的电压进行调节,进而实现半主动控制和主动控制。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的基于巨电流变液剪切阀式的多层极板的阻尼器的主视图;
图2为图1的A-A剖视图;
图3为本发明的基于巨电流变液剪切阀式的多层极板的阻尼器的俯视图;
其中:1-轴,2-螺栓,3-上端盖,4-外筒,5-下端盖,6-O型密封圈,7-绝缘板,8-压块,9-浮动活塞,10-极板,11-上腔,12-下腔,13-补偿腔,14-通孔。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种基于巨电流变液剪切阀式的多层极板的阻尼器,以解决上述现有技术存在的问题,使阻尼力的大小可调节。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1-图3所示:本实施例提供了一种基于巨电流变液剪切阀式的多层极板10的阻尼器,包括外筒4,外筒4一端设置有上端盖3,外筒4另一端设置有下端盖5,外筒4与上端盖3、下端盖5均通过螺栓2进行连接,外筒4内设置有轴1,轴1贯穿上端盖3且能够相对上端盖3滑动,轴1上设置有若干绝缘板7,本实施例中,绝缘板7为四个,绝缘板7外侧设置有极板10,极板10为环形,各极板10之间形成电极间隙,极板10上通过物理或化学方法进行表面微孔凹坑处理,凹坑的形状可以为半球形、三棱锥形或四棱锥形。极板10与外筒4的内壁的间隙为1-3mm,优选为2mm。轴1的下端设置有压块8,压块8用于固定极板10和绝缘板7,压块8、轴1和上端盖3均采用绝缘材料制成,外筒4的内部还设置有浮动活塞9,浮动活塞9位于压块8的下方,浮动活塞9与外筒4之间、外筒4与上端盖3之间、外筒4与下端盖5之间均设置有O型密封圈6。上端盖3与绝缘板7之间为上腔11,压块8与浮动活塞9之间为下腔12,浮动活塞9与下端盖5之间为补偿腔13,巨电流变液填充在上腔11、下腔12内以及上腔11和下腔12之间,补偿腔13在轴1上下运动时进行压力补偿。
本实施例中,轴1为中空轴,绝缘板7上设置有通孔14,通孔14与中空轴相连通,每个极板10分别与每根导线的一端连接,导线的另一端穿过通孔14、中空轴与电源连接。
本实施例的阻尼器是根据巨电流变液的阻尼效应来实现阻尼作用的。本实施例通过轴1与需要吸振的装置连接,极板10通正电,外筒4通负电,轴1带动极板10作上下运动,巨电流变液受剪切作用,巨电流变液在外加电场的作用下,其流变性能发生改变,粘度增加、阻尼系数变大,产生一定的阻尼效果,从而实现吸振,通过改变对各层极板10输入的电压调节阻尼力的大小。
本实施例的极板10为环形面,在外筒4的大小确定时,极板10采用环形,阻尼器的结构紧凑、极板10的相对面积大、阻尼效果好;并且每一层极板10上外加电压都可以改变,进而实现阻尼的半主动控制,这样阻尼器所产生阻尼力的可调范围更大,优于采用单层极板的阻尼器,阻尼器行程范围大,可用于位移较大的减振环境下;极板10表面的凹坑化处理,在有限的空间内增加了阻尼通道的面积,显著降低巨电流变液与极板10表面间的滑移。巨电流变液随电压改变的响应很快,能够快速吸振。本实施例具有构造简单、响应速度快、质量轻、体积小、阻尼力大等优点。
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种基于巨电流变液剪切阀式的多层极板的阻尼器,其特征在于:包括外筒,所述外筒一端设置有上端盖,所述外筒另一端设置有下端盖,所述外筒内设置有轴,所述轴贯穿所述上端盖且能够相对所述上端盖滑动,所述轴上设置有若干极板,所述外筒内填充有巨电流变液,所述极板与所述外筒通极性相反的电。
2.根据权利要求1所述的基于巨电流变液剪切阀式的多层极板的阻尼器,其特征在于:所述极板与所述轴之间设置有绝缘板,所述轴的下端设置有压块,所述压块用于固定所述极板和所述绝缘板,所述压块、所述轴均采用绝缘材料制成。
3.根据权利要求2所述的基于巨电流变液剪切阀式的多层极板的阻尼器,其特征在于:所述轴为中空轴,所述绝缘板上设置有通孔,所述通孔与所述中空轴相连通;还包括导线,所述极板分别连接一所述导线的一端,所述导线的另一端穿过所述通孔、所述中空轴与电源连接。
4.根据权利要求1所述的基于巨电流变液剪切阀式的多层极板的阻尼器,其特征在于:所述极板与所述外筒的内壁的间隙为1-3mm。
5.根据权利要求1所述的基于巨电流变液剪切阀式的多层极板的阻尼器,其特征在于:所述极板上设置有若干凹坑。
6.根据权利要求2所述的基于巨电流变液剪切阀式的多层极板的阻尼器,其特征在于:所述外筒的内部还设置有浮动活塞,所述浮动活塞位于所述压块的下方,所述浮动活塞与所述下端盖之间为补偿腔,所述补偿腔内不填充所述巨电流变液。
7.根据权利要求6所述的基于巨电流变液剪切阀式的多层极板的阻尼器,其特征在于:所述浮动活塞与所述外筒之间、所述外筒与所述上端盖之间、所述外筒与所述下端盖之间均设置有O型密封圈。
8.根据权利要求1所述的基于巨电流变液剪切阀式的多层极板的阻尼器,其特征在于:所述极板通正电,所述外筒通负电。
CN201811517303.5A 2018-12-12 2018-12-12 一种基于巨电流变液剪切阀式的多层极板的阻尼器 Active CN109307038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811517303.5A CN109307038B (zh) 2018-12-12 2018-12-12 一种基于巨电流变液剪切阀式的多层极板的阻尼器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811517303.5A CN109307038B (zh) 2018-12-12 2018-12-12 一种基于巨电流变液剪切阀式的多层极板的阻尼器

Publications (2)

Publication Number Publication Date
CN109307038A true CN109307038A (zh) 2019-02-05
CN109307038B CN109307038B (zh) 2019-09-03

Family

ID=65223622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811517303.5A Active CN109307038B (zh) 2018-12-12 2018-12-12 一种基于巨电流变液剪切阀式的多层极板的阻尼器

Country Status (1)

Country Link
CN (1) CN109307038B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752235A (zh) * 2019-03-27 2019-05-14 上海大学 一种巨电流变液挤压力测试装置
CN112901703A (zh) * 2021-01-29 2021-06-04 重庆大学 一种基于巨电流变液的防沉降式多层螺旋极板阻尼器

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1200032A1 (ru) * 1984-05-25 1985-12-23 Предприятие П/Я Г-4651 Устройство дл гашени крутильных колебаний
JPH04175534A (ja) * 1990-08-09 1992-06-23 Toyota Motor Corp 減衰力可変式振動減衰器
EP0510911A1 (en) * 1991-04-20 1992-10-28 Bridgestone Corporation Restricted passage system in vibration damping device
JPH04337135A (ja) * 1991-05-10 1992-11-25 Kayaba Ind Co Ltd 電気粘性流体利用のロータリダンパ
DE4134354A1 (de) * 1991-10-17 1993-04-22 Schaeffler Waelzlager Kg Schwingungsdaempfer
JPH06341482A (ja) * 1993-05-31 1994-12-13 Kayaba Ind Co Ltd 電気粘性流体利用の緩衝器
JPH07276965A (ja) * 1994-04-04 1995-10-24 Isuzu Motors Ltd バネ定数可変式トーションバー
JPH09100865A (ja) * 1995-10-04 1997-04-15 Fujikura Rubber Ltd 回転力伝達装置
JPH09119473A (ja) * 1995-10-17 1997-05-06 Bridgestone Corp 電気レオロジー流体を使用したスプライン型振動減衰装置
WO1998037339A1 (en) * 1997-02-24 1998-08-27 Lord Corporation Magnetorheological fluid seismic damper
CN2318453Y (zh) * 1996-09-23 1999-05-12 赵晓鹏 电流变液与压电陶瓷复合的自适应阻尼器
US5992582A (en) * 1994-04-19 1999-11-30 Lou; Zheng Electrorheological rotary pure-shear damping devices
CN2363125Y (zh) * 1998-10-16 2000-02-09 西北工业大学 可调控阻尼的电流变减振器
CN2531169Y (zh) * 2001-04-13 2003-01-15 西北工业大学 一种多极板式电流变阻尼铰
WO2003013759A1 (de) * 2001-07-20 2003-02-20 Newfrey Llc Verfahren und vorrichtung zur herstellung einer formschlüssigen kaltfügeverbindung
CN2648176Y (zh) * 2003-03-11 2004-10-13 中国人民解放军后勤工程学院 充气式电流变减振器
JP2006264579A (ja) * 2005-03-25 2006-10-05 Advics:Kk ブレーキ操作入力装置
CN2828439Y (zh) * 2005-10-24 2006-10-18 河北工业大学 电流变流体减振器
CN200958546Y (zh) * 2006-10-13 2007-10-10 北京工业大学 一种触发限位型被动控制电流变阻尼器
CN200975034Y (zh) * 2006-10-13 2007-11-14 北京工业大学 一种双出杆双缸电流变阻尼器
CN102338187A (zh) * 2011-08-23 2012-02-01 北京空间机电研究所 星载变阻尼减振装置
CN104179880A (zh) * 2014-09-05 2014-12-03 大连理工大学 多滞变模型的复合叠层电流变减振装置

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1200032A1 (ru) * 1984-05-25 1985-12-23 Предприятие П/Я Г-4651 Устройство дл гашени крутильных колебаний
JPH04175534A (ja) * 1990-08-09 1992-06-23 Toyota Motor Corp 減衰力可変式振動減衰器
EP0510911A1 (en) * 1991-04-20 1992-10-28 Bridgestone Corporation Restricted passage system in vibration damping device
JPH04337135A (ja) * 1991-05-10 1992-11-25 Kayaba Ind Co Ltd 電気粘性流体利用のロータリダンパ
DE4134354A1 (de) * 1991-10-17 1993-04-22 Schaeffler Waelzlager Kg Schwingungsdaempfer
JPH06341482A (ja) * 1993-05-31 1994-12-13 Kayaba Ind Co Ltd 電気粘性流体利用の緩衝器
JPH07276965A (ja) * 1994-04-04 1995-10-24 Isuzu Motors Ltd バネ定数可変式トーションバー
US5992582A (en) * 1994-04-19 1999-11-30 Lou; Zheng Electrorheological rotary pure-shear damping devices
JPH09100865A (ja) * 1995-10-04 1997-04-15 Fujikura Rubber Ltd 回転力伝達装置
JPH09119473A (ja) * 1995-10-17 1997-05-06 Bridgestone Corp 電気レオロジー流体を使用したスプライン型振動減衰装置
CN2318453Y (zh) * 1996-09-23 1999-05-12 赵晓鹏 电流变液与压电陶瓷复合的自适应阻尼器
WO1998037339A1 (en) * 1997-02-24 1998-08-27 Lord Corporation Magnetorheological fluid seismic damper
CN2363125Y (zh) * 1998-10-16 2000-02-09 西北工业大学 可调控阻尼的电流变减振器
CN2531169Y (zh) * 2001-04-13 2003-01-15 西北工业大学 一种多极板式电流变阻尼铰
WO2003013759A1 (de) * 2001-07-20 2003-02-20 Newfrey Llc Verfahren und vorrichtung zur herstellung einer formschlüssigen kaltfügeverbindung
CN2648176Y (zh) * 2003-03-11 2004-10-13 中国人民解放军后勤工程学院 充气式电流变减振器
JP2006264579A (ja) * 2005-03-25 2006-10-05 Advics:Kk ブレーキ操作入力装置
CN2828439Y (zh) * 2005-10-24 2006-10-18 河北工业大学 电流变流体减振器
CN200958546Y (zh) * 2006-10-13 2007-10-10 北京工业大学 一种触发限位型被动控制电流变阻尼器
CN200975034Y (zh) * 2006-10-13 2007-11-14 北京工业大学 一种双出杆双缸电流变阻尼器
CN102338187A (zh) * 2011-08-23 2012-02-01 北京空间机电研究所 星载变阻尼减振装置
CN104179880A (zh) * 2014-09-05 2014-12-03 大连理工大学 多滞变模型的复合叠层电流变减振装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752235A (zh) * 2019-03-27 2019-05-14 上海大学 一种巨电流变液挤压力测试装置
CN112901703A (zh) * 2021-01-29 2021-06-04 重庆大学 一种基于巨电流变液的防沉降式多层螺旋极板阻尼器

Also Published As

Publication number Publication date
CN109307038B (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
CN108506408B (zh) 一种交错可变电极巨电流变液阻尼器
CN108006147B (zh) 一种多层剪切挤压混合式巨电流变液阻尼器
CN108571558B (zh) 一种巨电流变液阻尼与金属橡胶阻尼混合的减振器装置
CN200958546Y (zh) 一种触发限位型被动控制电流变阻尼器
CN109307038B (zh) 一种基于巨电流变液剪切阀式的多层极板的阻尼器
CN200975034Y (zh) 一种双出杆双缸电流变阻尼器
CN108895111B (zh) 一种可变阻尼、可调刚度的减振器
CN108571559B (zh) 一种可变刚度可变阻尼的减振器装置
CN103591209A (zh) 七级可调的往复式电流变液阻尼器
CN112901703B (zh) 一种基于巨电流变液的防沉降式多层螺旋极板阻尼器
CN101237179A (zh) 电流变效应发生装置及其应用和配制的电流变液
CN105780958B (zh) 一种采用stf和mrf组合式抗冲减振耗能阻尼器进行抗冲减振的方法
CN201827286U (zh) 一种具有弹性阻尼的双活塞杆粘滞阻尼器
CN107687494B (zh) 一种多层挤压式巨电流变液阻尼器
CN109780112B (zh) 一种压电式变刚度变阻尼动力吸振器
CN108869616A (zh) 一种多层极板巨电流变液阻尼器
CN202280786U (zh) 一种多层固定极板流动式电流变阻尼器
CN108533662B (zh) 一种巨电流变液阻尼器
CN101709762B (zh) 波纹圆柱面磁流变橡胶减振器
CN102287476A (zh) 一种多层固定极板流动式电流变阻尼器
CN110017344B (zh) 一种减振器
CN104832587A (zh) 集装箱起重机磁流变智能减震装置
CN209799054U (zh) 一种铅挤压磁流变组合耗能装置
CN2769610Y (zh) 电流变复合叠层橡胶支座
CN109281962A (zh) 一种基于巨电流变液剪切模式的制动器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant