CN109269976B - 测量电场下固液界面间摩擦力的测量装置及测量方法 - Google Patents

测量电场下固液界面间摩擦力的测量装置及测量方法 Download PDF

Info

Publication number
CN109269976B
CN109269976B CN201811363360.2A CN201811363360A CN109269976B CN 109269976 B CN109269976 B CN 109269976B CN 201811363360 A CN201811363360 A CN 201811363360A CN 109269976 B CN109269976 B CN 109269976B
Authority
CN
China
Prior art keywords
cantilever beam
linear
support frame
measuring
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811363360.2A
Other languages
English (en)
Other versions
CN109269976A (zh
Inventor
张亚锋
汤程
王永宁
吴晓兰
余家欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN201811363360.2A priority Critical patent/CN109269976B/zh
Publication of CN109269976A publication Critical patent/CN109269976A/zh
Application granted granted Critical
Publication of CN109269976B publication Critical patent/CN109269976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明公开了一种测量电场下固液界面摩擦力的测量装置及测量方法,包括:透明塑料操作柜、水平底座、激光传感器、电动位移平台、直线型悬臂梁、高速摄像头、支撑架、电源以及数据控制处理终端。在测量过程中,随着电动位移平台的缓慢移动,由于直线型悬臂梁与液滴的摩擦力的作用,直线型悬臂梁发生变形,通过激光传感器记录下实验中直线型悬臂梁变形的具体数值,便可计算出电场下固液之间的摩擦力。同时,高速摄像机拍摄整个实验过程,记录液滴的上下表面接触角及接触面积的变化。该测量***具有操作简单、成本低廉、适用范围广、测量精度高的特点,能很好的满足测量电场下固液界面之间摩擦力的要求。

Description

测量电场下固液界面间摩擦力的测量装置及测量方法
技术领域
本发明涉及到一种测量电场下固液界面摩擦力的测量装置及测量方法,具体涉及到利用激光测量悬臂梁的微小变形,通过悬臂梁变形与固液界面行为之间的关系计算出电场下固液界面摩擦力。
背景技术
固液界面行为在生产生活中具有极为重要的作用。通过研究固液界面行为,能在航天航空、船舶制造、纺织、建筑、环保等领域实现抗污、抗结冰、抗粘附、自清洁、吸附等功能。因此,研究固液界面行为不仅能促进基础科学的发展,还能对科技水平的提高起到极大的促进作用。随着科学技术的不断发展和市场需求的扩大,主动控制固液界面行为已成为未来的发展趋势和研究热点。前期研究主要通过改变固体或液滴性质以满足需求,如通过改变固液界面行为,使固体表面实现超亲水或超疏水状态以满足要求,属于准静态控制固液界面行为。随着自动化和信息化的发展,动态控制固液界面行为势在必行。通过电压主动控制固液界面行为是各种主动控制方式中应用最为广泛的一种方式。如通过电压控制微流体实现微流体的分离、合并和运输等功能,已在分析化学、生物医学、食品等领域得到广泛应用。然而,随着微流体控制设备集成化、微型化的进一步发展,微观尺度上的固液界面行为变的更加复杂,对***的稳定性、可靠性产生极大的影响,已成为微流体控制从实验室走向应用的技术瓶颈。因此,深入研究电场下的固液界面行为成了目前研究的热点和难点。
固液界面摩擦力是固液界面最主要的作用力,对固液界面行为起到主导作用。目前,微观尺度下的固液界面行为通常使用倾斜板装置和原子力显微镜、表面力仪等科研设备对摩擦力进行研究。倾斜板装置主要通过观察液滴在重力的作用下在倾斜板上的运动规律,通过计算得到固液界面摩擦力。该方法操作简单,数据直观,但测量精度很低,测试的液滴受各种因素限制,如随着液滴尺寸减小,固液界面摩擦力过大,液滴在倾斜板不会发生运动,将导致测试无法完成。因此,当液滴处于微观尺度时,通常采用原子力显微镜、表面力仪等精密仪器对固液界面的摩擦力进行测试。这类仪器的原理是通过一个微型探针去接触覆盖有水膜的固体表面,通过探针与固体表面接触和分离时的电信号反映固液界面的粘附行为。这种测量方法得到的数据准确,但数据反应的并不是完全的固液界面行为,而是固-液-固三相之间的一种耦合行为,这与实际工况有较大差异。此外,原子力显微镜、表面力仪等属于精密仪器,对操作人员、试验环境、试验过程、试验样品等都提出了极高的要求,微小的变化因素会造成很大的实验误差。不仅如此,测量电场下的固液界面摩擦力需要引入电场力和液相环境,在这个过程中会降低仪器的测试精度及可能造成仪器损坏。因此,亟待开发一种操作便捷、测量精度高、能适用于电场和液相环境的方法和装置,用于精确快速的测量电场下固液界面之间的摩擦力。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。
为了实现根据本发明的这些目的和其它优点,提供了一种测量电场下固液界面间摩擦力的测量装置,包括:
透明塑料操作柜;
水平底座,其设置在透明塑料操作柜内;
电动位移平台,其水平设置在水平底座上;
水平铜板,其粘接设置在电动位移平台的滑移块上;所述水平铜板的上方粘接介质上电润湿标准实验样品;其中,在介质上电润湿标准实验样品上滴加液滴;
直线型悬臂梁,其通过水平支撑架竖直设置在介质上电润湿标准实验样品的正上方且使直线型悬臂梁的末端与液滴接触;
激光传感器,其通过竖直支撑架水平设置在介质上电润湿标准实验样品的侧面且激光传感器的激光束与直线型悬臂梁的末端垂直以拍摄直线型悬臂梁的位移情况;所述水平支撑架连接在竖直支撑架上且与竖直支撑架垂直;
高速摄像头,其设置在水平底座上,且所述高速摄像头位于介质上电润湿标准实验样品的另一侧面以拍摄液滴与直线型悬臂梁的末端的接触情况;
电源,其设置在水平底座上,所述电源的正极通过导线Ⅰ与直线型悬臂梁电连接,电源的负极通过导线Ⅱ与水平铜板电连接;
数据控制处理终端,其位于透明塑料操作柜的外部,所述数据控制处理终端分别与电动位移平台、激光传感器、高速摄像头电通信连接。
优选的是,所述介质上电润湿标准实验样品采用导电凝胶粘接在水平铜板的上方;所述直线型悬臂梁为纯铜管,其外径为0.5mm,内径为0.25mm;所述直线型悬臂梁通过导电凝胶连接在水平支撑架上且与水平支撑架垂直。
优选的是,所述介质上电润湿标准实验样品包括:硅片、镀在硅片上的绝缘层和涂覆并烘干于绝缘层上的疏水层。
优选的是,所述绝缘层为200~400nm的SiO2涂层,所述疏水层为特氟龙层。
优选的是,所述竖直支撑架和水平支撑架的结构相同且垂直连接;所述竖直支撑架和水平支撑架的结构均包括:
平行设置的固定端Ⅰ和固定端Ⅱ,其通过两根平行的直线导轨连接;
滑移块,其滑动连接在两根平行的直线导轨上;
滚珠丝杠,其依次与固定端Ⅰ、滑移块和固定端Ⅱ螺纹转动连接;
其中,所述竖直支撑架的固定端Ⅰ连接在水平底座上,所述水平支撑架的固定端Ⅰ连接在竖直支撑架的固定端Ⅱ上;所述激光传感器连接在竖直支撑架的滑移块上;所述直线型悬臂梁通过导电凝胶连接在水平支撑架的滑移块上。
优选的是,所述电动位移平台通过位移平台数据输出端口与数据控制处理终端电通信连接;所述激光传感器通过激光数据输出端口与数据控制处理终端电通信连接;所述高速摄像头通过图像数据输出端口与数据控制处理终端电通信连接。
本发明还提供一种采用上述的测量装置测量电场下固液界面间摩擦力的方法,包括以下步骤:
步骤一、使用移液器将液滴添加到介质上电润湿标准试验样品表面;
步骤二、开启激光传感器,调整竖直支撑架的滑移块位置,将激光束聚焦在直线型悬臂梁的末端,并通过调节电动位移平台和水平支撑架的滑移块的位置,使直线型悬臂梁的末端与液滴相接触;然后将当前位置设置为激光传感器和电动位移平台的零点位置;
步骤三、开启电源,设置电压值;同时开启激光传感器和高速摄像头记录下整个实验过程;开启电动位移平台按设定速度运动,使直线型悬臂梁和待测液滴发生相对运动,当液滴完全脱离介质上电润湿标准实验样品表面时停止电动位移平台的运动;通过数据控制处理终端导出整个实验过程中激光传感器所记录下的直线型悬臂梁随时间位移的变化情况;
步骤四、将直线型悬臂梁的外径与内径值带入如下公式中:
公式中D为直线型悬臂梁外径,d为直线型悬臂梁内径,得到惯性矩I;
步骤五、将步骤三直线型悬臂梁的位移变化值与步骤四的惯性矩带入如下公式中,计算摩擦力的大小:
公式中F为摩擦力;E为直线型悬臂梁弹性模量;I为直线型悬臂梁惯性矩;L为直线型悬臂梁的长度;ΔL为直线型悬臂梁的线位移,即位移变化值。
优选的是,所述介质上电润湿标准实验样品的制备方法为:将表面镀有SiO2涂层的硅片切割为30*30mm标准样品,随后对标准样品进行超声波清洗5min,用吸水纸吸取表面的水分,将其干燥,保持表面干净清洁;将干净清洁的样品置于台式匀胶机,旋涂特氟龙乳液;台式匀胶机旋涂参数如下:低速500r/min状态下旋涂20s;高速3000r/min状态下旋涂30s;最后将旋涂过的实验样品放置于200℃烤箱中烘烤3h后待其自然冷却,得到介质上电润湿标准实验样品。
优选的是,所述液滴的体积为8~12uL;所述步骤三中,电压值为80~120V,电动位移平台的速度为0.01~0.02mm/s。
本发明采用的电动位移平台的生产厂家北京江云光电科技有限公司型号是Y200TA75。
本发明至少包括以下有益效果:
(1)本发明方法无需价格昂贵的实验器材,计算简单,精度高,具有极高的实用价值。
(2)悬臂梁和试样样品的制造简单,成本低廉,实验人员可根据实际的情况灵活调整。
(3)仪器通过简单调整便可实现对多种力的测量,满足电场和液相测试环境,测试方法简单,可操作性强,实验结果精确,实验结果可重复性高。
(4)实验过程可在常温、常压下进行,无需无尘、恒温等特殊的实验环境;同时检测时间短,5~7分钟即可完成一组实验,可大幅度提高实验效率。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明:
图1为本发明测量电场下固液界面间摩擦力的测量装置的总体***结构示意图;
图2为本发明所述的介质上电润湿标准实验样品的结构示意图;
图3为本发明所述的竖直支撑架和水平支撑架的结构示意图;
图4为本发明测量电场下固液界面间摩擦力的测量装置在实验前后直线型悬臂梁的变化示意图;
图5为本发明测量电场下固液界面间摩擦力的测量装置的直线型悬臂梁位移与时间的关系图。
具体实施方式:
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
本发明设计了一种测量电场下固液界面摩擦力的测量装置及测量方法。在测量过程中,随着电动位移平台的缓慢移动,由于悬臂梁与液滴的摩擦力的作用,悬臂梁发生变形,通过激光传感器记录下实验中悬臂梁变形的具体数值,便可计算出固液之间的摩擦力。同时,高速摄像机拍摄整个实验过程,记录液滴的上下表面接触角及接触面积的变化。此外,悬臂梁也可根据实验的实际情况采用具有不同力学性能的材料,能进一步提高实验的准确性。该测量***具有操作简单、成本低廉、适用范围广、测量精度高的特点,能很好的满足测量电场下固液界面之间摩擦力的要求。
图1示出了本发明的一种测量电场下固液界面间摩擦力的测量装置,包括:
透明塑料操作柜1;
水平底座10,其设置在透明塑料操作柜1内;
电动位移平台2,其水平设置在水平底座10上;
水平铜板8,其粘接设置在电动位移平台2的滑移块201上;所述水平铜板8的上方粘接介质上电润湿标准实验样品9;其中,在介质上电润湿标准实验样品9上滴加液滴7;
直线型悬臂梁3,其通过水平支撑架13竖直设置在介质上电润湿标准实验样品9的正上方且使直线型悬臂梁3的末端与液滴接触;
激光传感器14,其通过竖直支撑架12水平设置在介质上电润湿标准实验样品9的侧面且激光传感器14的激光束与直线型悬臂梁3的末端垂直以拍摄直线型悬臂梁的位移情况;所述水平支撑架13连接在竖直支撑架12上且与竖直支撑架12垂直;
高速摄像头11,其设置在水平底座10上,且所述高速摄像头11位于介质上电润湿标准实验样品9的另一侧面以拍摄液滴7与直线型悬臂梁3的末端的接触情况;
电源4,其设置在水平底座10上,所述电源4的正极通过导线Ⅰ5与直线型悬臂梁3电连接,电源4的负极通过导线Ⅱ6与水平铜板8电连接;
数据控制处理终端18,其位于透明塑料操作柜1的外部,所述数据控制处理终端18分别与电动位移平台2、激光传感器14、高速摄像头11电通信连接。
在这种技术方案中,将介质上电润湿标准实验样品底部通过导电凝胶粘接在水平铜板上,并将水平铜板安装于水平底座上;将水平铜板、介质上电润湿标准实验样品、直线型悬臂梁连入电路中;调整激光传感器位置使其光束聚焦到直线型悬臂梁的末端;在介质上电润湿标准实验样品表面滴加待测液滴,使直线型悬臂梁末端接触液滴;开启电源设定电压值;开启高速摄像头和激光传感器记录实验过程;开启电动位移平台按设定速度运动,使直线型悬臂梁和待测液滴发生相对运动,通过激光传感器记录直线型悬臂梁变形大小。
在上述技术方案中,所述介质上电润湿标准实验样品采用导电凝胶粘接在水平铜板的上方;所述直线型悬臂梁为纯铜管,其外径为0.5mm,内径为0.25mm;所述直线型悬臂梁3通过导电凝胶连接在水平支撑架13上且与水平支撑架13垂直。
在上述技术方案中,如图2所示,所述介质上电润湿标准实验样品9包括:硅片(导电层)、镀在硅片上的绝缘层和涂覆并烘干于绝缘层上的疏水层,选用硅片作为导电层是因为硅片是目前最成熟的半导体导电材料,相比其他材料性价比最高。
在上述技术方案中,所述绝缘层为200~400nm的SiO2涂层,所述疏水层为特氟龙层。选用SiO2涂层是因为SiO2现在是使用范围最广的绝缘材料,在考虑制造技术和成本方面是目前性价比最高的,且SiO2表面光滑也不会影响疏水层的涂覆,200~400nm的厚度选择是因为当厚度过小时,虽然能在电压较小的情况下就能得到较大的接触角变化,但容易导致疏水层被击穿;当厚度过大时,若想得到较大的接触角变化则需要较大的电压;经过查阅相关数据和实验得到在已有实验条件下200~400nm是最好的选择区间。使用特氟龙作为疏水层是因为特氟龙具有优良的化学稳定性、价格低廉、耐腐蚀等优点,并且采用涂覆法相对于金属气相沉积法、等离子体化学气相沉积法相比具有实验环境要求低、成本低廉、实验操作简单的优点。
在上述技术方案中,所述竖直支撑架12和水平支撑架13的结构相同且垂直连接;所述竖直支撑架12和水平支撑架13的结构均包括:
平行设置的固定端Ⅰ19和固定端Ⅱ23,其通过两根平行的直线导轨20连接;
滑移块22,其滑动连接在两根平行的直线导轨20上;
滚珠丝杠21,其依次与固定端Ⅰ19、滑移块22和固定端Ⅱ23螺纹转动连接;通过转动滚珠丝杠21,就可以带动滑移块22在直线导轨上移动;
其中,所述竖直支撑架12的固定端Ⅰ连接在水平底座上,所述水平支撑架13的固定端Ⅰ连接在竖直支撑架的固定端Ⅱ上;所述激光传感器14连接在竖直支撑架12的滑移块上;所述直线型悬臂梁3通过导电凝胶连接在水平支撑架13的滑移块上。
在上述技术方案中,所述电动位移平台2通过位移平台数据输出端口17与数据控制处理终端18电通信连接;所述激光传感器14通过激光数据输出端口16与数据控制处理终端18电通信连接;所述高速摄像头11通过图像数据输出端口15与数据控制处理终端18电通信连接;采用这种方式主要是通过设立集成端口的模式,将数据能统一同步输出,便于后续能便利的提取其中某一段数据和视频信息进行分析。
实施例1:
一种采用上述的测量装置测量电场下固液界面间摩擦力的方法,包括以下步骤:
步骤一、使用移液器将10uL液滴添加到介质上电润湿标准试验样品表面;
步骤二、开启激光传感器,调整竖直支撑架的滑移块位置,将激光束聚焦在直线型悬臂梁的末端,并通过调节电动位移平台和水平支撑架的滑移块的位置,使直线型悬臂梁的末端与液滴相接触;然后将当前位置设置为激光传感器和电动位移平台的零点位置;
步骤三、开启电源,设置电压值为100V;同时开启激光传感器和高速摄像头记录下整个实验过程;开启电动位移平台按0.015mm/s的速度运动,使直线型悬臂梁和待测液滴发生相对运动,当液滴完全脱离介质上电润湿标准实验样品表面时停止电动位移平台的运动;通过数据控制处理终端导出整个实验过程中激光传感器所记录下的直线型悬臂梁随时间位移的变化情况;
步骤四、将直线型悬臂梁的外径与内径值带入如下公式中:
公式中D为直线型悬臂梁外径为0.5mm,d为直线型悬臂梁内径为0.25mm,得到惯性矩I=2.89×10-15m4
步骤五、将步骤三直线型悬臂梁的位移变化值与步骤四的惯性矩带入如下公式中,计算摩擦力的大小:
公式中直线型悬臂梁弹性模量E=101GPa;直线型悬臂梁惯性矩I=2.89×10- 15m4;直线型悬臂梁的长度L=90mm;直线型悬臂梁的线位移ΔL=0.257mm,即位移变化值(即图5中用线圈出的位移差值);摩擦力F=324μN。
在上述实施例1中,所述介质上电润湿标准实验样品的制备方法为:将表面镀有SiO2涂层的硅片切割为30*30mm标准样品,随后对标准样品进行超声波清洗5min,用吸水纸吸取表面的水分,将其干燥,保持表面干净清洁;将干净清洁的样品置于台式匀胶机,旋涂特氟龙乳液;台式匀胶机旋涂参数如下:低速500r/min状态下旋涂20s;高速3000r/min状态下旋涂30s;最后将旋涂过的实验样品放置于200℃烤箱中烘烤3h后待其自然冷却,得到介质上电润湿标准实验样品。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (6)

1.一种测量电场下固液界面间摩擦力的测量装置,其特征在于,包括:
透明塑料操作柜;
水平底座,其设置在透明塑料操作柜内;
电动位移平台,其水平设置在水平底座上;
水平铜板,其粘接设置在电动位移平台的滑移块上;所述水平铜板的上方粘接介质上电润湿标准实验样品;其中,在介质上电润湿标准实验样品上滴加液滴;
直线型悬臂梁,其通过水平支撑架竖直设置在介质上电润湿标准实验样品的正上方且使直线型悬臂梁的末端与液滴接触;
激光传感器,其通过竖直支撑架水平设置在介质上电润湿标准实验样品的侧面且激光传感器的激光束与直线型悬臂梁的末端垂直以拍摄直线型悬臂梁的位移情况;所述水平支撑架连接在竖直支撑架上且与竖直支撑架垂直;
高速摄像头,其设置在水平底座上,且所述高速摄像头位于介质上电润湿标准实验样品的另一侧面以拍摄液滴与直线型悬臂梁的末端的接触情况;
电源,其设置在水平底座上,所述电源的正极通过导线Ⅰ与直线型悬臂梁电连接,电源的负极通过导线Ⅱ与水平铜板电连接;
数据控制处理终端,其位于透明塑料操作柜的外部,所述数据控制处理终端分别与电动位移平台、激光传感器、高速摄像头电通信连接;
所述介质上电润湿标准实验样品采用导电凝胶粘接在水平铜板的上方;所述直线型悬臂梁为纯铜管,其外径为0.5 mm,内径为0.25 mm;所述直线型悬臂梁通过导电凝胶连接在水平支撑架上且与水平支撑架垂直;
所述介质上电润湿标准实验样品包括:硅片、镀在硅片上的绝缘层和涂覆并烘干于绝缘层上的疏水层;
其中,采用所述的测量装置测量电场下固液界面间摩擦力的方法,包括以下步骤:
步骤一、使用移液器将液滴添加到介质上电润湿标准试验样品表面;
步骤二、开启激光传感器,调整竖直支撑架的滑移块位置,将激光束聚焦在直线型悬臂梁的末端,并通过调节电动位移平台和水平支撑架的滑移块的位置,使直线型悬臂梁的末端与液滴相接触;然后将当前位置设置为激光传感器和电动位移平台的零点位置;
步骤三、开启电源,设置电压值;同时开启激光传感器和高速摄像头记录下整个实验过程;开启电动位移平台按设定速度运动,使直线型悬臂梁和待测液滴发生相对运动,当液滴完全脱离介质上电润湿标准实验样品表面时停止电动位移平台的运动;通过数据控制处理终端导出整个实验过程中激光传感器所记录下的直线型悬臂梁随时间位移的变化情况;
步骤四、将直线型悬臂梁的外径与内径值带入如下公式中:
公式中D为直线型悬臂梁外径,d为直线型悬臂梁内径,得到惯性矩I
步骤五、将步骤三直线型悬臂梁的位移变化值与步骤四的惯性矩带入如下公式中,计算摩擦力的大小:
公式中F为摩擦力;E为直线型悬臂梁弹性模量;I为直线型悬臂梁惯性矩;L为直线型悬臂梁的长度;为直线型悬臂梁的线位移,即位移变化值。
2.如权利要求1所述的测量电场下固液界面间摩擦力的测量装置,其特征在于,所述绝缘层为200~400nm的SiO2涂层,所述疏水层为特氟龙层。
3.如权利要求1所述的测量电场下固液界面间摩擦力的测量装置,其特征在于,所述竖直支撑架和水平支撑架的结构相同且垂直连接;所述竖直支撑架和水平支撑架的结构均包括:
平行设置的固定端Ⅰ和固定端Ⅱ,其通过两根平行的直线导轨连接;
滑移块,其滑动连接在两根平行的直线导轨上;
滚珠丝杠,其依次与固定端Ⅰ、滑移块和固定端Ⅱ螺纹转动连接;
其中,所述竖直支撑架的固定端Ⅰ连接在水平底座上,所述水平支撑架的固定端Ⅰ连接在竖直支撑架的固定端Ⅱ上;所述激光传感器连接在竖直支撑架的滑移块上;所述直线型悬臂梁通过导电凝胶连接在水平支撑架的滑移块上。
4.如权利要求1所述的测量电场下固液界面间摩擦力的测量装置,其特征在于,所述电动位移平台通过位移平台数据输出端口与数据控制处理终端电通信连接;所述激光传感器通过激光数据输出端口与数据控制处理终端电通信连接;所述高速摄像头通过图像数据输出端口与数据控制处理终端电通信连接。
5.如权利要求1所述的测量电场下固液界面间摩擦力的测量装置,其特征在于,所述介质上电润湿标准实验样品的制备方法为:将表面镀有SiO2涂层的硅片切割为30*30 mm标准样品,随后对标准样品进行超声波清洗5 min,用吸水纸吸取表面的水分,将其干燥,保持表面干净清洁;将干净清洁的样品置于台式匀胶机,旋涂特氟龙乳液;台式匀胶机旋涂参数如下:低速500 r/min状态下旋涂20 s;高速 3000 r/min状态下旋涂30 s;最后将旋涂过的实验样品放置于200℃烤箱中烘烤3 h后待其自然冷却,得到介质上电润湿标准实验样品。
6.如权利要求1所述的测量电场下固液界面间摩擦力的测量装置,其特征在于,所述液滴的体积为8~12uL;所述步骤三中,电压值为80~120V,电动位移平台的速度为0.01~0.02mm/s。
CN201811363360.2A 2018-11-16 2018-11-16 测量电场下固液界面间摩擦力的测量装置及测量方法 Active CN109269976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811363360.2A CN109269976B (zh) 2018-11-16 2018-11-16 测量电场下固液界面间摩擦力的测量装置及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811363360.2A CN109269976B (zh) 2018-11-16 2018-11-16 测量电场下固液界面间摩擦力的测量装置及测量方法

Publications (2)

Publication Number Publication Date
CN109269976A CN109269976A (zh) 2019-01-25
CN109269976B true CN109269976B (zh) 2023-10-03

Family

ID=65189402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811363360.2A Active CN109269976B (zh) 2018-11-16 2018-11-16 测量电场下固液界面间摩擦力的测量装置及测量方法

Country Status (1)

Country Link
CN (1) CN109269976B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132798B (zh) * 2019-06-11 2024-05-17 西南科技大学 测量电场下固液界面前进/后退角的装置及方法
CN110487679B (zh) * 2019-07-30 2021-07-20 武汉大学 一种测量液滴在固体表面摩擦力的装置
CN111579430B (zh) * 2020-05-12 2023-11-10 宁波工程学院 一种基于液滴运动轨迹的涂层均匀性测试装置及测试方法
CN112014234B (zh) * 2020-08-26 2022-06-28 西南科技大学 一种测量材料表面法向与切向冰黏附强度的装置
CN113702281A (zh) * 2021-08-25 2021-11-26 重庆齿轮箱有限责任公司 一种固液界面粘附力测试方法及***
CN114923850A (zh) * 2022-05-16 2022-08-19 西南科技大学 一种接触式无损检测表面缺陷的方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915137A (ja) * 1995-07-03 1997-01-17 Nikon Corp 摩擦力測定装置および走査型摩擦力顕微鏡
JP2003270117A (ja) * 2002-03-12 2003-09-25 Seiko Epson Corp 動的接触角の測定方法および測定装置
CN1869644A (zh) * 2006-06-16 2006-11-29 东南大学 基于微纳界面的现场电化学接触角测量方法
JP2010054312A (ja) * 2008-08-28 2010-03-11 Dainippon Printing Co Ltd 接触角測定方法
CN204395233U (zh) * 2015-01-13 2015-06-17 青岛市肿瘤医院 一种肿瘤内科放疗***
CN104794965A (zh) * 2015-05-18 2015-07-22 哈尔滨工业大学 一种液面受力测定实验平台
KR20160085935A (ko) * 2015-01-08 2016-07-19 현대자동차주식회사 Afm을 이용한 액적 표면 마찰력 측정 시스템 및 방법
CN106482942A (zh) * 2016-12-19 2017-03-08 东北石油大学 一种可实现横向与纵向加载的试验装置
CN108680468A (zh) * 2018-03-30 2018-10-19 西南科技大学 一种测量电场下固液界面滑移临界电压的方法
CN209432678U (zh) * 2018-11-16 2019-09-24 西南科技大学 测量电场下固液界面间摩擦力的测量装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120047610A1 (en) * 2010-04-09 2012-02-23 Boise State University Cantilever-based optical interface force microscope
JP5714941B2 (ja) * 2011-03-04 2015-05-07 株式会社日立ハイテクサイエンス 摩擦力顕微鏡

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915137A (ja) * 1995-07-03 1997-01-17 Nikon Corp 摩擦力測定装置および走査型摩擦力顕微鏡
JP2003270117A (ja) * 2002-03-12 2003-09-25 Seiko Epson Corp 動的接触角の測定方法および測定装置
CN1869644A (zh) * 2006-06-16 2006-11-29 东南大学 基于微纳界面的现场电化学接触角测量方法
JP2010054312A (ja) * 2008-08-28 2010-03-11 Dainippon Printing Co Ltd 接触角測定方法
KR20160085935A (ko) * 2015-01-08 2016-07-19 현대자동차주식회사 Afm을 이용한 액적 표면 마찰력 측정 시스템 및 방법
CN204395233U (zh) * 2015-01-13 2015-06-17 青岛市肿瘤医院 一种肿瘤内科放疗***
CN104794965A (zh) * 2015-05-18 2015-07-22 哈尔滨工业大学 一种液面受力测定实验平台
CN106482942A (zh) * 2016-12-19 2017-03-08 东北石油大学 一种可实现横向与纵向加载的试验装置
CN108680468A (zh) * 2018-03-30 2018-10-19 西南科技大学 一种测量电场下固液界面滑移临界电压的方法
CN209432678U (zh) * 2018-11-16 2019-09-24 西南科技大学 测量电场下固液界面间摩擦力的测量装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐佩弦.塑料件的设计.中国轻工业出版社,2001,(2001.6),243-244. *
疏水表面上液滴滞后阻力的实验研究;闵春华;郭宇虹;田丽亭;齐承英;;工程热物理学报(第01期);全文 *

Also Published As

Publication number Publication date
CN109269976A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN109269978B (zh) 测量电场下固液界面间粘附力的测量装置及测量方法
CN109269976B (zh) 测量电场下固液界面间摩擦力的测量装置及测量方法
CN101159225A (zh) 导电基板上液膜厚度的测量方法
CN104062322A (zh) 一种湿度传感器及其制备方法
JP2011089934A (ja) 保温装置
CN115436727A (zh) 一种热电器件性能测试装置
CN209432679U (zh) 测量电场下固液界面间粘附力的测量装置
CN102565537A (zh) 一种滑动电接触模拟测试***
CN105115822B (zh) 一种高普适性单轴滑杆式应变仪
CN108414381A (zh) 一种结合摩擦界面原位观测的微型线性往复式摩擦磨损试验机
CN105115890A (zh) 一种蝶形光缆摩擦系数的测量设备及其测量方法
CN202275039U (zh) 一种可直接用于接触角仪的控温平台装置
CN209432678U (zh) 测量电场下固液界面间摩擦力的测量装置
Crane et al. Characterization of electrowetting processes through force measurements
CN116136481A (zh) 一种测量有机液体粘度的装置
CN206638312U (zh) 电容式液面探测装置
Liu et al. Measurement of contact angles in a simulated microgravity environment generated by a large gradient magnetic field
CN109342509A (zh) 接触电阻测试机及其方法
CN113639823B (zh) 一种基于波纹图像识别的高精度液面检测***及方法
CN110132798B (zh) 测量电场下固液界面前进/后退角的装置及方法
CN209992340U (zh) 测量电场下固液界面前进/后退角的装置
CN210198919U (zh) 一种基于微镊的粘附力测试装置
CN103615964A (zh) 一种环境可控的薄液膜厚度自动测量装置
JPH0234048B2 (ja) Ekitaiyokinoondoseigyosochi
Mollenhauer et al. High‐precision positioning and measurement systems for microtribotesting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant