CN109293366A - 以可热固化聚碳硅烷3d打印制备碳化硅陶瓷的制备方法 - Google Patents

以可热固化聚碳硅烷3d打印制备碳化硅陶瓷的制备方法 Download PDF

Info

Publication number
CN109293366A
CN109293366A CN201811190421.XA CN201811190421A CN109293366A CN 109293366 A CN109293366 A CN 109293366A CN 201811190421 A CN201811190421 A CN 201811190421A CN 109293366 A CN109293366 A CN 109293366A
Authority
CN
China
Prior art keywords
polycarbosilane
thermally cured
silicon carbide
carbide ceramics
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811190421.XA
Other languages
English (en)
Inventor
顾福祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Science And Technology Co Ltd
Original Assignee
Ningbo Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Science And Technology Co Ltd filed Critical Ningbo Science And Technology Co Ltd
Priority to CN201811190421.XA priority Critical patent/CN109293366A/zh
Publication of CN109293366A publication Critical patent/CN109293366A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Robotics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,将可热固化聚碳硅烷溶解成溶液,并加入到3D打印机中,加热溶液至70℃~135℃后保温一段时间,再由喷头喷出至70℃~135℃的载体上,随着溶剂挥发,形成一层固态可热固化聚碳硅烷,再以固态可热固化聚碳硅烷为新的载体,进行下一次喷涂,重复喷涂,逐层累积可热固化聚碳硅烷形成碳化硅陶瓷的预制体,将预制体放入热处理设备中,先后进行脱除溶剂和可热固化聚碳硅烷的交联固化的处理,再放入热解炉中,氩气气氛中,1100~1200℃进行热解后,得到3D打印碳化硅陶瓷。该制备方法简单,原料单一,工艺流程少,成本低,原料均为市售产品,成品率高,制备的产物纯度高,无添加剂的使用。

Description

以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法
技术领域
本发明属于3D打印陶瓷技术领域,具体涉及一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法。
背景技术
目前用于制备碳化硅陶瓷快速成型的方法有:分层实体制造(简称LOM);熔化沉积造型(简称FDM);形状沉积成型(简称SDM);立体光刻(简称SLA);选区激光烧结(简称SLS);喷墨打印法(简称IJM)。黄小婷以莰烯、碳化硅、粘结剂、分散剂制备了有一定固含量的陶瓷料浆,采用3D技术制备了陶瓷坯体(参见《3D打印碳化硅陶瓷制备及性能研究》,中国硅酸盐学会特种陶瓷分会,第十九届全国高技术陶瓷学术年会摘要集,2016:1),专利CN108409330A中,对碳化硅粉体包覆聚碳硅烷和二氧化硅粉的混合物得到包覆粉,以低浓度聚碳硅烷溶液为“墨水”,采用直接三维打印成型机成型打印粉得到陶瓷生坯,再进行高温烧结得到碳化硅陶瓷。专利CN 105601830 A公开了以超支化聚碳硅烷为主要成分,还包括活性稀释剂、光引发剂、添加剂的光固化材料的制备技术并用于3D打印。专利CN 104559196A公开了一种无色透明的光固化3D打印材料,该打印材料包括含乙烯基团的有机聚硅氧烷、含硅氢键的有机聚硅氧烷、光引发剂、增强填料、助剂。专利CN 102516866 A公开一种紫外光固化材料,包括如下重量百分比的组分:光固化树脂40~60%;光固化稀释剂25~45%;光引发剂2~10%;紫外光存储稳定剂0~0.8%;纳米填料0.5~30%;流平剂0.2~1%。
至今,3D打印陶瓷的制备,按照的原料的状态可分为液态和固态两种。固态3D打印陶瓷原料为陶瓷粉体和某种粘结剂所组成的混合物,其原理是粘结剂在热解过程中包覆或者黏连陶瓷粉体,形成具有一定强度的陶瓷,然而陶瓷粉末和粘结剂本就是两种不同物种,其组成和性质不同,难以形成组成均匀的陶瓷。液态3D打印陶瓷原料可分为陶瓷浆料和溶液共混物两种,3D打印陶瓷原料为浆料时,为了保证浆料稳定均一性需要添加稳定剂等,稳定剂等的添加会造成陶瓷孔隙,对陶瓷性能不利。3D打印陶瓷原料为液态共混物时,其密度不高于0.5g/cm3,碳化硅陶瓷密度为2.4~3.2g/cm3,想要通过液态原料制备出致密的碳化硅陶瓷,线收缩率高,很难保证成品率。液态3D打印陶瓷原料中的光固化引发剂,稳定剂等,虽然在3D打印成型时,至关重要,比如光固化引发剂提供了光固化性能等,但是在成型后的热解制备陶瓷过程中,光固化引发剂,稳定剂等的添加剂均分解,同样造成孔隙和质量损失,对陶瓷的性能有不利影响,甚至造成陶瓷的开裂破碎。综合以上所述,碳化硅陶瓷直接快速成型工艺尚未成熟。
发明内容
针对上述技术现状,本发明旨在提供一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法。
为了实现上述技术目的,将可热固化聚碳硅烷在溶剂中充分溶解,形成溶液后加入3D打印机中,加热至一定温度后,恒温一段时间,由喷头喷涂出热溶液至具有一定温度的载体上,随着溶剂挥发,形成一层固态可热固化聚碳硅烷,再以固态可热固化聚碳硅烷为载体,进行下一次喷涂,重复喷涂,逐层累积后形成3D打印碳化硅陶瓷预制体。将预制体放入热处理设备中,先后进行脱除溶剂和可热固化聚碳硅烷的交联固化处理。再放入热解炉中,氩气条件下,1100~1200℃进行热解后,得到3D打印碳化硅陶瓷。该溶液制备方法简单,原料单一,组成成分简单,工艺流程少,成本低,原料均为市售产品,其应用的设备通用,线收缩率不高于15%,密度2.3~2.4g/cm3,成品率高,制备的产物纯度高。
即,本发明的技术方案为以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,包括如下步骤:
(1)将可热固化聚碳硅烷和溶剂分别按照质量百分比30~60wt%和70℃~40wt%混匀配成溶液;
(2)将溶液加入3D打印机中,加热至一定温度后,恒温一段时间后,由喷头喷出溶液至具有一定温度的载体上,随着溶液中溶剂的挥发,溶液变为固态可热固化聚碳硅烷,再以固态可热固化聚碳硅烷为载体进行下一次喷涂,逐层累积后形成3D打印碳化硅陶瓷的预制体;
(3)将预制体小心转移至热处理装置中,氩气气氛中,对预制体进行热处理,包括溶剂的脱除和可热固化聚碳硅烷自身的交联固化,得到具有一定强度的预制体;
(4)将具有一定强度的预制体放入热解炉中,氩气气氛中,对其进行高温热解,冷却到室温,得到3D打印陶瓷器件。
所述步骤(1)中,作为一种实现方式,具体过程如下:
将可热固化聚碳硅烷和溶剂分别按照质量百分比30~60wt%和70℃~40wt%混匀配成溶液;
可热固化聚碳硅烷的合成:聚碳硅烷和乙烯基硅烷通过硅氢加成反应制得,分子量1700~3200。
作为优选,所述的聚碳硅烷由聚二甲基硅烷高温裂解重排得到的,软化点200~300℃,分子量1500~2800。
作为优选,所述的可热固化聚碳硅烷(PVCS)仅含有硅、碳、氢三种元素。
作为优选,所述的乙烯基硅烷为二甲基二乙烯硅烷、四丙烯基硅烷、四乙烯基硅烷中的一种。
作为优选,所述的可热固化聚碳硅烷的制备方法参考(顾喜双,宋永才.可热固化聚碳硅烷的合成及性能[J].有机硅材料,2015,29(6):462-468.):将聚碳硅烷溶于二甲苯中与二甲基二乙烯基硅烷按质量比1∶1,置于高压釜中,加入铂催化剂,抽真空置换高纯氮气,加压力至12.5MPa;再在高纯氮气保护下加热升温至110℃反应30h;冷却,减压蒸馏,得产物PVCS。PVCS在氮气气氛中处理到400℃,可实现完全交联固化,凝胶含量达到100%,交联固化后,1100~1200℃热解过程中,向碳化硅陶瓷转时不发生发泡、流动等现象,只发生体积收缩现象,最终得到致密的碳化硅陶瓷,陶瓷产率高达78%。
所述步骤(2)中,作为一种实现方式,具体过程如下:将溶液加入3D打印机中,对溶液进行加热,恒温一段时间后,由喷头喷涂热溶液至具有一定温度的载体上,随着溶液中溶剂的挥发,溶液变为固态可热固化聚碳硅烷,再以固态可热固化聚碳硅烷为载体进行下一次喷涂,逐层累积后形成3D打印碳化硅陶瓷的预制体;
作为优选,所述的热溶液的恒温温度为70℃~130℃;
作为优选,所述的热溶液的恒温时间为10~30min;
所述步骤(3)中,作为一种实现方式,具体过程如下:将预制体小心转移至热处理装置中,氩气气氛中,对预制体进行热处理,包括溶剂的脱除和可热固化聚碳硅烷自身的交联固化,得到具有一定强度的预制体;
所述步骤(4)中,作为一种实现方式,具体过程如下:具体过程如下:将步骤(3)处理后的预制体在氩气气氛下,以1℃/min~30℃/min的升温速率,加热至1100℃~1200℃,保温0.5h~5h小时,然后冷却至室温,得到碳化硅陶瓷。
本发明以可热固化聚碳硅烷(PVCS)为原料,为了实现上述技术目的,首先将热固化特性聚碳硅烷在溶剂中充分溶解形成溶液,并加入3D打印机中,加热至一定温度后,恒温一段时间,由喷头喷涂出热溶液至具有一定温度的载体上,随着溶剂的挥发,形成一层固态可热固化聚碳硅烷,再以固态可热固化聚碳硅烷为载体,进行下一次喷涂,逐层累积后形成3D打印碳化硅陶瓷的预制体。将预制体放入热处理设备中,先后进行脱除溶剂和可热固化聚碳硅烷的交联固化处理。再放入热解炉中,氩气条件下,1100~1200℃进行热解后,得到3D打印碳化硅陶瓷。该溶液制备方法简单,原料单一,组成成分简单,工艺流程少,成本低,原料均为市售产品,其应用的设备通用,线收缩率12~15%,体积密度为2.3~2.4g/c,成品率高,制备的产物纯度高。
本发明和现有技术相比的优点:
(1)本发明打印溶液的配制简单,易于操作,室温条件下,可长时间保存。
(2)本发明对打印机等无特殊要求,所需设备市场直接购得;
(3)与现有用于3D打印陶瓷的液态原料相比,本发明的原料单一,陶瓷产物在组成结构上均一性更好,制备过程没有任何添加剂。
(4)本发明与现有用于3D打印陶瓷的固态原料相比,制备的碳化陶瓷组成结构单一。
(5)本发明制备的碳化硅陶瓷线收缩率低,成品率高。
具体实施方式
下面结合实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法的制备过程如下:
步骤一:可热固化聚碳硅烷的制备,参考(顾喜双,宋永才.可热固化聚碳硅烷的合成及性能[J].有机硅材料,2015,29(6):462-468.):将聚碳硅烷(市售,分子量2800,软化点300℃)溶于二甲苯中与四乙烯基硅烷(市售)按质量比l:l,置于高压釜中,加入铂催化剂,抽真空置换高纯氮气,加压力至12.5MPa;再在高纯氮气保护下加热升温至110℃反应30h;冷却,减压蒸馏,得固态产物PVCS。
经表征,可热固化聚碳硅烷的分子量为3150,PVCS在氮气气氛中处理到400℃,可实现完全交联固化,凝胶含量达到100%,交联固化后的聚碳硅烷在1100~1200℃热解过中,向碳化硅陶瓷转时不发生发泡、流动等现象,只发生体积收缩现象,最终得到致密的碳化硅陶瓷,陶瓷产率达80%。
步骤二:将步骤一中制备的可热固化聚碳硅烷与二甲苯按照质量比3∶7配制溶液,将配制好的溶液加入3D打印机中,对溶液进行加热至100℃,保温10min后,由喷头喷出热溶液至100℃的载体上,喷头距离载体1mm,随着溶剂的挥发,载体上形成一层固态可热固化聚碳硅烷,同样方式,在刚形成的固态聚碳硅烷上再进行喷涂热溶剂,形成新的一层固态可热固化聚碳硅烷,重复喷涂热溶剂,逐层累积固态可热固化聚碳硅烷后,形成碳化硅陶瓷预制体;
步骤三:将预制体小心转移至热处理装置中,氩气气氛中,以3℃/min升温至130℃,处理6h,完全脱除溶剂后,继续以3℃/min升温至195℃,保温1h,再继续以3℃/min升温至400℃,保温1h,实现可热固化聚碳硅烷的交联固化,得到具有一定强度的预制体,凝胶含量100%;
步骤四:将步骤三得到的预制体放入热解炉中,氩气气氛中,以2℃/min升温至1100℃,保温1h后,冷却至室温得到3D打印碳化硅陶瓷,体积密度2.4g/cm3
实施例2:
以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法的制备过程如下:
步骤一:可热固化聚碳硅烷的制备,参考(顾喜双,宋永才.可热固化聚碳硅烷的合成及性能[J].有机硅材料,2015,29(6):462-468.):将聚碳硅烷(市售,分子量1500,软化点200℃)溶于二甲苯中与二甲基二乙烯基硅烷(市售)按质量比1∶1,置于高压釜中,加入铂催化剂,抽真空置换高纯氮气,加压力至12.5MPa;再在高纯氮气保护下加热升温至110℃反应30h;冷却,减压蒸馏,得固态产物PVCS。经表征,可热固化聚碳硅烷的分子量为1726,在氮气气氛中处理到400℃,可实现完全交联固化,凝胶含量100%.交联固化后的聚碳硅烷在1100~1200℃热解过中,向碳化硅陶瓷转时不发生发泡、流动等现象,只发生体积收缩现象,最终得到致密的碳化硅陶瓷,陶瓷产率高达78%。
步骤二:将步骤一中制备的可热固化聚碳硅烷与二甲苯按照质量比6∶4配制溶液,将配制好的溶液加入3D打印机中,加热溶液至130℃,保温10min后,由喷头喷出热溶液至130℃的载体上,喷头距离载体0.8mm,随着溶剂的挥发,载体上形成一层固态可热固化聚碳硅烷,接着,在刚形成的固态聚碳硅烷上再进行喷涂热溶剂,形成新的一层固态可热固化聚碳硅烷,重复喷涂热溶剂,逐层累积固态可热固化聚碳硅烷后,形成碳化硅陶瓷预制体;
步骤三:将预制体小心转移至热处理装置中,氩气气氛中,以6℃/min升温至135℃,处理5h,完全脱除溶剂后,继续以6℃/min升温至255℃,保温1h,再继续以6℃/min升温至400℃,保温1h,得到具有一定强度的预制体,凝胶含量100%;
步骤四:将步骤三得到的预制体放入热解炉中,氩气气氛中,以6℃/min升温至1100℃,保温1h后,冷却至室温得到3D打印碳化硅陶瓷,线收缩率15%,体积密度2.3g/cm3
实施例3:
以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法的制备过程如下:
步骤一:可热固化聚碳硅烷的制备,与实施例2相同。
步骤二:将步骤一中制备的可热固化聚碳硅烷与环己烷按照质量比6∶4配制溶液,将配制好的溶液加入3D打印机中,加热溶液至70℃,保温10min后,由喷头喷出热溶液至70℃的载体上,喷头距离载体0.8mm,随着溶剂的挥发,载体上形成一层固态可热固化聚碳硅烷,接着,在刚形成的固态聚碳硅烷上再进行喷涂热溶剂,形成新的一层固态可热固化聚碳硅烷,重复喷涂热溶剂,逐层累积固态可热固化聚碳硅烷后,形成碳化硅陶瓷预制体;
步骤三:将预制体小心转移至热处理装置中,氩气气氛中,以6℃/min升温至135℃,处理5h,完全脱除溶剂后,继续以6℃/min升温至255℃,保温1h,再继续以6℃/min升温至400℃,保温1h,得到具有一定强度的预制体,凝胶含量100%;
步骤四:将步骤三得到的预制体放入热解炉中,氩气气氛中,以6℃/min升温至1100℃,保温1h后,冷却至室温得到3D打印碳化硅陶瓷,线收缩率15%,体积密度2.4g/cm3
对比例1:
一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法的制备过程如下:
步骤一:聚碳硅烷(分子量1900,.软化点260℃)与二甲苯按照质量比6∶4配制溶液,将配制好的溶液加入3D打印机中,加热溶液至130℃,保温10min后,由喷头喷出热溶液至130℃的载体上,喷头距离载体0.8mm,随着溶剂的挥发,载体上形成一层固态可热固化聚碳硅烷,保持喷头与新载体固态可热固化聚碳硅烷的距离仍为0.8mm,在刚形成的固态聚碳硅烷上再进行喷涂热溶剂,形成新的一层固态可热固化聚碳硅烷,重复喷涂操作,逐层累积固态可热固化聚碳硅烷后,形成碳化硅陶瓷预制体;
步骤三:将预制体小心转移至热处理装置中,氩气气氛中,以6℃/min升温至135℃,处理5h,完全脱除溶剂后,继续以6℃/min升温至255℃,保温1h,再继续以6℃/min升温至400℃,保温1h,冷却至室温,预制体已经融化坍塌没有了3D打印的形貌,凝胶含量0%。

Claims (9)

1.以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,其特征在于下方法步骤:
(1)将可热固化聚碳硅烷和溶剂分别按照质量百分比30~60wt%和70℃~40wt%混匀配成溶液;
(2)将溶液加入3D打印机中,加热溶液至70℃~135℃,保温一段时间后,由喷头喷出至70℃~135℃的载体上,随着溶剂挥发,形成一层固态的可热固化聚碳硅烷,再以固态的可热固化聚碳硅烷为新载体,进行下一次喷涂,重复喷涂,逐层累积可热固化聚碳硅烷形成碳化硅陶瓷的预制体;
(3)将预制体小心转移至热处理装置中,氩气气氛中,对预制体进行热处理,包括溶剂的脱除和可热固化聚碳硅烷自身的交联固化,得到预制体;
(4)将预制体放入热解炉中,氩气气氛中,对其进行高温热解,冷却到室温,得到3D打印碳化硅陶瓷。
2.根据权利要求1所述的一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,其特征是:可热固化聚碳硅烷:由聚碳硅烷和乙烯基硅烷通过硅氢加成反应制得,分子量1700~3200。
3.根据权利要求1所述的一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,其特征是:作为优选,所述的聚碳硅烷由聚二甲基硅烷高温裂解重排得到的,软化点200~300℃,分子量1500~2800;
作为优选,所述的可热固化聚碳硅烷(PVCS)仅含有硅、碳、氢三种元素;
作为优选,所述的乙烯基硅烷为二甲基二乙烯硅烷、四丙烯基硅烷、四乙烯基硅烷中的至少一种。
4.根据权利要求1所述的一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,其特征是:溶剂为二甲苯、甲苯、环己烷中的至少一种。
5.根据权利要求1中所述的一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,其特征是:所述步骤(2)中,所述的载体易于与预制体剥离的平板,如玻璃平板。
6.根据权利要求1中所述的一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,其特征是:所述步骤(3)中,
所述的溶剂脱除温度为:以1℃/min~5℃/min的升温速率升温到70℃~135℃,保温3h~30h。作为优选,所述的溶剂脱除温度为:以2℃/min~3℃/min的升温速率升温到70℃~135℃,保温5h~10h。
7.根据权利要求1中所述的一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,其特征是:所述步骤(3)中,所述的可热固化聚碳硅烷自身的交联固化温度为:以溶剂脱除温度为起始点,以0.5℃/min~3℃/min的升温速率升温到200℃~300℃,保温2h~8h后,以3℃/min~10℃/min的升温速率升温到400℃,保温1h~8h。
8.根据权利要求1中所述的一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,其特征是:所述步骤(4)中,具体过程如下:
氩气气氛下,将步骤(3)处理后的预制体,以400℃为起始点,以2℃/min~20℃/min的升温速率,升温至1100℃~1200℃,保温1h~2h小时,然后冷却至室温,得到3D打印碳化硅陶瓷。
9.根据权利要求1中所述的一种以可热固化聚碳硅烷3D打印制备碳化硅陶瓷的制备方法,其特征是:所述步骤(4)中,制备出的碳化硅陶瓷线收缩率12~15%,体积密度为2.3~2.4g/cm3
CN201811190421.XA 2018-10-12 2018-10-12 以可热固化聚碳硅烷3d打印制备碳化硅陶瓷的制备方法 Pending CN109293366A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811190421.XA CN109293366A (zh) 2018-10-12 2018-10-12 以可热固化聚碳硅烷3d打印制备碳化硅陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811190421.XA CN109293366A (zh) 2018-10-12 2018-10-12 以可热固化聚碳硅烷3d打印制备碳化硅陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN109293366A true CN109293366A (zh) 2019-02-01

Family

ID=65162446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811190421.XA Pending CN109293366A (zh) 2018-10-12 2018-10-12 以可热固化聚碳硅烷3d打印制备碳化硅陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN109293366A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947499A (zh) * 2023-07-28 2023-10-27 嘉庚(江苏)特材有限责任公司 一种碳化硅陶瓷材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631179A (en) * 1985-05-28 1986-12-23 Ethyl Corporation Process for the production of silicon carbide by the pyrolysis of a polycarbosilane polymer
CN105085925A (zh) * 2015-09-28 2015-11-25 中国人民解放军国防科学技术大学 一种可热固化交联的聚碳硅烷的合成方法
CN105272266A (zh) * 2015-11-27 2016-01-27 厦门大学 一种先驱体转化碳化硅泡沫陶瓷的制备方法
CN107673763A (zh) * 2017-10-27 2018-02-09 西北工业大学 采用热塑性陶瓷前驱体通过熔融沉积成型3d打印制备陶瓷结构件的方法
CN108277555A (zh) * 2018-01-15 2018-07-13 中国科学院宁波材料技术与工程研究所 以可热固化聚碳硅烷制备低氧含量碳化硅纤维的制备方法
CN108558409A (zh) * 2018-07-09 2018-09-21 俞雪利 一种碳化硅泡沫陶瓷及使用其为材质的液态金属过滤器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631179A (en) * 1985-05-28 1986-12-23 Ethyl Corporation Process for the production of silicon carbide by the pyrolysis of a polycarbosilane polymer
CN105085925A (zh) * 2015-09-28 2015-11-25 中国人民解放军国防科学技术大学 一种可热固化交联的聚碳硅烷的合成方法
CN105272266A (zh) * 2015-11-27 2016-01-27 厦门大学 一种先驱体转化碳化硅泡沫陶瓷的制备方法
CN107673763A (zh) * 2017-10-27 2018-02-09 西北工业大学 采用热塑性陶瓷前驱体通过熔融沉积成型3d打印制备陶瓷结构件的方法
CN108277555A (zh) * 2018-01-15 2018-07-13 中国科学院宁波材料技术与工程研究所 以可热固化聚碳硅烷制备低氧含量碳化硅纤维的制备方法
CN108558409A (zh) * 2018-07-09 2018-09-21 俞雪利 一种碳化硅泡沫陶瓷及使用其为材质的液态金属过滤器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEHAO CHEN 等: "3D printing of SiC ceramic: Direct ink writing with a solution of preceramic polymers", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947499A (zh) * 2023-07-28 2023-10-27 嘉庚(江苏)特材有限责任公司 一种碳化硅陶瓷材料及其制备方法和应用
CN116947499B (zh) * 2023-07-28 2024-04-12 嘉庚(江苏)特材有限责任公司 一种碳化硅陶瓷材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109534817B (zh) 一种先驱体转化类陶瓷的定向多孔结构制备方法
TW201605723A (zh) 製造碳碳複合物之方法
CN107108234A (zh) 基于聚硅氧碳的碳化硅材料、应用和器件
CN110002888B (zh) 一种短纤维制备碳纤维保温毡的方法
CN109467706A (zh) 一种新型液态聚碳硅烷及其制备方法
CN108706978A (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN103086736A (zh) 一种纤维预制体增强多孔氮化硼复合材料及其制备方法
CN105399428A (zh) 一种陶瓷料浆及陶瓷材料3d打印成型方法
CN107903069A (zh) 氮化铝粉体及其制备方法
CN110759739A (zh) 一种石墨烯陶瓷复合材料的制备方法
WO2007056895A1 (fr) Thyrite expansee compacte haute intensite et procede de preparation correspondant
CN109293366A (zh) 以可热固化聚碳硅烷3d打印制备碳化硅陶瓷的制备方法
CN108752038A (zh) 一种以可热固化聚碳硅烷制备的碳化硅泡沫陶瓷
CN108727059A (zh) 一种以可热固化聚碳硅烷制备碳化硅泡沫陶瓷的制备方法
CN109279900B (zh) 一种以可热固化聚碳硅烷3d打印制备碳化硅陶瓷制备方法
CN103757696B (zh) 一种多晶硅铸锭炉用碳纤维保温底板及其制造方法
CN109251034A (zh) 一种3d打印制备碳化硅陶瓷及使用其为陶瓷内衬管道
CN108794053A (zh) 一种材质为碳化硅泡沫陶瓷的多孔介质燃烧器
CN108558409A (zh) 一种碳化硅泡沫陶瓷及使用其为材质的液态金属过滤器
CN104016685B (zh) 一种原位合成碳纳米管改性超高温陶瓷杂化粉体的方法
CN110903089A (zh) 一种采用3D打印制备的SiOC陶瓷及其制备方法
CN115231923A (zh) 一种结构功能一体化陶瓷基复合材料及其制备方法
CN112479719B (zh) 一种反应熔渗法制备陶瓷基复合材料的布料方法及其应用
CN109133931B (zh) 以可热固化聚碳硅烷和聚氨酯制备碳化硅泡沫陶瓷的方法
CN110066185B (zh) 一种C/C-SiC-Al复合材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190201

RJ01 Rejection of invention patent application after publication