CN109256438A - 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法 - Google Patents

一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法 Download PDF

Info

Publication number
CN109256438A
CN109256438A CN201811120817.7A CN201811120817A CN109256438A CN 109256438 A CN109256438 A CN 109256438A CN 201811120817 A CN201811120817 A CN 201811120817A CN 109256438 A CN109256438 A CN 109256438A
Authority
CN
China
Prior art keywords
substrate
film
amorphous oxide
gallium
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811120817.7A
Other languages
English (en)
Inventor
谷雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing mingga Semiconductor Co.,Ltd.
Original Assignee
Beijing Gallium Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Gallium Science And Technology Co Ltd filed Critical Beijing Gallium Science And Technology Co Ltd
Priority to CN201811120817.7A priority Critical patent/CN109256438A/zh
Publication of CN109256438A publication Critical patent/CN109256438A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明提供了一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法。所述的光电晶体管包括依次叠置的底电极、硅基衬底、氧化镓薄膜和上电极。其中硅基衬底为具有二氧化硅层的硅基衬底,氧化镓薄膜为室温生长的非晶氧化镓薄膜。本发明可采用商业化的制备方法磁控溅射生长薄膜,工艺可控性强、容易操作,制作成本低。本发明制得的氧化镓薄膜表面致密、厚度稳定均一,适于大面积制备、且复性好。本发明制得的光电晶体管响应度高、紫外可见抑制比高、制造工艺简单,且所用材料容易获得,在日盲紫外探测领域具有潜在的应用前景。

Description

一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
技术领域
本发明属于光电探测器技术领域,特别涉及一种利用磁控溅射沉积方法在二氧化硅/硅(SiO2/Si)衬底上生长非晶氧化镓(Ga2O3)薄膜的方法,以及应用非晶氧化镓薄膜的的光电晶体管。
背景技术
大气中的平流臭氧层对波长在200nm到280nm之间的紫外光具有强烈的吸收作用,到达地面的处在该波段的紫外光辐射在海平面附近几乎衰减至零,故被称作日盲区,这就为工作于该波段的日盲-紫外光电探测***提供了一个良好的信号背景。随着日盲-紫外探测技术的发展,其在日盲-紫外通信、导弹预警跟踪、火箭尾焰探测、天基紫外预警、紫外超光谱侦察、着舰引导、电晕探测、海上搜救等军用与民用领域有着广泛的应用前景。要实现日盲紫外探测,器件核心半导体材料的禁带宽度要大于4.4eV(对应探测波长280nm),而Ga2O3的禁带宽度约为4.9eV,正好对应于日盲区,室温下激子束缚能高达40~50meV,远高于室温热离化能(26meV),并具有优异的热稳定性和化学稳定性,是制备光电探测器,特别是日盲紫外探测器件的天然理想材料。
目前报道的氧化镓薄膜日盲-紫外探测器的结构主要有金属-半导体-金属型、肖特基结型,异质结和雪崩二极管型。金属-半导体-金属型器件具有工艺简单、方便集成的优势,但没有内部增益、对微弱光信号的探测能力差、难以获得高的光电响应度。肖特基、异质结和雪崩型器件利用了结效应的光生载流子倍增效果和对载流子输运的调制作用,往往能够获得较高的光电流增益和较快的响应速度,但肖特基和异质结型内部增益有限,雪崩型器件则内部噪声大、需要高的工作电压而且制备工艺复杂。日盲光电晶体管,集光电探测和晶体管对光电流地放大于一身,获得高的光电流增益还能有效避免噪声信号的干扰。相较于异质结/雪崩型器件,光晶体管结构探测器的探测功能区与衬底是相对独立的,将多个器件集成为探测器阵列时,单个器件之间不会相互干扰,降低了工艺的复杂性。
目前基于氧化镓薄膜的日盲紫外探测的研究还处于起步阶段,主要集中在基于高温条件下生长的单晶或多晶氧化镓薄膜,但高温生长设备价格昂贵,生长条件要求也较高。如何开发出制备简单、成本较低且性能较高的氧化镓薄膜基日盲探测器的工艺方法,仍是业界亟待解决的问题。
发明内容
为解决上述技术问题,本发明提出一种室温生长的硅基非晶氧化镓薄膜光电晶体管及其制造方法,可应用于日盲紫外光电晶体管探测器。
本发明在SiO2/Si衬底上制备了非晶氧化镓薄膜日盲紫外光电晶体管探测器。该发明为非晶氧化镓薄膜基光电晶体管探测器,特别是日盲紫外光电晶体管探测器的制备提供理论和技术支持。
本发明的非晶氧化镓薄膜日盲光电晶体管探测器,包括依次叠置的底电极、衬底、氧化镓薄膜和上电极,所述氧化镓薄膜为非晶薄膜,所述衬底为SiO2/Si衬底,该SiO2/Si衬底包括上部的SiO2层和下部的Si层。
根据本发明的优选实施方式,所述SiO2/Si衬底的SiO2层厚度为150nm至300nm。
根据本发明的优选实施方式,所述底层电极包括Au层,上层电极包括Au层或Au/Ti层。
根据本发明的优选实施方式,所述非晶氧化镓薄膜的厚度为500nm至800nm。
本发明还提出一种硅基非晶氧化镓薄膜日盲光电晶体管的制造方法,包括:在衬底上生长氧化镓薄膜;在衬底的背部形成底电极;在氧化镓薄膜上形成上电极,所述氧化镓薄膜为非晶氧化镓薄膜,所述衬底为SiO2/Si衬底,该SiO2/Si衬底包括上部的SiO2层和下部的Si层。
根据本发明的优选实施方式,所述在衬底上生长氧化镓薄膜的步骤为在室温下采用磁控溅射法生长非晶氧化镓薄膜。
根据本发明的优选实施方式,所述磁控溅射法的生长参数包括:工作气氛为Ar气。
根据本发明的优选实施方式,所述磁控溅射法的生长参数还包括:溅射功率为60W~100W。
根据本发明的优选实施方式,所述磁控溅射法的生长参数还包括:工作气压为0.01Pa~10Pa。
根据本发明的优选实施方式,所述磁控溅射法的生长参数还包括:所述SiO2/Si衬底的SiO2层厚度为150nm至300nm。
本发明的有益效果是:
1.本发明制备过程简单,采用商业化的制备方法磁控溅射生长薄膜,所用衬底为商业产品,生长温度低、工艺可控性强,易操作,所得薄膜表面致密、厚度稳定均一、可大面积制备、重复性好。
2.本发明所得的非晶氧化镓薄膜日盲紫外光电晶体管探测器响应度增益高,暗电流小,表现出良好的栅压调控能力,紫外可见抑制比高,制造工艺简单,所用材料容易获得,具有广阔的发展前景。
附图说明
图1是通过本发明一个实施例的方法制备的硅基非晶氧化镓薄膜日盲光电晶体管结构示意图;
图2是用本发明一个实施例的方法制得的硅基非晶氧化镓薄膜日盲光电晶体管在无光照、不同背栅极电压下的I-V曲线;
图3是用本发明一个实施例的方法制得的硅基非晶氧化镓薄膜日盲光电晶体管在在无光照、不同254nm波长光照强度下的转移特性曲线。;
图4是用本发明一个实施例的方法制得的硅基非晶氧化镓薄膜日盲光电晶体管在背栅压为10V、不同254nm波长光照强度时的I-T曲线;
图5是用本发明一个实施例的方法制得的硅基非晶氧化镓薄膜日盲光电晶体管在光照强度为0.1mW/cm2的254nm波长光源照射下,不同背栅极电压下的I-T曲线。
具体实施方式
总的来说,本发明提出一种在硅基衬底上室温生长非晶氧化镓薄膜并制作光电晶体管探测器的方法,以及该方法制作的光电晶体管探测器。
本发明的硅基衬底优选为SiO2/Si衬底,所述的SiO2/Si表示SiO2层和Si层的双层结构,Si层为底层,SiO2层为表面层,SiO2层作为介电层,Si层与下电极一起用作SiO2介电层的下电极。采用SiO2/Si衬底的优点是Si表面能天然形成SiO2介电层,可以作为晶体管栅极,SiO2/Si衬底价格低廉,且性能较好。
本发明优选为在硅基衬底上利用磁控溅射方法在室温下生长氧化镓薄膜作为光敏层。因为磁控溅射方法生长的条件容易控制,重复性好,稳定性高,适宜进行大规模生产。并且,由于非晶氧化镓薄膜制备温度底,成本便宜,且与高温生长的多晶氧化镓或单晶氧化镓性能相仿,优选为在室温下生长非晶的氧化镓薄膜。
本发明在硅衬底背面沉积金属电极作为背栅极,在光敏层上再通过磁控溅射的方法溅射金属电极(例如Au层和/或Ti层源-漏电极),从而获得日盲紫外光电晶体管探测器。
通过本发明方法制备得到的日盲紫外探测器,结构为MSM型三明治结构,从下到上分别是底电极、硅基衬底、非晶氧化镓薄膜和上电极。
以下结合附图并通过具体实施例进一步说明本发明,该实施例是一种制备日盲紫外光电晶体探测器的方法,该方法包括如下步骤:
(1)取一片10mm×10mm×0.5mm大小的SiO2/Si衬底,SiO2厚度为300nm。将衬底依次浸泡在15毫升的丙酮、无水乙醇、去离子水中分别超声15分钟,取出后再用流动的去离子水冲洗,最后用干燥的N2气吹干,等待下一步使用。
(2)将上述清洗干净的SiO2/Si衬底放入沉积室,采用磁控溅射在其上生长非晶氧化镓薄膜,以99.99%纯度的Ga2O3陶瓷为靶材,磁控溅射技术的具体生长参数如下:背底真空压强小于1×10-4Pa,工作气氛为Ar气,工作气压为1Pa,衬底温度为室温,溅射功率为80W,溅射时间为300min,得到的非晶氧化镓薄膜的厚度约800nm。
(3)在上述制备的非晶氧化镓薄膜硅基衬底背面生长背栅电极,采用磁控溅射方法溅射Au电极,厚度约100nm。溅射工艺条件如下:背底真空为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为3Pa,溅射功率为40W,溅射时间为100s。
(3)在上述制备的非晶氧化镓薄膜表面用镂空的金属掩膜板遮挡,采用磁控溅射方法在薄膜表面先后溅射金属Ti层(约10nm)和Au层(约20nm)获得Au/Ti源-漏电极,源-漏金属电极的长度为200μm,间距为200μm,光敏面积为200μm×200μm。溅射工艺条件如下:背底真空为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为3Pa,溅射功率为40W,Ti层的溅射时间为10s,Au层的溅射时间为20s。
通过上述步骤制备获得硅基非晶氧化镓薄膜日盲光电晶体管如图1所示,包括底电极G,SiO2/Si衬底1、非晶氧化镓薄膜2和源电极S和漏电极D。SiO2/Si衬底包括下部的Si层11和上部的SiO2层12。在源电极S和漏电极D两端加入测试电压,电流则从正电极流入,通过光敏层非晶氧化镓薄膜2,从负电极流出,同时可以在底电极G和漏电极D两侧外加栅极偏压,构成日盲紫外光晶体管探测器。
图2给出了硅基非晶氧化镓薄膜日盲光电晶体管在黑暗条件、不同背栅电压下的I-V特性曲线,在黑暗条件下,非晶氧化镓薄膜的电流都非常小,且背栅极电压对薄膜样品内的载流子浓度调控效应明显。
图3给出了硅基非晶氧化镓薄膜日盲光电晶体管在在无光照、不同254nm波长光照强度下的转移特性曲线,从图中可以看出,器件中的源-漏电流随着正向栅压的增加而增加;在加载负向栅压时,源-漏电流变化较小;这表明该实施例的器件类型为n沟道增强型场效应晶体管。
图4给出了硅基非晶氧化镓薄膜日盲光电晶体管在背栅压为10V、不同254nm波长光照强度时的I-T曲线,可以看出源-漏电流随着光照强度增高而逐渐的增大。
图5给出了硅基非晶氧化镓薄膜日盲光电晶体管在在光照强度为0.1mW/cm2的254nm波长光源照射下,不同背栅极电压下的I-T曲线,可以看出源-漏电流随着背栅电压强度增高而逐渐的增大。表现出很好的栅压调控能力;更大的栅压调制下器件能够获得更大的光电流增益,对254nm光响应度变大。
对于上述实施例公开的具体实施方式,本领域的技术人员可在一定的范围内变化,具体如下:根据本发明的优选实施方式,所述SiO2/Si衬底的SiO2层厚度为150nm至300nm;所述靶材为99.99%纯度的Ga2O3陶瓷靶材;所述磁控溅射沉积过程工作气氛为Ar气,薄膜生长工作气压为0.01Pa~10Pa,优选1Pa。所述衬底温度为室温,溅射功率为60W~100W,优选为80W,溅射时间优选为300分钟。得到的β-Ga2O3薄膜的厚度优选为500nm至800nm。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种硅基非晶氧化镓薄膜日盲光电晶体管,包括依次叠置的底电极、衬底、氧化镓薄膜和上电极,其特征在于:所述氧化镓薄膜为非晶薄膜,所述衬底为SiO2/Si衬底,该SiO2/Si衬底包括上部的SiO2层和下部的Si层。
2.如权利要求1所述的硅基非晶氧化镓薄膜日盲光电晶体管,其特征在于:所述SiO2/Si衬底的SiO2层厚度为150nm至300nm。
3.如权利要求1所述的硅基非晶氧化镓薄膜日盲光电晶体管,其特征在于:所述底电极包括Au层,上电极包括Au层或Au/Ti层。
4.如权利要求1所述的硅基非晶氧化镓薄膜日盲光电晶体管,其特征在于:所述非晶氧化镓薄膜的厚度为500nm至800nm。
5.一种硅基非晶氧化镓薄膜日盲光电晶体管的制造方法,包括:在衬底上生长氧化镓薄膜;在衬底的背部形成底电极;在氧化镓薄膜上形成上电极,其特征在于:所述氧化镓薄膜为非晶氧化镓薄膜,所述衬底为SiO2/Si衬底,该SiO2/Si衬底包括上部的SiO2层和下部的Si层。
6.如权利要求5所述的非晶氧化镓薄膜的制造方法,其特征在于:所述在衬底上生长氧化镓薄膜的步骤为在室温下采用磁控溅射法生长非晶氧化镓薄膜。
7.如权利要求6所述的非晶氧化镓薄膜的制造方法,其特征在于:所述磁控溅射法的生长参数包括:工作气氛为Ar气。
8.如权利要求7所述的非晶氧化镓薄膜的制造方法,其特征在于:所述磁控溅射法的生长参数还包括:溅射功率为60W~100W。
9.如权利要求8所述的非晶氧化镓薄膜的制造方法,其特征在于:所述磁控溅射法的生长参数还包括:工作气压为0.01Pa~10Pa。
10.如权利要求5至9中任一项所述的非晶氧化镓薄膜的制造方法,其特征在于:所述SiO2/Si衬底的SiO2层厚度为150nm至300nm。
CN201811120817.7A 2018-09-26 2018-09-26 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法 Pending CN109256438A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811120817.7A CN109256438A (zh) 2018-09-26 2018-09-26 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811120817.7A CN109256438A (zh) 2018-09-26 2018-09-26 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法

Publications (1)

Publication Number Publication Date
CN109256438A true CN109256438A (zh) 2019-01-22

Family

ID=65047869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811120817.7A Pending CN109256438A (zh) 2018-09-26 2018-09-26 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法

Country Status (1)

Country Link
CN (1) CN109256438A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993503A (zh) * 2019-11-25 2020-04-10 西北工业大学 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法
CN111048402A (zh) * 2019-10-14 2020-04-21 西安电子科技大学 基于SiC和Ga2O3的半导体结构的制备方法及半导体结构
CN112951948A (zh) * 2021-01-18 2021-06-11 郑州大学 基于氧化镓能带调控的同质结光电探测器及其制备方法
CN113707760A (zh) * 2021-07-20 2021-11-26 青岛滨海学院 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507876A (zh) * 2017-08-28 2017-12-22 北京邮电大学 一种β‑Ga2O3基日盲紫外光电探测器阵列及其制备方法
CN107706253A (zh) * 2017-10-27 2018-02-16 朱秋华 一种紫外探测器及其制备方法
WO2018103647A1 (zh) * 2016-12-08 2018-06-14 西安电子科技大学 基于Ga2O3材料的紫外光电探测器的制备方法
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103647A1 (zh) * 2016-12-08 2018-06-14 西安电子科技大学 基于Ga2O3材料的紫外光电探测器的制备方法
CN107507876A (zh) * 2017-08-28 2017-12-22 北京邮电大学 一种β‑Ga2O3基日盲紫外光电探测器阵列及其制备方法
CN107706253A (zh) * 2017-10-27 2018-02-16 朱秋华 一种紫外探测器及其制备方法
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUJUAN CUI等: "Room-Temperature Fabricated Amorphous Ga2O3 High-Response-Speed Solar-Blind Photodetector on Rigid and Flexible Substrates", 《ADV. OPTICAL MATER.》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048402A (zh) * 2019-10-14 2020-04-21 西安电子科技大学 基于SiC和Ga2O3的半导体结构的制备方法及半导体结构
CN110993503A (zh) * 2019-11-25 2020-04-10 西北工业大学 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法
CN110993503B (zh) * 2019-11-25 2023-02-24 韦华半导体(苏州)有限公司 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法
CN112951948A (zh) * 2021-01-18 2021-06-11 郑州大学 基于氧化镓能带调控的同质结光电探测器及其制备方法
CN112951948B (zh) * 2021-01-18 2023-01-24 郑州大学 基于氧化镓能带调控的同质结光电探测器及其制备方法
CN113707760A (zh) * 2021-07-20 2021-11-26 青岛滨海学院 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法

Similar Documents

Publication Publication Date Title
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
CN108470675B (zh) 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN109256438A (zh) 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Silva et al. High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnOx/ZnO heterojunctions
CN110444618B (zh) 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
CN108666395A (zh) 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
Hazra et al. Ultraviolet photodetection properties of ZnO/Si heterojunction diodes fabricated by ALD technique without using a buffer layer
CN101807619B (zh) 一种透明柔性紫外探测器及其制备方法
CN106409963A (zh) 一种Zn:Ga2O3薄膜基MSM结构日盲紫外光电探测器及其制备方法
CN107507876A (zh) 一种β‑Ga2O3基日盲紫外光电探测器阵列及其制备方法
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
CN106229373A (zh) 基于β‑Ga2O3/NSTO异质结可零功耗工作的日盲紫外光电探测器及其制备方法
CN110061089A (zh) 蓝宝石斜切衬底优化氧化镓薄膜生长及日盲紫外探测器性能的方法
CN110808296B (zh) 一种双层半导体结构的光电导型深紫外单色光电探测器
CN109065661A (zh) 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法
CN106340551A (zh) 一种基于Mg:β‑Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
CN105489694A (zh) 氧化锌/硅p-n异质结紫外光探测器及其制备方法
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
CN110323294A (zh) 一种氧化锌/铯铅溴核壳微米线及其制备方法以及一种光探测器
CN112103354A (zh) 透明Ga2O3的p-i-n异质结构日盲型紫外光探测器及其制备方法
CN109449219A (zh) 基于β-Ga2O3单晶毫米级薄片的日盲紫外探测器
CN109037386A (zh) 基于氧化镁衬底的氧化镓薄膜光电探测器及其制造方法
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210423

Address after: 101300 Room 102, 1st floor, building 1, No.1 shunqiang Road, Shunyi District, Beijing

Applicant after: Beijing mingga Semiconductor Co.,Ltd.

Address before: 101300 Beijing Shunyi District, Renhe Town, Shunqiang Road, No. 1 Building 2, North West Side of Floor 2

Applicant before: BEIJING JIAZU TECHNOLOGY Co.,Ltd.

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190122