CN109263840A - 一种水下机器人大潜深下潜中推进器及主动故障诊断方法 - Google Patents

一种水下机器人大潜深下潜中推进器及主动故障诊断方法 Download PDF

Info

Publication number
CN109263840A
CN109263840A CN201810869574.0A CN201810869574A CN109263840A CN 109263840 A CN109263840 A CN 109263840A CN 201810869574 A CN201810869574 A CN 201810869574A CN 109263840 A CN109263840 A CN 109263840A
Authority
CN
China
Prior art keywords
propeller
dive
ballast
control computer
navigation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810869574.0A
Other languages
English (en)
Other versions
CN109263840B (zh
Inventor
李晔
何佳雨
李岳明
姜言清
李彦莹
武皓微
安力
孙叶义
王友康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201810869574.0A priority Critical patent/CN109263840B/zh
Publication of CN109263840A publication Critical patent/CN109263840A/zh
Application granted granted Critical
Publication of CN109263840B publication Critical patent/CN109263840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/079Root cause analysis, i.e. error or fault diagnosis

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Earth Drilling (AREA)

Abstract

本发明属于水下机器人领域,具体涉及一种水下机器人大潜深下潜中推进器及主动故障诊断方法。该推进器由主体部分,下潜压载,上浮压载,控制计算机,惯导***,深度计,水平方向上的左推进器,右推进器,提供垂直方向推力的前推进器和后推进器构成,本发明所述的主动故障诊断方法,可在水下机器人大潜深下潜过程中,尽早发现推进器存在的故障,及时回收维修,减少已经下潜至深海,而在执行作业任务过程中再发现故障,所造成的人力、物力损失;该方法,在下潜过程中,可及时发现垂向推进器存在的故障,减小水下机器人因推进器故障坐落海底的风险。

Description

一种水下机器人大潜深下潜中推进器及主动故障诊断方法
技术领域
本发明属于水下机器人领域,具体涉及一种水下机器人大潜深下潜中推进器及主动故障诊断方法。
背景技术
大潜深水下机器人,例如全海深AUV、ARV和HOV组成的深渊科考装备体系是当今海洋科技发展最高水平的标志,该体系将带动我国深海装备相关技术与深渊科学研究达到世界先进水平。
但由于大潜深水下机器人常常在未知的水域活动,周围的环境复杂多变,推进器很有可能受到损伤,出现故障。若故障未被及时检测,会影响水下作业任务的完成,而在垂向推进器出现故障的时候,存在水下机器人坐落海底的风险,甚至该风险将导致水下机器人无法回收,为研究带来巨大损失。
现有的故障诊断技术多为在任务作业过程中进行诊断,例如专利号CN201610169230.X,名称为基于改进灰色预测GM(1,1)模型自主水下航行器传感器故障诊断方法,便是在作业任务中通过收集传感器信息,利用灰色预测模型诊断传感器故障。但该方法的诊断依赖于作业任务中的传感器信息,若推进器在大潜深作业之前已经存在故障,在任务中才被发现,将导致任务的中断,回收水下机器人进行故障修复后才可以再次投入使用,这其中会造成人力、物力的损失。
专利号CN201510766653.5,名称为一种基于改进神经网络的智能水下机器人推进器故障诊断方法,在发现横向速度和艏向角的残差超过阈值的时候,执行主动故障诊断,在首尾垂推施加同样大小的正向推力,通过艏向角残差判断故障。但这种方法仅依靠艏向角残差判断是否故障,很难直观看出推进器的受损情况。
因此,研究水下机器人的主动故障诊断能力,对于提高航行器本身的智能性,减小作业任务中的损失不可或缺。然而,前文所述的主动故障诊断方法都是在水下机器人在执行任务过程中,通过艏向角等状态的反馈检测故障。若已经下潜至海底,在作业任务中才发现推进器的故障,无法完成作业任务,需要将水下机器人进行回收维护,再重新布放,而由于大潜深水下机器人的下潜上浮过程时间漫长,这个过程耗费大量的人力、物力,甚至水下机器人存在丢失的风险。
发明内容
本发明目的在于提供一种水下机器人大潜深下潜中推进器。
一种水下机器人大潜深下潜中推进器,该推进器由主体部分1,下潜压载2,上浮压载3,控制计算机4,惯导***5,深度计6,水平方向上的左推进器7,右推进器8,提供垂直方向推力的前推进器9和后推进器10构成,主体部分1是一个圆边的类长方体,前推进器9安装于主体部分1其中一面的中部,后推进器10安装于主体部分1与前推进器9相对一面的外侧中部,左推进器7安装于主体部分1的中部,控制计算机4安装在主体部分1的非前推进器9与后推进器10所在面的其中一面的内侧中部,下潜压载2与上浮压载3合并安装于主体部分1与控制计算机4相对一面的外侧中部,惯导***5安装在下潜压载2与上浮压载3所在面的内侧中点位置,深度计6安装于惯导***5旁边靠近后推进器10的一侧。
本发明目的还在于提供一种针对水下机器人在大潜深下潜过程中由于推进器故障所带来的风险,减少由于潜在推进器故障带来的损失的水下机器人大潜深下潜中推进器主动故障诊断方法。
一种水下机器人大潜深下潜中推进器主动故障诊断方法,包括以下步骤:
步骤1,水下机器人1由吊车从挂载,布放到水中,进行浮态调整;
步骤2,对水平面左推进器7和右推进器8进行主动诊断:
步骤2.1,控制计算机4向左推进器7下达预定推力预定节拍控制指令;
步骤2.2,惯导***5测量解算艏向角及艏向角变化率,发送给控制计算机4;
步骤2.3,控制计算机4中的滤波器估计转艏力矩推力损失,若大于阈值,则发送左推进器7故障标识到母船,转到步骤2.7,否则转到步骤2.4;
步骤2.4,控制计算机4向右推进器8下达预定推力预定节拍控制指令;
步骤2.5,惯导***5测量解算艏向角及艏向角变化率,发送给控制计算机4;
步骤2.6,控制计算机4中的滤波器估计转艏力矩推力损失,若大于阈值,则发送右推进器8故障标识到母船,转到步骤2.7,否则转到步骤3;
步骤2.7,试验人员回收水下机器人1并维护;
步骤3,对垂直面内的前推进器9和后推进器10进行主动故障诊断:
步骤3.1,控制计算机4同时向前推进器9和后推进器10下达预定推力预定节拍控制指令;
步骤3.2,惯导***5测量解算垂向速度,纵倾角和纵倾角变化率,发送给控制计算机4;
步骤3.3,控制计算机4中的滤波器估计纵倾力矩推力损失,若大于阈值,则转到步骤3.4,否则转到步骤4;
步骤3.4,试验人员回收水下机器人1并维护。
步骤4,控制计算机4设定垂向推进器无故障情况下,下潜压载2的抛离深度;
步骤5,水下机器人1在下潜压载2的作用下,无动力下潜;
步骤6,控制计算机4根据所述步骤5中深度计的6信息判断是否到达下潜压载2的抛离高度,若到达抛离高度,转到步骤9,否则转到步骤7;
步骤7,控制计算机4记录深度计6信息,每下潜500m,重复步骤2,进行水平面推进器主动诊断,若未发现故障,转到步骤8,否则认为在水平推进器存在较大故障的情况下,很难完成预定探索任务,同时抛离下潜压载2以及上浮压载3,上浮到水面进行维护;
步骤8,重复步骤3进行垂直面推进器主动诊断,若未发现故障,转到步骤5,否则,继续判断是否是单个垂向推进器发生故障:
步骤8.1,控制计算机4向前推进器8下达预定推力预定节拍控制指令;
步骤8.2,惯导***5测量纵倾角和纵倾角变化率,发送给控制计算机4;
步骤8.3,控制计算机4中的滤波器估计纵倾力矩推力损失,若与步骤2.6中所估计的纵倾力矩推力损失之间偏差小于阈值,则发送前推进器8故障标识到母船,转到步骤8.4,否则转到步骤8.5;
步骤8.4,控制计算机4修改增加下潜压载2的抛离深度;
步骤8.5,在前后垂向推进器9和10均存在故障情况下,认为抛离压载的减速过程存在较大风险,容易发生坐落海底危险,控制计算机4发出指令,水下机器人1抛离上浮压载1和下潜压载2,试验人员回收水下机器人1并维护。
步骤9,水下机器人1到达预定下潜压载2抛离深度,水下机器人1抛掉下潜抛载2,进入作业面,开始作业任务。
本发明的和现有技术相比,有益效果在于:
1.本发明所述的主动故障诊断方法,可在水下机器人大潜深下潜过程中,尽早发现推进器存在的故障,及时回收维修,减少已经下潜至深海,而在执行作业任务过程中再发现故障,所造成的人力、物力损失;
2.本发明所述的主动故障诊断方法,在下潜过程中,可及时发现垂向推进器存在的故障,减小水下机器人因推进器故障坐落海底的风险。
附图说明
图1为本发明示例水下机器人的基本结构图;
图2为本发明水下机器人大潜深下潜过程主动诊断流程图;
图3为本发明主动诊断水平面推进器故障详细流程图;
图4为本发明主动诊断垂直面推进器故障详细流程图。
具体实施方式
下面结合附图对本发明进行更详细的描述:
一种水下机器人在大潜深下潜过程中,每下潜一定深度,便通过预定控制指令,通过状态反馈,主动检测推进器故障的方法。该方法可尽可能减小因故障而重复投放水下机器人所带来的人力、物力损失,同时降低水下机器人坐落海底的风险。本发明所述的对推力损失信息进行估计的滤波器,利用了水下机器人的运动模型建立。
本发明提供了一种水下机器人在大潜深下潜中主动诊断推进器故障的方法,所述的主动诊断方法,即在水下机器人大潜深下潜过程中,每间隔一定下潜深度,由控制计算机分别向水平面与垂直面推进器下达预定控制指令。所述的控制计算机中的滤波器依据水下机器人的状态反馈信息,估计相应自由度存在的推力损失。所估计的推力损失超过设定阈值时,判断推进器存在故障,再根据能否完成任务要求判断是否需要回收维护。所述的下潜深度信息由水下机器人搭载的深度计提供,所述的状态反馈信息由惯导***提供。本发明提供的主动故障诊断方法,可在水下机器人大潜深下潜过程中,尽早发现推进器存在的故障,及时回收维修,减少已经下潜至深海,在执行作业任务过程中才发现故障所造成的人力、物力损失;同时,在下潜过程中,及时发现垂向推进器存在的故障,可减小水下机器人因为垂向推进器故障发生的坐落海底风险。
本发明提供一种水下机器人大潜深下潜中推进器主动诊断方法,包括以下步骤:
步骤1,水下机器人由吊车从母船挂载,被吊放到水中,并进行浮态调整;
步骤2,主动诊断水平面推进器故障:控制计算机分别对水平方向上左右推进器下达预定推力预定节拍的控制指令,惯导***获取艏向角以及艏向角变化率,并通过滤波器对水平自由度存在的推力损失进行估计,若所述的推力损失超过阈值,则认为推进器存在故障,由控制计算机向母船发送故障标识,试验人员对水下机器人进行回收;
步骤3,主动诊断垂直面推进器故障:控制计算机对垂直方向上的前后推进器下达控制指令,惯导***获取垂向速度以及纵倾角变化信息,并通过滤波器对推力损失进行估计,若所述的推力损失超过阈值,认为推进器存在故障,回收水下机器人并维护;
步骤4,初始化设定下潜压载的抛离深度,该数值将根据垂直面推进器的故障情况进行后续修正;
步骤5,水下机器人无动力下潜;
步骤6,根据深度计的信息判断是否到达抛离压载的深度,若到达抛离深度,转到步骤9,否则转到步骤7;
步骤7,水下机器人记录深度计信息,每下潜500m深,重复步骤2主动诊断水平面推进器故障,若未发现故障,转到步骤8,否则回收水下机器人并对推进器进行维护;
步骤8,重复步骤3主动诊断垂直面推进器故障,若未发现故障,转到步骤5,否则分别对垂直面前后推进器下达控制指令,判断是否是单个垂向推进器发生故障。若只有单个垂向推进器故障,则修正步骤4中的下潜压载抛离深度,否则回收水下机器人并对推进器进行维护;
步骤9,水下机器人到达抛离下潜压载的深度,抛离下潜压载,进入作业面,开始作业任务;
图1为本发明示例所采用的大潜深水下机器人的基本结构示意图,由于该水下机器人推进器布置形式已经属于简单模式,所述的主动故障诊断方法,若应用在其他不同数量推进器的大潜深水下机器人上,仅需要针对特定水下机器人,对需要主动诊断的推进器数目进行调整,而整个主动故障诊断的思想是一致的。由图1可知,所述的大潜深水下机器人由主体部分1,下潜压载2,上浮压载3,控制计算机4,惯导***5,深度计6,水平方向上的左推进器7,右推进器8,提供垂直方向推力的前推进器9和后推进器10构成。
下面结合图2到图4,对水下机器人推进器主动故障诊断的流程进行进一步阐述:
步骤1,水下机器人1由吊车从挂载,布放到水中,进行浮态调整;
步骤2,对水平面左推进器7和右推进器8进行主动诊断:
步骤2.1,控制计算机4向左推进器7下达预定推力预定节拍控制指令;
步骤2.2,惯导***5测量解算艏向角及艏向角变化率,发送给控制计算机4;
步骤2.3,控制计算机4中的滤波器估计转艏力矩推力损失,若大于阈值,则发送左推进器7故障标识到母船,转到步骤2.7,否则转到步骤2.4;
步骤2.4,控制计算机4向右推进器8下达预定推力预定节拍控制指令;
步骤2.5,惯导***5测量解算艏向角及艏向角变化率,发送给控制计算机4;
步骤2.6,控制计算机4中的滤波器估计转艏力矩推力损失,若大于阈值,则发送右推进器8故障标识到母船,转到步骤2.7,否则转到步骤3;
步骤2.7,试验人员回收水下机器人1并维护;
步骤3,对垂直面内的前推进器9和后推进器10进行主动故障诊断:
步骤3.1,控制计算机4同时向前推进器9和后推进器10下达预定推力预定节拍控制指令;
步骤3.2,惯导***5测量解算垂向速度,纵倾角和纵倾角变化率,发送给控制计算机4;
步骤3.3,控制计算机4中的滤波器估计纵倾力矩推力损失,若大于阈值,则转到步骤3.4,否则转到步骤4;
步骤3.4,试验人员回收水下机器人1并维护。
步骤4,控制计算机4设定垂向推进器无故障情况下,下潜压载2的抛离深度;
步骤5,水下机器人1在下潜压载2的作用下,无动力下潜;
步骤6,控制计算机4根据深度计6信息判断是否到达下潜压载2的抛离高度,若到达抛离高度,转到步骤9,否则转到步骤7;
步骤7,控制计算机4记录深度计6信息,每下潜500m,重复步骤2,进行水平面推进器主动诊断,若未发现故障,转到步骤8,否则认为在水平推进器存在较大故障的情况下,很难完成预定探索任务,同时抛离下潜压载2以及上浮压载3,上浮到水面进行维护;
步骤8,重复步骤3进行垂直面推进器主动诊断,若未发现故障,转到步骤5,否则,继续判断是否是单个垂向推进器发生故障:
步骤8.1,控制计算机4向前推进器8下达预定推力预定节拍控制指令;
步骤8.2,惯导***5测量纵倾角和纵倾角变化率,发送给控制计算机4;
步骤8.3,控制计算机4中的滤波器估计纵倾力矩推力损失,若与步骤2.6中所估计的纵倾力矩推力损失之间偏差小于阈值,则发送前推进器8故障标识到母船,转到步骤8.4,否则转到步骤8.5;
步骤8.4,控制计算机4修改增加下潜压载2的抛离深度;
步骤8.5,在前后垂向推进器9和10均存在故障情况下,认为抛离压载的减速过程存在较大风险,容易发生坐落海底危险,控制计算机4发出指令,水下机器人1抛离上浮压载1和下潜压载2,试验人员回收水下机器人1并维护。
步骤9,水下机器人1到达预定下潜压载2抛离深度,水下机器人1抛掉下潜抛载2,进入作业面,开始作业任务。
本发明所述的对推力损失信息进行估计的滤波器,根据水下机器人的运动模型建立,利用水下机器人的状态信息,估计在不同自由度上的推力损失。利用所述的滤波器,可判断推进器的故障情况,辅助决策能否继续执行试验任务。
步骤1,水下机器人由吊车从母船挂载,被吊放到水中,并进行浮态调整;
步骤2,主动诊断水平面推进器故障:控制计算机分别对水平方向上左右推进器下达预定推力预定节拍的控制指令,惯导***获取艏向角以及艏向角变化率,并通过滤波器对水平自由度存在的推力损失进行估计,若所述的推力损失超过阈值,则认为推进器存在故障,由控制计算机向母船发送故障标识,试验人员对水下机器人进行回收;
步骤3,主动诊断垂直面推进器故障:控制计算机对垂直方向上的前后推进器下达控制指令,惯导***获取垂向速度以及纵倾角变化信息,并通过滤波器对推力损失进行估计,若所述的推力损失超过阈值,认为推进器存在故障,回收水下机器人并维护;
步骤4,初始化设定下潜压载的抛离深度,该数值将根据垂直面推进器的故障情况进行后续修正;
步骤5,水下机器人无动力下潜;
步骤6,根据深度计的信息判断是否到达抛离压载的深度,若到达抛离深度,转到步骤9,否则转到步骤7;
步骤7,水下机器人记录深度计信息,每下潜500m深,重复步骤2主动诊断水平面推进器故障,若未发现故障,转到步骤8,否则回收水下机器人并对推进器进行维护;
步骤8,重复步骤3主动诊断垂直面推进器故障,若未发现故障,转到步骤5,否则分别对垂直面前后推进器下达控制指令,判断是否是单个垂向推进器发生故障。若只有单个垂向推进器故障,则修正步骤4中的下潜压载抛离深度,否则回收水下机器人并对推进器进行维护;
步骤9,水下机器人到达抛离下潜压载的深度,抛离下潜压载,进入作业面,开始作业任务。

Claims (2)

1.一种水下机器人大潜深下潜中推进器,其特征在于:该推进器由主体部分(1),下潜压载(2),上浮压载(3),控制计算机(4),惯导***(5),深度计(6),水平方向上的左推进器(7),右推进器(8),提供垂直方向推力的前推进器(9)和后推进器(10)构成,主体部分(1)是一个圆边的类长方体,前推进器(9)安装于主体部分(1)其中一面的中部,后推进器(10)安装于主体部分(1)与前推进器(9)相对一面的外侧中部,左推进器(7)安装于主体部分(1)的中部,控制计算机(4)安装在主体部分(1)的非前推进器(9)与后推进器(10)所在面的其中一面的内侧中部,下潜压载(2)与上浮压载(3)合并安装于主体部分(1)与控制计算机(4)相对一面的外侧中部,惯导***(5)安装在下潜压载(2)与上浮压载(3)所在面的内侧中点位置,深度计(6)安装于惯导***(5)旁边靠近后推进器(10)的一侧。
2.一种水下机器人大潜深下潜中推进器的主动故障诊断方法,其特征在于,本方法包括以下步骤:
步骤1,水下机器人1由吊车从挂载,布放到水中,进行浮态调整;
步骤2,对水平面左推进器(7)和右推进器(8)进行主动诊断:
步骤2.1,控制计算机(4)向左推进器(7)下达预定推力预定节拍控制指令;
步骤2.2,根据预定推力预定节拍控制指令,惯导***(5)测量解算艏向角及艏向角变化率,发送给控制计算机(4);
步骤2.3,根据步骤2.2所述的惯导***(5)测量解算的艏向角及艏向角变化率,控制计算机(4)中的滤波器估计转艏力矩推力损失,若大于阈值,则发送左推进器(7)故障标识到母船,转到步骤2.7,否则转到步骤2.4;
步骤2.4,根据步骤2.3的判断,控制计算机(4)向右推进器(8)下达预定推力预定节拍控制指令;
步骤2.5,根据步骤2.4所述的预定推力预定节拍控制指令,惯导***(5)测量解算艏向角及艏向角变化率,发送给控制计算机(4);
步骤2.6,根据步骤2.5所述的惯导***(5)测量解算的艏向角及艏向角变化率,控制计算机(4)中的滤波器估计转艏力矩推力损失,若大于阈值,则发送右推进器(8)故障标识到母船,转到步骤2.7,否则转到步骤3;
步骤2.7,根据步骤2.6的判断,试验人员判断是否回收水下机器人1并维护;
步骤3,对垂直面内的前推进器(9)和后推进器(10)进行主动故障诊断:
步骤3.1,控制计算机(4)同时向前推进器(9)和后推进器(10)下达预定推力预定节拍控制指令;
步骤3.2,根据步骤3.1所述预定推力预定节拍控制指令,惯导***(5)测量解算垂向速度,纵倾角和纵倾角变化率,发送给控制计算机(4);
步骤3.3,根据步骤3.2所述惯导***(5)测量解算的垂向速度,纵倾角和纵倾角变化率,控制计算机(4)中的滤波器估计纵倾力矩推力损失,若大于阈值,则转到步骤3.4,否则转到步骤4;
步骤3.4,根据步骤3.3的判断,试验人员回收水下机器人1并维护;
步骤4,控制计算机(4)设定垂向推进器无故障情况下,下潜压载(2)的抛离深度;
步骤5,根据下潜压载(2)的抛离深度,水下机器人1在下潜压载(2)的作用下,无动力下潜;
步骤6,控制计算机(4)根据所述步骤5中深度计(6)的信息判断是否到达下潜压载(2)的抛离高度,若到达抛离高度,转到步骤9,否则转到步骤7;
步骤7,根据步骤6的判断,控制计算机(4)记录深度计(6)信息,每下潜500m,重复步骤2,进行水平面推进器主动诊断,若未发现故障,转到步骤8,否则认为在水平推进器存在较大故障的情况下,很难完成预定探索任务,同时抛离下潜压载(2)以及上浮压载(3),上浮到水面进行维护;
步骤8,重复步骤3进行垂直面推进器主动诊断,若未发现故障,转到步骤5,否则,继续判断是否是单个垂向推进器发生故障:
步骤8.1,控制计算机(4)向前推进器(9)下达预定推力预定节拍控制指令;
步骤8.2,根据步骤8.1所述预定推力预定节拍控制指令,惯导***(5)测量纵倾角和纵倾角变化率,发送给控制计算机(4);
步骤8.3,根据步骤8.2所述惯导***(5)测量的纵倾角和纵倾角变化率,控制计算机(4)中的滤波器估计纵倾力矩推力损失,若与步骤2.6中所估计的纵倾力矩推力损失之间偏差小于阈值,则发送前推进器(9)故障标识到母船,转到步骤8.4,否则转到步骤8.5;
步骤8.4,控制计算机(4)修改增加下潜压载(2)的抛离深度;
步骤8.5,在前向推进器(9)和后向推进器(10)均存在故障情况下,认为抛离压载的减速过程存在较大风险,容易发生坐落海底危险,控制计算机(4)发出指令,水下机器人主体部分(1)抛离上浮压载(3)和下潜压载(2),试验人员回收水下机器人并维护;
步骤9,水下机器人1到达预定下潜压载(2)抛离深度,水下机器人1抛掉下潜压载(2),进入作业面,开始作业任务。
CN201810869574.0A 2018-08-02 2018-08-02 一种水下机器人大潜深下潜中推进器及主动故障诊断方法 Active CN109263840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810869574.0A CN109263840B (zh) 2018-08-02 2018-08-02 一种水下机器人大潜深下潜中推进器及主动故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810869574.0A CN109263840B (zh) 2018-08-02 2018-08-02 一种水下机器人大潜深下潜中推进器及主动故障诊断方法

Publications (2)

Publication Number Publication Date
CN109263840A true CN109263840A (zh) 2019-01-25
CN109263840B CN109263840B (zh) 2020-05-15

Family

ID=65152980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810869574.0A Active CN109263840B (zh) 2018-08-02 2018-08-02 一种水下机器人大潜深下潜中推进器及主动故障诊断方法

Country Status (1)

Country Link
CN (1) CN109263840B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111319731A (zh) * 2020-03-16 2020-06-23 上海交通大学 一种压载水设备的故障诊断方法
CN113129559A (zh) * 2019-12-31 2021-07-16 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 功率分配机器人的故障预警***和方法
CN115092344A (zh) * 2022-07-14 2022-09-23 中国科学院沈阳自动化研究所 一种用于大深度水下机器人姿态调整的配重与压铁布局方法
CN116300660A (zh) * 2023-05-15 2023-06-23 海南坤联科技有限公司 潜艇控制方法及***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2186716B (en) * 1986-02-17 1990-02-14 Tokyo Keiki Kk Marine automatic steering apparatus
JP2001097280A (ja) * 1999-09-30 2001-04-10 Aiwa Co Ltd ダイバー用の安全潜行監視装置
CN101323363A (zh) * 2008-07-30 2008-12-17 哈尔滨工程大学 一种大深度无人潜水器及其深度复合控制方法
CN201189952Y (zh) * 2008-05-06 2009-02-04 赛赫 潜水器
CN101462587A (zh) * 2009-01-16 2009-06-24 哈尔滨工程大学 冗余控制的微小型水下机器人及故障诊断和容错控制方法
CN104477359A (zh) * 2014-10-27 2015-04-01 中国船舶重工集团公司第七〇五研究所 水下机器人多自由度矢量推进布局方法
CN105446821A (zh) * 2015-11-11 2016-03-30 哈尔滨工程大学 一种基于改进神经网络的智能水下机器人推进器故障诊断方法
CN106527133A (zh) * 2016-11-11 2017-03-22 哈尔滨工程大学 一种船舶多桨协调控制分配方法
CN107985533A (zh) * 2017-12-26 2018-05-04 天津深之蓝海洋设备科技有限公司 无人遥控潜水器及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2186716B (en) * 1986-02-17 1990-02-14 Tokyo Keiki Kk Marine automatic steering apparatus
JP2001097280A (ja) * 1999-09-30 2001-04-10 Aiwa Co Ltd ダイバー用の安全潜行監視装置
CN201189952Y (zh) * 2008-05-06 2009-02-04 赛赫 潜水器
CN101323363A (zh) * 2008-07-30 2008-12-17 哈尔滨工程大学 一种大深度无人潜水器及其深度复合控制方法
CN101462587A (zh) * 2009-01-16 2009-06-24 哈尔滨工程大学 冗余控制的微小型水下机器人及故障诊断和容错控制方法
CN104477359A (zh) * 2014-10-27 2015-04-01 中国船舶重工集团公司第七〇五研究所 水下机器人多自由度矢量推进布局方法
CN105446821A (zh) * 2015-11-11 2016-03-30 哈尔滨工程大学 一种基于改进神经网络的智能水下机器人推进器故障诊断方法
CN106527133A (zh) * 2016-11-11 2017-03-22 哈尔滨工程大学 一种船舶多桨协调控制分配方法
CN107985533A (zh) * 2017-12-26 2018-05-04 天津深之蓝海洋设备科技有限公司 无人遥控潜水器及其控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113129559A (zh) * 2019-12-31 2021-07-16 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 功率分配机器人的故障预警***和方法
CN113129559B (zh) * 2019-12-31 2022-08-05 国创移动能源创新中心(江苏)有限公司 功率分配机器人的故障预警***和方法
CN111319731A (zh) * 2020-03-16 2020-06-23 上海交通大学 一种压载水设备的故障诊断方法
CN115092344A (zh) * 2022-07-14 2022-09-23 中国科学院沈阳自动化研究所 一种用于大深度水下机器人姿态调整的配重与压铁布局方法
CN115092344B (zh) * 2022-07-14 2024-03-19 中国科学院沈阳自动化研究所 用于大深度水下机器人姿态调整的配重与压铁布局方法
CN116300660A (zh) * 2023-05-15 2023-06-23 海南坤联科技有限公司 潜艇控制方法及***

Also Published As

Publication number Publication date
CN109263840B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
CN109263840A (zh) 一种水下机器人大潜深下潜中推进器及主动故障诊断方法
CN109460061B (zh) 一种自主水下机器人和地质取样设备的并行作业方法
CN110794855A (zh) 一种水下机器人综合控制***及其方法
CN105446821A (zh) 一种基于改进神经网络的智能水下机器人推进器故障诊断方法
EP3176068A1 (en) Vessel characteristic estimation device and automatic steering device
CN105783940B (zh) 基于信息预评判及补偿修正的sins/dvl/es组合导航方法
CN105549602B (zh) 浮力均衡装置辅助的uuv主动坐底方法
CN110096048B (zh) 一种基于区间观测器的自主水下机器人auv执行器故障检测方法
CN110555398B (zh) 一种基于滤波最优平滑确定故障首达时刻的故障诊断方法
CN111745648A (zh) 水下机器人控制方法及装置
CN108132617B (zh) 一种带有浮力调节装置的自主水下机器人监管休眠方法
Blanke et al. Fault tolerant position-mooring control for offshore vessels
JP4706032B2 (ja) 自動船位保持制御方法及び自動船位保持制御装置
US11148774B2 (en) Rebalancing of underwater vehicles
CN108469731B (zh) 一种波浪滑翔器故障监测与鲁棒控制方法
CN105737876A (zh) 水下自主潜器传感器状态诊断与信号恢复***
CN204575040U (zh) 一种耙吸挖泥船土方测量***
CN112319698A (zh) 基于感知锚链张力的智能船舶的锚泊方法
CN206475196U (zh) 一种双体探测水下机器人装置
CN113501114B (zh) 一种基于深潜器无动力下潜实时信息的深海海流计算方法
Pivano et al. Experimental validation of a marine propeller thrust estimation scheme
CN110837254B (zh) 一种水翼艇纵向运动控制方法
CN109407669B (zh) 一种多层式容错型自航船模的控制方法
CN106843241A (zh) 基于辅助推进器的uuv水下定点回转探测方法及控制***
CN207487934U (zh) 海洋核动力平台单点系泊***试车设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant