CN109253707A - 百微米量程透射式干涉测试装置 - Google Patents

百微米量程透射式干涉测试装置 Download PDF

Info

Publication number
CN109253707A
CN109253707A CN201811220980.0A CN201811220980A CN109253707A CN 109253707 A CN109253707 A CN 109253707A CN 201811220980 A CN201811220980 A CN 201811220980A CN 109253707 A CN109253707 A CN 109253707A
Authority
CN
China
Prior art keywords
standard
light
mirror
imaging
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811220980.0A
Other languages
English (en)
Other versions
CN109253707B (zh
Inventor
赵智亮
陈立华
刘敏
赵子嘉
张志华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU TECHO PHOTOELECTRICITY Co
Original Assignee
CHENGDU TECHO PHOTOELECTRICITY Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU TECHO PHOTOELECTRICITY Co filed Critical CHENGDU TECHO PHOTOELECTRICITY Co
Priority to CN201811220980.0A priority Critical patent/CN109253707B/zh
Publication of CN109253707A publication Critical patent/CN109253707A/zh
Application granted granted Critical
Publication of CN109253707B publication Critical patent/CN109253707B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种百微米量程透射式干涉测试装置,由632.8nm激光光源模块、准直测试模块、对准测试模块、小量程干涉成像模块和大量程干涉成像模块五部分构成,可测试平面光学元件的反射及透射波前面形精度,可测试平面光学元件的最大口径为Φ200mm,也可用于测试光学***的物理特性以及综合***光学参数等。本发明测试精度的PV值优于λ/10,RMS值优于λ/50,***重复性优于λ/500;本发明检测面形精度范围在0~100μm。本发明检测精度范围宽、成本低、空间占用体积小,适用于光学元件的大面积高精度对准测试。

Description

百微米量程透射式干涉测试装置
技术领域
本发明涉及平面光学元件,特别是一种百微米量程透射式干涉测试装置。
背景技术
光学测试随着光学元件应用范围的扩大而不断扩展,常用的非接触式检测面形精度的方式有刀口阴影法、干涉法和哈特曼检验法。其中,干涉测试成像分析技术现已成为光学元件研磨成型后期面形精度测试的主要方法,由最初的泰曼-格林干涉仪发展到日渐成熟运用的菲索型干涉仪,在一定程度上满足了相应大口径光学元件反射及透射波前面形的精度检测。
目前干涉测试对外界环境要求较高,在大口径光学元件测试中,光束缩束比很大,且由标准楔镜和标准反射镜构成的干涉腔体两端距离较长,微弱空气扰动、温度的高低变化以及外界振动干扰都将对面形检测精度产生非常严重的影响。鉴于上述原因,结合夏克-哈特曼检验技术具有有效消除测试装置自身震动的特性,可实现最大口径Φ200mm光学元件高精度反射和透射波前面形测试,最终设计并构建基于0~100μm大量程范围精度测试的菲索型百微米量程透射式干涉测试装置。
发明内容
本发明的目的是提出一种百微米量程透射式干涉测试装置,该装置测试平面光学元件的反射及透射波前面形精度,可测试平面光学元件的最大口径为Φ200mm,也可用于测试光学***的物理特性以及综合***光学参数等。测试精度PV值优于λ/10,RMS值优于λ/50,***重复性优于λ/500;本发明检测面形精度范围在0~100μm,本发明具有精度范围宽、成本低、空间占用体积小的特点,适用于光学元件的大面积高精度对准测试。
本发明的技术解决方案如下:
一种菲索型百微米量程透射式干涉测试装置,其特点在于由632.8nm激光光源模块、准直测试模块、对准测试模块、小量程干涉成像模块和大量程干涉成像模块构成,包括632.8nm激光器,沿632.8nm激光器的激光输出方向依次是聚焦物镜、偏振分光棱镜、第一四分之一波片、第一45°分光反射镜、准直物镜、标准平面楔镜和标准反射镜,沿所述的标准反射镜返回光的方向依次是所述的标准平面楔镜、准直物镜、第一45°分光反射镜,该第一45°分光反射镜将所述的返回光分为反射的返回光和透射的返回光;
在所述的透射的返回光方向依次是毛玻璃片、对准成像镜组和CMOS成像靶面;
在所述的反射的返回光方向依次是所述的第一四分之一波片、偏振分光棱镜,在该偏振分光棱镜的反射光方向依次是光阑、第二四分之一波片、非偏振分光棱镜,该非偏振分光棱镜将入射光分为反射光和透射光,在所述的透射光方向依次是第一凸透镜、第二凸透镜和第一成像CCD靶面;
在所述的反射光方向依次是第二45°反射镜、第一凹面镜、第三凸透镜、微透镜阵列和第二成像CCD靶面;
所述的第一45°分光反射镜与光路夹角为45°,所述的准直物镜的数值孔径与所述的聚焦物镜的数值孔径相等,且两者对激光光源输出的平行光聚焦焦点相重合,所述的标准楔镜在光束前进方向的第一面为楔角面,第二面为标准参考平面,且标准参考平面垂直于所述的准直物镜的光轴,所述的标准反射镜沿光束前进方向第一面为标准反射参考面,且垂直于所述的准直物镜的光轴,所述标准参考平面与标准反射参考面形成标准干涉测试腔,待测光学元件置于所述的标准干涉测试腔中,实现干涉测试;
所述的第一凹面镜和第三凸透镜组成双远心镜组;
所述的第一凸透镜和第二凸透镜形成双远心镜组;
所述的毛玻璃片位于所述的准直物镜的焦平面上,所述的对准成像镜组和对准成像CMOS对所述的毛玻片成全视场成像。
所述的准直物镜、标准楔镜和标准反射镜的通光口径为Φ200mm。
所述的标准楔镜的楔角为6分。
所述的第二成像CCD使用的像素为1024pixel×1024pixel;
所述的第一成像CCD使用的像素为1024pixel×1024pixel;
本发明的技术效果:
本发明百微米量程透射式干涉测试装置提供共光路准直输出测试、共光路对准测试以及大量程和小量程测试成像***,该装置可测试平面光学元件的反射及透射波前面形精度,测试平面光学元件的最大口径为Φ200mm,也可用于测试光学***的物理特性以及综合***光学参数等。测试精度PV值优于λ/10,RMS值优于λ/50,***重复性优于λ/500;本发明检测面形精度范围在0~100μm。本发明具有精度范围宽、成本低、空间占用体积小的特点,适用于光学元件的大面积高精度对准测试。
附图说明
图1为本发明百微米量程透射式干涉测试装置的光路示意图
具体实施方式
以下结合附图对本发明作详细说明,但不应以此限制本发明的保护范围。
图1是本发明百微米量程透射式干涉测试装置的光路图,由图可知,本发明百微米量程透射式干涉测试装置,由632.8nm激光光源模块、准直测试模块、对准测试模块、小量程干涉成像模块和大量程干涉成像模块构成,包括632.8nm激光器1,沿632.8nm激光器1的激光输出方向依次是聚焦物镜2、偏振分光棱镜3、第一四分之一波片4、第一45°分光反射镜5、准直物镜6、标准平面楔镜7和标准反射镜8,沿该标准反射镜8返回光的方向依次是所述的标准平面楔镜7、准直物镜6、第一45°分光反射镜5,该第一45°分光反射镜5将所述的返回光分为反射的返回光和透射的返回光;
在所述的透射的返回光方向依次是毛玻璃片9、对准成像镜组10和CMOS成像靶面11;
在所述的反射的返回光方向依次是所述的第一四分之一波片4、偏振分光棱镜3,在该偏振分光棱镜3的反射光方向依次是光阑12、第二四分之一波片13、非偏振分光棱镜14,该非偏振分光棱镜14将入射光分为反射光和透射光,在所述的透射光方向依次是第一凸透镜15、第二凸透镜16和第一成像CCD靶面17;
在所述的反射光方向依次是第二45°反射镜18、第一凹面镜19、第三凸透镜20、微透镜阵列21和第二成像CCD靶面22;
所述的第一45°分光反射镜5与光路夹角为45°,所述的准直物镜6的数值孔径与所述的聚焦物镜2的数值孔径相等,且两者对激光光源输出的平行光聚焦焦点相重合,所述的标准楔镜7在光束前进方向的第一面为楔角面,第二面为标准参考平面,且标准参考平面垂直于所述的准直物镜6的光轴,所述的标准反射镜8沿光束前进方向第一面为标准反射参考面,且垂直于所述的准直物镜6的光轴,所述标准参考平面与标准反射参考面形成标准干涉测试腔,待测光学元件置于所述的标准干涉测试腔中,实现干涉测试;
所述的第一凹面镜19和第三凸透镜20组成双远心镜组;
所述的第一凸透镜15和第二凸透镜16形成双远心镜组;
所述的毛玻璃片9位于所述的准直物镜6的焦平面上,所述的对准成像镜组10和对准成像CMOS11对所述的毛玻片9成全视场成像。
所述的准直物镜6、标准楔镜7和标准反射镜8的通光口径为Φ200mm。
所述的标准楔镜7的楔角为6分。
包括632.8nm激光光源模块、准直测试模块、对准测试模块、小量程干涉成像模块和大量程干涉成像模块五部分:
所述的632.8nm激光器1和聚焦物镜2构成激光光源模块;
所述的准直测试模块由沿光束前进方向依次为第一45°分光反射镜5、准直物镜6、标准楔镜7和标准反射镜8,所述的第一45°分光反射镜5与光路夹角为45°,所述的准直物镜6的数值孔径与所述的聚焦物镜2的数值孔径相等,且两者对激光光源输出的平行光聚焦焦点相重合,所述Φ200mm口径标准楔镜7在光束前进方向的第一面为楔角面,第二面为标准参考平面,且标准参考平面垂直于Φ200mm准直物镜6所在光轴,所述标准反射镜8沿光束前进方向第一面为标准反射参考面,且垂直于Φ200mm准直物镜6的光轴;
所述的大量程测试成像模块包括第一四分之一波片4、第二四分之一波片13、光阑12、偏振分光棱镜3、非偏振分光棱镜14、第二45°反射镜18、第一凹面镜19、第三凸透镜20、微透镜阵列21以及第二成像CCD靶面22,所述的第二成像CCD22使用的像素为1024pixel×1024pixel,所述第一凹面镜19和第三凸透镜20组成双远心镜头;
所述的小量程测试成像模块包括第一45°分光反射镜5、第一四分之一波片4、第二四分之一波片13、偏振分光棱镜3、光阑12、非偏振分光棱镜14、第一凸透镜15、第二凸透镜16和第一成像CCD靶面17,所述的第一成像CCD17使用的像素为1024pixel×1024pixel,所述第一凸透镜15和第二凸透镜16形成双远心镜组;
所述的测试对准模块包括毛玻璃片9、对准成像镜组10和CMOS成像靶面11,测试光束经第一45°分光反射镜5透射后,依次是所述的毛玻璃片9、对准成像镜组10和对准成像CMOS11,所述的毛玻璃片9位于所述Φ200mm口径准直物镜6的焦平面上,所述的对准成像镜组10和对准成像CMOS11对毛玻片9全视场成像;
所述的大量程测试精度为0~100μm。
图1中第一45°分光反射镜5、准直物镜6、标准楔镜7和标准反射镜8均采用K9材料,元件外径为Φ210mm,有效通光孔径Φ200mm。沿光束前进方向标准楔镜7的第一面镀632.8nm增透膜,透射率>99.88%,且标准楔镜7的第一面为楔角面,楔角为6分,第二面为标准参考平面,标准参考平面垂直于准直物镜6所在光轴面形精度PV值为30nm。设置准直物镜6的数值孔径和聚焦物镜2的数值孔径相等,且准直物镜6的焦点和聚焦物镜2对激光光源1输出光源聚焦焦点重合。通过上述设置,标准楔镜7的标准参考平面和标准反射镜8的反射参考面形成标准干涉测试空腔,经标准楔镜7第二面楔角面反射输出的标准参考光束和光束经标准平面反射镜8反射形成的测试光束沿原光路返回,从而达到自准直输出测试。其中,标准平面反射镜8反射参考面的面形精度PV值为50nm。
激光光源1输出632.8nm波长的光束,发散角为0.5mrad,经聚焦物镜2聚焦形成数值孔径一定的标准球面波,输出的标准球面波通过偏振分光棱镜3、第一四分之一波片4到准直测试***部分,偏振分光棱镜3的P:S=1:1,且P光透射率T为100%,反射率R为0%;S光透射率T为0%,反射率R为100%。光束经第一45°分光反射镜5、准直物镜6、平面标准楔镜7和标准参考反射镜8,以平面标准楔镜7的后表面标准参考平面和标准参考反射镜8前表面标准反射面形成标准干涉测试腔,由标准参考平面和标准反射面或待测样品前表面分别形成标准参考反射光束和测试光束。上述干涉测试光束沿原光路返回,经准直物镜6、第一45°分光反射镜5、第一四分之一波片4、偏振分光棱镜3、光阑12、第二四分之一波片13、非偏振分光棱镜14透射至小量程测试端口。非偏振分光棱镜14不具任何偏振特性,其P光和S光的分光比为1:1,第一双远心镜头组15,16由两片尺寸不一的透镜构成,当干涉图像进入小量程测试模块后,沿光线前进方向首次通过第一双远心镜头组15,16成像在第一成像CCD靶面17上,第一成像CCD17的成像像素为1024pixel×1024pixel,实现小量程高精度测试。第一45°分光反射镜5在光束前进方向反射面镀632.8nm高反膜,反射率为99.99%,后表面镀632.8nm的增透膜,透射率为99.5%。
大量程测试模块由偏振分光棱镜3、第一四分之一波片4、第二四分之一波片13、光阑12、非偏振分光棱镜14、第二45°反射镜18、第二双远心镜组(第三凸透镜19和第一凹面镜20)、微透镜阵列21以及第二成像CCD 22,由标准参考平面和标准反射参考面或待测样品前表面反射分别形成标准的参考光束和测试光束相互叠加形成干涉测试光束。上述干涉测试光束沿原光路返回,经准直物镜6、第一45°分光反射镜5、第一四分之一波片4、偏振分光棱镜3、光阑12、第二四分之一波片13、非偏振分光棱镜14反射至大量程测试端口,测试光束沿前进方向依次通过第二45°反射镜18、第二双远心镜组(第三凸透镜19和第一凹面镜20)、微透镜阵列21以及第二成像CCD组件22,最终在第二成像CCD 22上呈现阵列光斑干涉图像,实现大量程高精度测试,微透镜阵列21点数为50×50,第二成像CCD22的像素为1024pixel×1024pixel。其中,第三凸透镜19和第一凹面镜20构成第二双远心镜组。
当标准参考光束沿原光路返回至第一45°分光反射镜5,50%的光线透过该分光反射镜进入测试对准模块,光束在通过第一45°分光反射镜5后到达放置在准直物镜6焦平面上的毛玻璃片9,在毛玻璃片9上分别聚焦前述各个面对应的焦点。在光束前进方向依次是对准成像镜组10和对准成像CMOS 11,对毛玻璃片9全视场成像,则可以从对准成像CMOS 11输出图像上观察到处于对准角范围之内的所有测试端平面返回的聚焦点。通过调节标准楔镜7的角度,使得参考面反射光束聚焦点处于毛玻璃片9视场中间,对测试端标准参考反射镜8或待测元件角度调节,使得测试面反射聚焦点与参考面反射聚焦点重合,最终实现测试对准调节。此处由毛玻璃片9、对准成像镜组10和对准成像CMOS11构成测试对准模块,对准成像CMOS11的像素为1024pixel×1024pixel。
当使用大量程或小量程测试成像时,利用上述对准调节实现测试端口的干涉测试图像输出和测试对准调节。在本发明大量程高精度透射式干涉装置上,可实现待测光学元件面形精度在0~100μm范围内的反射、透射波前面形和光材料折射率均匀性等数据测试,同时也可实现最大口径Φ200mm平面光学元件及对应光学***等参数干涉测试分析。
实验表明,本发明装置可测试最大口径Φ200mm平面光学元件的反射及透射波前面形精度,也可用于测试光学***的物理特性以及综合***光学参数等。小量程测试精度PV值优于λ/10,RMS值优于λ/50,***重复性优于λ/500;大量程测试精度PV值优于λ/10,RMS值优于λ/50,***重复性优于λ/500。本发明检测面形精度范围在0~100μm,本发明具有精度范围宽、成本低、空间占用体积小的特点,适用于光学元件的大面积高精度对准测试。

Claims (3)

1.一种百微米量程透射式干涉测试装置,其特征在于由632.8nm激光光源模块、准直测试模块、对准测试模块、小量程干涉成像模块和大量程干涉成像模块构成,包括632.8nm激光器(1),沿632.8nm激光器(1)的激光输出方向依次是聚焦物镜(2)、偏振分光棱镜(3)、第一四分之一波片(4)、第一45°分光反射镜(5)、准直物镜(6)、标准平面楔镜(7)和标准反射镜(8),沿所述的标准反射镜(8)返回光的方向依次是所述的标准平面楔镜(7)、准直物镜(6)、第一45°分光反射镜(5),该第一45°分光反射镜(5)将所述的返回光分为反射的返回光和透射的返回光;
在所述的透射的返回光方向依次是毛玻璃片(9)、对准成像镜组(10)和CMOS成像靶面(11),
在所述的反射的返回光方向依次是所述的第一四分之一波片(4)、偏振分光棱镜(3),在该偏振分光棱镜(3)的反射光方向依次是光阑(12)、第二四分之一波片(13)、非偏振分光棱镜(14),该非偏振分光棱镜(14)将入射光分为反射光和透射光,在所述的透射光方向依次是第一凸透镜(15)、第二凸透镜(16)和第一成像CCD靶面(17);
在所述的反射光方向依次是第二45°反射镜(18)、第一凹面镜(19)、第三凸透镜(20)、微透镜阵列(21)和第二成像CCD靶面(22);
所述的第一45°分光反射镜(5)与光路夹角为45°,所述的准直物镜(6)的数值孔径与所述的聚焦物镜(2)的数值孔径相等,且两者对激光光源输出的平行光聚焦焦点相重合,所述的标准楔镜(7)在光束前进方向的第一面为楔角面,第二面为标准参考平面,且标准参考平面垂直于所述的准直物镜(6)的光轴,所述的标准反射镜(8)沿光束前进方向第一面为标准反射参考面,且垂直于所述的准直物镜(6)的光轴,所述标准参考平面与标准反射参考面形成标准干涉测试腔,待测光学元件置于所述的标准干涉测试腔中,实现干涉测试;
所述的第一凹面镜(19)和第三凸透镜(20)组成双远心镜组;
所述的第一凸透镜(15)和第二凸透镜(16)形成双远心镜组;
所述的毛玻璃片(9)位于所述的准直物镜(6)的焦平面上,所述的对准成像镜组(10)和对准成像CMOS(11)对所述的毛玻片(9)成全视场成像。
2.根据权利要求1所述的百微米量程透射式干涉测试装置,其特征在于所述的准直物镜(6)、标准楔镜(7)和标准反射镜(8)的通光口径为Φ200mm。
3.根据权利要求1或2所述的百微米量程透射式干涉测试装置,其特征在于所述的标准楔镜(7)的楔角为6分。
CN201811220980.0A 2018-10-19 2018-10-19 百微米量程透射式干涉测试装置 Active CN109253707B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811220980.0A CN109253707B (zh) 2018-10-19 2018-10-19 百微米量程透射式干涉测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811220980.0A CN109253707B (zh) 2018-10-19 2018-10-19 百微米量程透射式干涉测试装置

Publications (2)

Publication Number Publication Date
CN109253707A true CN109253707A (zh) 2019-01-22
CN109253707B CN109253707B (zh) 2024-02-27

Family

ID=65046479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811220980.0A Active CN109253707B (zh) 2018-10-19 2018-10-19 百微米量程透射式干涉测试装置

Country Status (1)

Country Link
CN (1) CN109253707B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455420A (zh) * 2019-07-11 2019-11-15 长春理工大学 波前测量设备
CN110686618A (zh) * 2019-11-22 2020-01-14 北京理工大学 结合全反射角定位的非球面参数误差干涉测量方法及***
CN114295327A (zh) * 2021-12-02 2022-04-08 天津大学 基于远心成像***的光学***透射波前测量方法及装置
CN116045835A (zh) * 2023-03-31 2023-05-02 成都太科光电技术有限责任公司 一种超大口径平面或球面光学干涉测试装置
CN116718356A (zh) * 2023-08-09 2023-09-08 浙江荷湖科技有限公司 有限远共轭成像***的测试方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983042A (en) * 1988-02-10 1991-01-08 Akademie Der Wissenschaften Der Ddr Method and system for measuring the microstructure of surfaces
US5563706A (en) * 1993-08-24 1996-10-08 Nikon Corporation Interferometric surface profiler with an alignment optical member
JPH10185531A (ja) * 1996-10-23 1998-07-14 Nec Corp 高精度パターンの外観の検査方法および装置
US20060082783A1 (en) * 2004-10-15 2006-04-20 Ko Ishizuka Position detection apparatus and method
JP2008064691A (ja) * 2006-09-08 2008-03-21 Moritex Corp 光学異方性パラメータ測定装置
CN104764593A (zh) * 2015-04-20 2015-07-08 成都太科光电技术有限责任公司 卧式双端口平面斐索干涉测试装置
CN106092514A (zh) * 2015-04-28 2016-11-09 南京理工大学 基于双波长斐索干涉仪的光学非均匀性测量装置及方法
CN208872262U (zh) * 2018-10-19 2019-05-17 成都太科光电技术有限责任公司 百微米量程透射式干涉测试装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983042A (en) * 1988-02-10 1991-01-08 Akademie Der Wissenschaften Der Ddr Method and system for measuring the microstructure of surfaces
US5563706A (en) * 1993-08-24 1996-10-08 Nikon Corporation Interferometric surface profiler with an alignment optical member
JPH10185531A (ja) * 1996-10-23 1998-07-14 Nec Corp 高精度パターンの外観の検査方法および装置
US20060082783A1 (en) * 2004-10-15 2006-04-20 Ko Ishizuka Position detection apparatus and method
JP2008064691A (ja) * 2006-09-08 2008-03-21 Moritex Corp 光学異方性パラメータ測定装置
CN104764593A (zh) * 2015-04-20 2015-07-08 成都太科光电技术有限责任公司 卧式双端口平面斐索干涉测试装置
CN106092514A (zh) * 2015-04-28 2016-11-09 南京理工大学 基于双波长斐索干涉仪的光学非均匀性测量装置及方法
CN208872262U (zh) * 2018-10-19 2019-05-17 成都太科光电技术有限责任公司 百微米量程透射式干涉测试装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455420A (zh) * 2019-07-11 2019-11-15 长春理工大学 波前测量设备
CN110686618A (zh) * 2019-11-22 2020-01-14 北京理工大学 结合全反射角定位的非球面参数误差干涉测量方法及***
CN110686618B (zh) * 2019-11-22 2020-09-15 北京理工大学 结合全反射角定位的非球面参数误差干涉测量方法及***
CN114295327A (zh) * 2021-12-02 2022-04-08 天津大学 基于远心成像***的光学***透射波前测量方法及装置
CN116045835A (zh) * 2023-03-31 2023-05-02 成都太科光电技术有限责任公司 一种超大口径平面或球面光学干涉测试装置
CN116045835B (zh) * 2023-03-31 2023-06-02 成都太科光电技术有限责任公司 一种超大口径平面或球面光学干涉测试装置
CN116718356A (zh) * 2023-08-09 2023-09-08 浙江荷湖科技有限公司 有限远共轭成像***的测试方法和装置
CN116718356B (zh) * 2023-08-09 2023-11-14 浙江荷湖科技有限公司 有限远共轭成像***的测试方法和装置

Also Published As

Publication number Publication date
CN109253707B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
CN109253707A (zh) 百微米量程透射式干涉测试装置
US5933236A (en) Phase shifting interferometer
CN101718534B (zh) 多光学***光轴平行性检测仪
CN100468000C (zh) 表面形状测量设备和方法
CN109580177B (zh) 机载三光轴一致性测试组件、***及测试方法
CN102385170B (zh) 一种高精度测量调整光学镜片中心偏差的光学***
US12000752B2 (en) Deflectometry measurement system
US9239237B2 (en) Optical alignment apparatus and methodology for a video based metrology tool
CN104165758B (zh) 基于斐索干涉仪的透镜焦距测量装置及方法
JPH0324431A (ja) 光学系、特に眼鏡用レンズの位相検出検査用光学装置
CN112747904B (zh) 红外传递函数测量仪的装调方法
WO2023098349A1 (zh) 一种光学镜片参数测量装置及方法
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
CN108132026A (zh) 半导体中红外可见光双波长透射式干涉测试装置
CN105675615A (zh) 一种高速大范围高分辨率成像***
CN208872262U (zh) 百微米量程透射式干涉测试装置
CN104764593A (zh) 卧式双端口平面斐索干涉测试装置
CN110118645B (zh) 一种半椭球反射面的光学性能综合评价方法
CN108572160B (zh) 一种折射率分布测量的折光计
CN109458944A (zh) 基于同步共轭差分干涉的平面绝对检验装置及其检测方法
CN208171201U (zh) 能够大范围测半径的光学曲率半径仪
US11635608B2 (en) Method and microscope for determining the refractive index of an optical medium
CN207894588U (zh) 基于角锥棱镜的光学镜头多视场像质检测装置
CN207816210U (zh) 半导体中红外可见光双波长透射式干涉测试装置
JP6904872B2 (ja) 波面計測装置、波面計測方法、及び光学系の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant