CN109256798B - 一种电压对称故障下dfig***的穿越运行方法 - Google Patents

一种电压对称故障下dfig***的穿越运行方法 Download PDF

Info

Publication number
CN109256798B
CN109256798B CN201810815587.XA CN201810815587A CN109256798B CN 109256798 B CN109256798 B CN 109256798B CN 201810815587 A CN201810815587 A CN 201810815587A CN 109256798 B CN109256798 B CN 109256798B
Authority
CN
China
Prior art keywords
voltage
side converter
network side
grid
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810815587.XA
Other languages
English (en)
Other versions
CN109256798A (zh
Inventor
康祎龙
苗世洪
刘子文
范志华
晁凯云
刘昱良
刘君瑶
李力行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201810815587.XA priority Critical patent/CN109256798B/zh
Publication of CN109256798A publication Critical patent/CN109256798A/zh
Application granted granted Critical
Publication of CN109256798B publication Critical patent/CN109256798B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H02J3/386
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种电压对称故障下DFIG***的穿越运行方法,所述DFIG***的电网侧设置串联网侧变换器,所述穿越运行方法包括:当电网电压发生对称故障时,通过坐标转换得到定子电压的正序分量,利用电网电压和定子电压的正序分量计算得到串联网侧变换器应输出的补偿电压;利用串联网侧变换器应输出的补偿电压补偿定子电压和并联网侧变换器交流电压,使得定子电压、转子电压、定子电流和转子电流保持故障前状态,同时使得并联网侧变换器交流电压保持不变,进而稳定直流母线电压。本发明克服了电网故障电压对双馈风力发电***造成的不良影响,防止风电机组在电网电压故障时从电网中解列,保持并网运行。

Description

一种电压对称故障下DFIG***的穿越运行方法
技术领域
本发明属于双馈风力发电***的控制技术领域,更具体地,涉及一种电压对称故障下DFIG***的穿越运行方法。
背景技术
随着电力电子和自动控制技术的快速发展,以风力发电为代表的可再生能源发电技术取得了长足的进步,其中,变速恒频双馈发感应电机(Doubly Fed InductionGenerator,DFIG)以良好的控制特性、有功和无功功率可解耦控制、成本低廉以及效率高等优势,在风力发电技术中获得的应用日益广泛,成为了风电场的主流机型,且随着大规模的风电场并网,DFIG的控制技术也日臻成熟。但在实际应用中,随着DFIG风电场装机容量的大幅提升,越来越多的风机脱网事故发生,而这些脱网事故大都是由于风电机组不具备高电压穿越(High Voltage Ride Through,HVRT)和低电压穿越(Low Voltage Ride Through,LVRT)能力或只适应特定的故障条件导致的。当电网电压出现故障时,风电机组从电网中解列,不再为电网提供必要的电压支持,进而引起一系列的连锁反应,危及电网的安全稳定运行。因此各国的运营商相继提出了一系列的风电场并网规定以及准则要求,其主要是:1)风电机组能够抵御各类电网故障并维持并网运行从而为电网提供一定有功和无功功率支撑;2)风电机组应为电网电压的快速恢复和电网的安全稳定运行提高必要的支持。
中国杂志《电网技术》第32卷第6期名称为“采用串联网侧变换器的双馈风电***高电压穿越控制策略”公开了双馈风力发电***当电网电压骤升时采用SGSC的控制方法,该文件中指出当电网电压骤升时,定、转子会产生过流和过压,危及机组运行,文章采用网侧变换器提出了增强高电压穿越运行能力的控制策略,在电网电压对称骤升时,该策略通过同样控制串联网侧变换器的输出电压,维持定子端电压不变,有效抑制定、转子电压以及电流的剧烈变化,避免了发电机绕组发热绝缘以及大量电力电子器件的损坏等不良现象。此外,该文件还对PGSC和RSC进行了控制以维持直流母线电压稳定以及抑制DFIG的电磁转矩和输出功率的波动,克服了风电***机械轴系在电网电压骤升时受到较大冲击力。但是以上控制策略存在以下问题:①串联网侧变换器接入网侧与定子侧之间,该策略仅能保持DFIG定子端电压维持不变,PGSC交流***电压仍会受到电网电压骤升的影响;②PGSC和RSC需要通过进一步的改进才能维持直流母线电压不变及抑制输出功率的波动,增加了控制***的计算负担。
《IEEE Access》杂志“Improved Fault Ride Through Capability in DFIGBased Wind Turbines Using Dynamic Voltage Restorer With Combined Feed-Forwardand Feed-Back Control”公开了DFIG***在电网故障时采用动态电压恢复器(dynamicvoltage restorer,DVR)的控制策略,DVR被串联接入电网与双馈风力发电***之间用于补偿电压,通过对DVR的合理控制,增强了DFIG***在电网故障时的穿越能力,但是该策略中DVR的直流母线电压需要用储能单元提供支持,致使***成本大幅增加。
由此可见,现有技术存在电网故障电压对双馈风力发电***造成不良影响,风电机组在电网电压故障时从电网中解列,难以保持并网运行的技术问题。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种电压对称故障下DFIG***的穿越运行方法,由此解决现有技术存在电网故障电压对双馈风力发电***造成不良影响,风电机组在电网电压故障时从电网中解列,难以保持并网运行的技术问题。
为实现上述目的,本发明提供了一种电压对称故障下DFIG***的穿越运行方法,所述DFIG***的电网侧设置串联网侧变换器,所述穿越运行方法包括:
(1)当电网电压发生对称故障时,通过坐标转换得到定子电压的正序分量,利用电网电压和定子电压的正序分量计算得到串联网侧变换器应输出的补偿电压;
(2)利用串联网侧变换器应输出的补偿电压补偿定子电压和并联网侧变换器交流电压,使得定子电压、转子电压、定子电流和转子电流保持故障前状态,同时使得并联网侧变换器交流电压保持不变,进而稳定直流母线电压。
进一步地,串联网侧变换器和背靠背双PWM控制器共用同一直流环节。
进一步地,步骤(2)包括:
当电网电压跌落时,利用串联网侧变换器应输出的补偿电压补偿定子电压和并联网侧变换器交流电压,当电网电压升高时,利用串联网侧变换器应输出的补偿电压对定子电压和并联网侧变换器交流电压进行负的补偿,使得定子电压、转子电压、定子电流和转子电流保持故障前状态,同时使得并联网侧变换器交流电压保持不变,进而稳定直流母线电压。
进一步地,串联网侧变换器应输出的补偿电压为:
Uc=Ucp=U′gp-Ugp
其中,Uc表示串联网侧变换器通过串联变压器应输出的补偿电压,Ucp表示串联网侧变换器应补偿的正序电压分量,U′gp表示正常对称下电网电压的正序分量,Ugp表示电网电压的正序分量。
进一步地,DFIG***的转子侧变换器和并联网侧变换器采用电压、电流双闭环矢量控制。
进一步地,并联网侧变换器用于保持直流电容电压恒定以及控制风力机接入点的功率因数。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明采用加装串联网侧变换器(Series Grid Side Converter,SGSC)的思路使得电网电压对称故障下DFIG定子电压和PGSC交流侧电压免受电网电压的影响,在电网电压正常时,串联网侧变换器不工作,当电网电压发生故障时,串联网侧变换器通过检测电网电压信号并通过一系列的运算产生补偿电压,确保故障前后DFIG的定子电压保持不变,保持了定子磁链的稳定,同时,维持PGSC交流侧电压,稳定直流母线电压,从而使得DFIG机组拥有优秀的HVRT和LVRT能力,提高了双馈风力发电***在非理想电网电压状况下的抗干扰能力。本发明克服了电网故障电压对双馈风力发电***造成的不良影响,防止风电机组在电网电压故障时从电网中解列,保持并网运行。
(2)本发明在传统双馈风力发电***的基础上,在电网侧和双馈风力发电***之间加装SGSC,直流侧接入背靠背PWM变换器的直流电容环节,其作用是在电网电压发生对称故障时通过串联变压器输出串联电压,使得双馈风力发电***的电压等于电网电压与补偿电压之和,通过对SGSC的有效控制使得双馈风力发电***的电压不受电网电压故障的影响,克服了DFIG定子磁链不稳定、电磁转矩波动等不良运行现象,提高了DFIG在故障电网电压下的稳定运行性能。
(3)本发明考虑电网电压出现对称故障对双馈风力发电***的影响,针对电网电压对称故障下双馈风机定、转子出现过压和过流甚至脱网等问题,分析了加装SGSC维持DFIG***电压故障前后不变的机理,通过对SGSC的有效控制,实现了DFIG***在电网电压发生对称故障时保持与正常电网电压一致的目的,从而维持DFIG***正常工作,该方法无需其他特定的保护措施,SGSC起到了对DFIG的过压或欠压的保护作用,实现了DFIG的不间断运行,增强了DFIG***在电网电压对称故障下的穿越能力。
附图说明
图1是本发明实施例提供的双馈风力发电***拓扑结构图;
图2是本发明实施例提供的SGSC控制策略框图;
图3是本发明实施例提供的SGSC补偿主电路拓扑结构;
图4是本发明实施例提供的PGSC主电路拓扑结构图;
图5是本发明实施例提供的整个双馈风力发电***控制框图;
图6(a)是本发明实施例1提供的电网电压仿真波形图;
图6(b)是本发明实施例1提供的补偿前DFIG***电压仿真波形图;
图6(c)是本发明实施例1提供的SGSC输出补偿电压仿真波形图;
图6(d)是本发明实施例1提供的补偿后DFIG***电压仿真波形图;
图6(e)是本发明实施例1提供的定子电流仿真波形图;
图6(f)是本发明实施例1提供的转子电流仿真波形图;
图6(g)是本发明实施例1提供的直流母线电压的仿真波形图;
图6(h)是本发明实施例1提供的***输出有功功率仿真波形图;
图6(i)是本发明实施例1提供的***输出无功功率仿真波形图;
图7(a)是本发明实施例2提供的电网电压仿真波形图;
图7(b)是本发明实施例2提供的补偿前DFIG***电压仿真波形图;
图7(c)是本发明实施例2提供的SGSC输出补偿电压仿真波形图;
图7(d)是本发明实施例2提供的补偿后DFIG***电压仿真波形图;
图7(e)是本发明实施例2提供的定子电流仿真波形图;
图7(f)是本发明实施例2提供的转子电流仿真波形图;
图7(g)是本发明实施例2提供的直流母线电压的仿真波形图;
图7(h)是本发明实施例2提供的***输出有功功率仿真波形图;
图7(i)是本发明实施例2提供的***输出无功功率仿真波形图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明实施例的加装SGSC的双馈风力发电***拓扑结构图,整个***主要包括风力涡轮机、齿轮箱、双馈感应发电机、RSC、直流滤波电容器、PGSC以及加装的SGSC。加装的SGSC经线路滤波器后通过变压器的形式串联接入电网侧和风机机组之间,用于对DFIG***电压进行补偿(电压跌落补偿电压下降的电压,电压升高时抵消电网电压的升高的电压)。当电网电压发生对称故障时,通过对SGSC的有效控制,可使得发电机定子电压以及并联网侧变换器交流侧电压与正常对称电网电压条件下保持一致。
如图2所示的SGSC控制策略框图,图中Ugabc和Ucabc分别表示电网电压和SGSC输出的补偿电压;
Figure BDA0001739520610000061
分别表示正常对称电网的电压在正向dq坐标系下的d、q轴分量;下标α、β分别电压在αβ坐标系下的α、β轴分量。
本发明提供了一种电压对称故障下DFIG***的穿越运行方法,所述DFIG***的电网侧设置串联网侧变换器,所述穿越运行方法包括:
当电网电压发生对称故障时,通过坐标转换得到定子电压的正序分量,利用电网电压和定子电压的正序分量计算得到串联网侧变换器应输出的补偿电压;如图3所示,利用串联网侧变换器应输出的补偿电压补偿定子电压和并联网侧变换器交流电压,使得定子电压、转子电压、定子电流和转子电流保持故障前状态,同时使得并联网侧变换器交流电压保持不变,进而稳定直流母线电压。
所述穿越运行方法具体包括:
1)在DFIG***和电网之间加装SGSC,当电网电压出现对称故障时,检测得到电网电压的正序分量(对称故障不含负序分量),计算得到SGSC应输出的补偿电压;当电网电压出现对称故障时SGSC应输出补偿电压表达式为:
Uc=Ucp=U′gp-Ugp
2)当电网电压出现对称故障时,电压保持三相平衡,由对称分量法可知,电网电压中只包含正序分量,将电网三相电压转换到正向dq坐标系中得到d轴分量
Figure BDA0001739520610000071
和q轴分量
Figure BDA0001739520610000072
是一个直流分量,
Figure BDA0001739520610000073
为0。
3)通过下式运算得到SGSC应输出电压的在正向dq坐标系下的d、q轴分量。
Figure BDA0001739520610000074
4)将得到的电压d、q轴分量再转换到三相对称坐标系中,得到SGSC应输出的补偿电压;
5)采用滞环比较的方法实现对DFIG***电压的补偿控制。
6)SGSC的直流侧接入背靠背双PWM换流器的直流环节。通过串联变压器向电网和DFIG***之间串入一个补偿电压,使得DFIG***保持故障前不变等于额定电压;
8)DFIG***保持正常工作,定子电压、电流保持故障前后不变,仍维持相同的有功和无功功率输出,RSC和PGSC的控制策略无需改变,如图4所示,SGSC控制策略显著增强了DFIG***在电网电压发生故障时的穿越能力。
如图5所示,双馈风力发电***的RSC仍可采用常规的功率、电流双闭环矢量控制策略,以实现换流器对发电机转速及有功、无功功率的解耦控制,同时可以控制风力机最大限度的捕获风能。在故障期间,通过对SGSC的控制,同样可以实现发电机定子端电压维持不变,则可控制DFIG定子端输出的有功功率维持不变,还可有效地避免故障过程中发电机转子过电流以及电磁转矩的波动。同样PGSC仍以稳定直流母线电压Udc为目标,为故障过程中各个变流器的控制提供稳定的直流母线电压支持,以提高***的暂态恢复能力。
下面以两个具体的例子来说明:
实施例1
为验证本发明所提出的控制策略的有效性和可行性,搭建了如图1所示的模型。第一个例子为验证策略增强DFIG***低电压穿越能力。本算例设置风速为12m/s不变,输出无功功率参考值设为0MVar。设置0~5s为正常运行状态,5s后电网A、B、C三相电压同时跌落20%,且5s后立即启动SGSC电压补偿控制策略。
现将算例仿真结果进行分析以说明本发明的有效性和可行性。从图6(a)可以看出,5s后电网A、B、C三相发生对称跌落,相电压的峰值由8.165kV下降到6.53kV,图6(b)是SGSC和电网之间的电压,经变压器变换后,5s后该电压的相电压峰值由之前的563V降为450V。图6(c)是SGSC输出的补偿电压,5s后SGSC输出峰值为113V的相电压,且A、B、C相位与电网电压相同。由图6(d)波形可知,经过对SGSC的有效控制,5s后经非常短的暂态过程,DFIG***电压与5s前正常电网电压保持一致,并且SGSC的动态性能良好。
由图6(e)和图6(f)可以看出,5s时立即采用SGSC电压补偿策略后,DFIG的定子和转子电流维持不变,因此无需改变RSC的控制策略,并提高了DFIG***在电网电压对称故障下的运行稳定性。
图6(g)给出了直流母线电压的仿真波形,在5s时电容电压稍微上升,但经过短暂的调整又回到0.8kV。图6(h)和图6(i)给出了***总输出有功功率、输出无功功率的仿真波形维持不变,仍按照正常控制目标运行,该策略可以大大提高DFIG***的低压电穿越能力。
实施例2
第二个例子为验证策略增强DFIG***高电压穿越能力。本算例同样设置风速为12m/s不变,输出无功功率参考值设为0MVar。设置0~5s为正常运行状态,5s后电网A、B、C三相电压同时升高20%,且5s后立即启动SGSC电压补偿控制策略。
从图7(a)可以看出,5s后电网A、B、C三相发生对称骤升,相电压的峰值由8.165kV上升到9.798kV,图7(b)是SGSC和电网之间的电压,经变压器变换后,5s后该电压的相电压峰值由之前的563V上升为676V。图7(c)是SGSC输出的补偿电压,5s后SGSC输出峰值为113V的相电压,且A、B、C相位与电网电压相反。由图7(d)波形可知,经过对SGSC的有效控制,5s后经非常短的暂态过程,DFIG***电压与5s前正常电网电压保持一致,并且SGSC的动态性能良好。
由图7(e)和图7(f)可以看出,5s时立即采用SGSC电压补偿策略后,DFIG的定子和转子电流维持不变,因此无需改变RSC的控制策略,并提高了DFIG***在电网电压对称故障下的运行稳定性。
图7(g)给出了直流母线电压的仿真波形,在5s时电容电压稍微下降,但经过短暂的调整又回到0.8kV。图7(h)和图7(i)给出了***总输出有功功率、输出无功功率的仿真波形维持不变,按照RSC和PGSC的控制目标正常运行,该策略显著增强了DFIG***的高压电穿越能力。
以上给出了具体的实施方式,但本发明不局限于以上所描述的实施方式。本发明的基本思路在于上述基本方案,对本领域普通技术人员而言,根据本发明的教导,设计出各种变形的模型、公式、参数并不需要花费创造性劳动。在不脱离本发明的原理和精神的情况下对实施方式进行的变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (3)

1.一种电压对称故障下DFIG***的穿越运行方法,其特征在于,所述DFIG***的电网侧设置串联网侧变换器,加装的串联网侧变换器经线路滤波器后采用变压器的形式串联接入电网侧和风机机组之间,所述串联网侧变换器和背靠背双PWM控制器共用同一直流环节,所述穿越运行方法包括:
(1)当电网电压发生对称故障时,通过坐标转换得到定子电压的正序分量,利用电网电压和定子电压的正序分量计算得到串联网侧变换器应输出的补偿电压;
(2)当电网电压跌落时,利用串联网侧变换器应输出的补偿电压补偿定子电压和并联网侧变换器交流电压,当电网电压升高时,利用串联网侧变换器应输出的补偿电压对定子电压和并联网侧变换器交流电压进行负的补偿,使得定子电压、转子电压、定子电流和转子电流保持故障前状态,同时使得并联网侧变换器交流电压保持不变,进而稳定直流母线电压;
所述串联网侧变换器应输出的补偿电压为:
Uc=Ucp=U′gp-Ugp
其中,Uc表示串联网侧变换器通过串联变压器应输出的补偿电压,Ucp表示串联网侧变换器应补偿的正序电压分量,U′gp表示正常对称下电网电压的正序分量,Ugp表示电网电压的正序分量。
2.如权利要求1所述的一种电压对称故障下DFIG***的穿越运行方法,其特征在于,所述DFIG***的转子侧变换器和并联网侧变换器采用电压、电流双闭环矢量控制。
3.如权利要求2所述的一种电压对称故障下DFIG***的穿越运行方法,其特征在于,所述并联网侧变换器用于保持直流电容电压恒定以及控制风力机接入点的功率因数。
CN201810815587.XA 2018-07-23 2018-07-23 一种电压对称故障下dfig***的穿越运行方法 Expired - Fee Related CN109256798B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810815587.XA CN109256798B (zh) 2018-07-23 2018-07-23 一种电压对称故障下dfig***的穿越运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810815587.XA CN109256798B (zh) 2018-07-23 2018-07-23 一种电压对称故障下dfig***的穿越运行方法

Publications (2)

Publication Number Publication Date
CN109256798A CN109256798A (zh) 2019-01-22
CN109256798B true CN109256798B (zh) 2021-06-11

Family

ID=65049737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810815587.XA Expired - Fee Related CN109256798B (zh) 2018-07-23 2018-07-23 一种电压对称故障下dfig***的穿越运行方法

Country Status (1)

Country Link
CN (1) CN109256798B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478347B (zh) * 2020-04-13 2021-08-10 广东电网有限责任公司 一种可变频率变压器故障穿越控制方法及电路
CN114123232B (zh) * 2021-08-20 2024-04-26 华北电力大学(保定) 一种基于线性自抗扰控制的双馈风电机组次同步振荡抑制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005998A (zh) * 2010-11-23 2011-04-06 中国科学院电工研究所 一种双馈型风力发电机的低压穿越电路
CN102299524A (zh) * 2011-09-08 2011-12-28 天津理工大学 一种基于静分岔控制sgsc的dfig风电***低电压穿越控制方法
CN105356520A (zh) * 2015-11-24 2016-02-24 上海电力学院 一种改善风电场低电压穿越能力的控制方法
CN106505620A (zh) * 2016-11-25 2017-03-15 国家电网公司 一种提高双馈风机故障穿越能力的暂态重构***及控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078339B (zh) * 2013-01-29 2015-02-18 武汉大学 容量最优的储能型双馈风机低压穿越控制***及其方法
CN104078999B (zh) * 2014-07-09 2016-03-30 国网吉林省电力有限公司 一种双馈风电机组超速脱网临界时间的计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005998A (zh) * 2010-11-23 2011-04-06 中国科学院电工研究所 一种双馈型风力发电机的低压穿越电路
CN102299524A (zh) * 2011-09-08 2011-12-28 天津理工大学 一种基于静分岔控制sgsc的dfig风电***低电压穿越控制方法
CN105356520A (zh) * 2015-11-24 2016-02-24 上海电力学院 一种改善风电场低电压穿越能力的控制方法
CN106505620A (zh) * 2016-11-25 2017-03-15 国家电网公司 一种提高双馈风机故障穿越能力的暂态重构***及控制方法

Also Published As

Publication number Publication date
CN109256798A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
Errami et al. A performance comparison of a nonlinear and a linear control for grid connected PMSG wind energy conversion system
Beltran et al. High-order sliding mode control of a DFIG-based wind turbine for power maximization and grid fault tolerance
El Moursi et al. Application of series voltage boosting schemes for enhanced fault ridethrough performance of fixed speed wind turbines
CN111431206B (zh) 大规模双馈风电场经柔性直流外送的协同故障穿越方法
CN110518600A (zh) 一种基于vsg的改进型多机并联的pmsg并网主动支撑控制结构
Alepuz et al. Control scheme for low voltage ride-through compliance in back-to-back NPC converter based wind power systems
CN109256798B (zh) 一种电压对称故障下dfig***的穿越运行方法
Wang et al. Contribution of VSC-HVDC connected wind farms to grid frequency regulation and power damping
Dey et al. A coordinated control of grid connected PMSG based wind energy conversion system under grid faults
CN109066735B (zh) 一种不平衡电网电压下的双馈风力发电***及其控制方法
Du et al. VSC-HVDC system for industrial plants with onsite generators
Shukla et al. Low voltage ride through (LVRT) ability of DFIG based wind energy conversion system II
Youssef et al. Wind energy facts applications and stabilization schemes
CN113675897A (zh) 一种有功优先lvrt控制方法及gsc控制方法
Wang et al. Analysis of a commercial wind farm in Taiwan Part I: Measurement results and simulations
Asadollah et al. Decentralized reactive power and voltage control of wind farms with type-4 generators
Lazrak et al. An improved control strategy for DFIG wind turbine to ride-through voltage dips
CN114421498A (zh) 基于能量路由器的中压风电***波动功率平抑方法及***
Liu et al. Overview of advanced control technology for wind power generation
CN106451558A (zh) 具有大规模风电接入的电网***
Shukla et al. Dynamic Performance of DFIG based WECS under different Voltage Sag
Mahfouz et al. Improvement the integration of Zafarana wind farm connected to egyptian unified power grid
Xiaojie et al. Study on coordinated control strategy of offshore wind farm integration system via MMC-HVDC based on transient response characteristic analysis
El Karkri et al. A comparison between Series Dynamic Resistors and CROWBAR circuit protection for LVRT capability of Doubly-Fed Induction Generator
Thomas et al. Analysis and validation of low voltage ride-through capability for DFIG based wind energy conversion system under symmetrical grid voltage sags

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210611