CN109244378A - A kind of preparation method of porous nano Si-C composite material - Google Patents

A kind of preparation method of porous nano Si-C composite material Download PDF

Info

Publication number
CN109244378A
CN109244378A CN201710560159.2A CN201710560159A CN109244378A CN 109244378 A CN109244378 A CN 109244378A CN 201710560159 A CN201710560159 A CN 201710560159A CN 109244378 A CN109244378 A CN 109244378A
Authority
CN
China
Prior art keywords
carbon
composite material
silicon
nano
porous nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710560159.2A
Other languages
Chinese (zh)
Inventor
程君
刘祥
侯小贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Lixin Jiangsu Energy Technology Co Ltd
Original Assignee
Nanjing Tech University
Lixin Jiangsu Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University, Lixin Jiangsu Energy Technology Co Ltd filed Critical Nanjing Tech University
Priority to CN201710560159.2A priority Critical patent/CN109244378A/en
Publication of CN109244378A publication Critical patent/CN109244378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention discloses a kind of preparation methods of porous nano Si-C composite material, first carbon coating is carried out in nanometer silicon face, form carbon-coated nano-silicon, then carbon-coated nano-silicon mixed with metal oxide and carbon material, be sintered, obtain the presoma of porous nano Si-C composite material, presoma is washed with acid solution, remove the metal oxide in presoma, porous nano Si-C composite material is obtained after drying, the loss of the method for the present invention raw material is few, the material conductivity of safe operation, acquisition is good.

Description

A kind of preparation method of porous nano Si-C composite material
Technical field
The present invention relates to a kind of preparation methods of lithium ion battery negative material.Specifically, the present invention provides one kind The preparation method of porous nano Si-C composite material.
Background technique
Lithium ion battery is because it is high with operating voltage, specific energy is high, capacity is big, self discharge is small, cyclicity is good, uses the longevity Order outstanding advantages of long, light-weight, small in size and the desired electrical as the portable electronic devices such as mobile phone, laptop Source.In order to meet requirement, high capacity, extended-life lithium ion battery become an important research side of lithium ion battery development To.Since the specific capacity of positive electrode is relatively low, the room for promotion of capacity is little, therefore the development work of high-capacity lithium ion cell It is concentrated mainly on negative electrode material.The existing negative electrode material being commercially used is carbon material, and theoretical specific capacity only has 372mAh/ G, therefore the high-capacity cathode material for finding substitution carbon becomes an important research direction.
Si sill is a kind of common lithium ion battery negative material, is managed in people are studied up to now material Highest by specific capacity, the theoretical specific capacity of pure silicon is 4200mAh/g, much larger than negative electrode material natural graphite commercial at this stage With the theoretical capacity of artificial graphite, it is considered to be the lithium ion battery negative material of most promising high capacity.But pure simple substance Silicon can not be used as electrode material, because its conductivity is low, silicon is semiconductor material, and conductivity only has 6.7*10-4S/cm, separately On the one hand in battery charge and discharge process, the silicon as negative electrode material can generate huge volume expansion, cause negative electrode material with Negative current collector is detached from, and cycle performance of battery is unable to satisfy commercial requirement.For the above two aspects problem, common practice in industry It is to be mixed with Carbon materials using silicon, i.e. Si-C composite material utilizes the electricity of the good electric conductivity solution elemental silicon of Carbon materials The problem of conductance, on the other hand the smaller ratio for reducing silicon in Si-C composite material, reduces the size of silicon, such as use nanometer Silicon reduces the bulking effect of material entirety.
Patent CN103337612B discloses a kind of nanoporous Si-C composite material and preparation method thereof, utilizes aluminium base Ternary alloy three-partalloy is as raw material, and using free etch, feature includes the following steps: that component is included silicon, carbon, aluminium by (1) Ternary alloy three-partalloy piece is placed in sodium hydroxide solution or hydrochloric acid or sulfuric acid solution;(2) it at a temperature of 10~40 DEG C, places anti- It answers 5~40 hours;(3) alloy after corrosion is collected, is washed with water to corrosion solution used and is washed away completely repeatedly, then 4 It is dried at a temperature of~100 DEG C, as nanoporous Si/C composite material.Had by the material agent of this method preparation three-dimensional continuous Nano pore structure bulk structure, to alleviate the stress of traditional silicon nano material breathing, to inhibit structure breaking, this Outside, continuous structure forms the huge network of electronics and ionic conduction, help to obtain high stability and conduction Property.But since the silicon of nanoscale is unstable in aqueous solution, it is easy to happen vigorous reaction, or even generate as hydrogen Flammable explosive gas, this method are directly placed in the ternary alloy three-partalloy piece of silicon, carbon, aluminium in solution, touch aqueous solution in silicon Place will cause the loss of silicon, and cause danger.
Patent CN201510106478.7 disclose a kind of Silicon-carbon composite material for lithium ion battery and preparation method thereof and Using 1) by sanded treatment after silicon powder ball mill grinding, by treated, silicon powder is dispersed in macromolecule polymer solution or containing a source of aluminum Solution or colloid containing silicon source in and be ultrasonically treated, so that silicon powder is suspended in the solution, prevent to reunite.2) by step 1) It after resulting solution decompression rotary evaporation removes solvent, is sintered, is coated in silicon face amorphous under non-oxidizing atmosphere Carbon or aluminum oxide.3) by the silicon powder coated obtained by step 2) and inorganic carbon source, hydroxy compounds dispersing agent, again divide equally The polymeric additive that son amount is 50000-400000 carries out mechanical stirring, is uniformly mixed, the suitable weak solution of viscosity.4) The resulting weak solution of step 3) is subjected to spray drying treatment, obtains Si-C composite material, and carry out under non-oxidizing atmosphere Sintering, obtains porous Si-C composite material.5) it in the hole of the resulting Si-C composite material of step 4), fills inorganic or has Machine carbon source configures the higher concentrated solution of viscosity, carries out spray drying treatment, obtains fine and close spherical composite material, and non-oxygen It is sintered under the property changed atmosphere, finally obtains the Silicon-carbon composite material for lithium ion battery of high-tap density, stable circulation.It obtains Si-C composite material the advantages of being integrated with Si-C composite material and porous material, by multi-buffering-layer, improve silicon substrate Expect the problem poor as cyclicity existing for lithium ion battery negative material, coulombic efficiency is low, but also can be real by regulation The ratio of silicon powder and carbon source during testing prepares composite material of the reversible capacity between 400-1200mAh/g.But this is specially Silicon powder in the solution of macromolecule polymer solution or containing a source of aluminum or the colloid containing silicon source and is ultrasonically treated by benefit, keeps silicon powder outstanding It floats in the solution, i.e., prepares material by the way of collosol and gel, can be brought in extensive industrialization technology scheme very big Inconvenience handles the thing that large-scale colloid is a relative difficulty.
Summary of the invention
In view of the deficiencies of the prior art, the object of the present invention is to provide a kind of preparation sides of porous nano Si-C composite material Method.A carbon coating first is carried out in nanometer silicon face, carbon-coated nano-silicon is formed, then by carbon-coated nano-silicon and metal Oxide and carbon material are mixed, are sintered, and the presoma of porous nano Si-C composite material is obtained, by presoma acid solution It is washed, removes the metal oxide in presoma, obtain porous nano Si-C composite material after dry.Due to molten with acid Before liquid is washed, for nanometer silicon face by carbon coating, carbon layer on surface has completely cut off contact of the nano-silicon with solution, leads to silicon It can not be reacted with solution, avoid the loss of silicon, reduce danger.
The present invention is achieved by the following technical solutions:
The present invention provides a kind of preparation methods of negative electrode of lithium ion battery Si-C composite material, comprising the following steps:
(1) partial size is put into Equipment for Heating Processing in 50~1000g of silicon particle of 5~100nm, is warming up to vapor deposition 650~1650 DEG C of temperature;
(2) start to be passed through gaseous carbon source, the duration is 1~10h, flow 0.1-20L/min;
(3) reaction stops, and natural cooling is cooled to room temperature to get carbon-coated nano-silicon is arrived;
(4) carbon-coated nano-silicon, metal oxide and carbon material are mixed, wherein the weight of carbon-coated nano-silicon accounts for Than being 2~35%, the weight accounting of metal oxide is 2~85%, remaining is carbon material.Three's mixture is placed into hot place It is sintered in reason equipment, leads to nitrogen or inert gas shielding, sintering temperature is 500~1650 DEG C, and sintering time is 2~36h, natural It cools to room temperature, obtains the presoma of porous nano Si-C composite material;
(5) presoma is washed with the acid solution of 0.5~10mol/L, is then washed with deionized water, it is dry Porous nano Si-C composite material is obtained afterwards;
The gaseous carbon source is a combination of one or more object of alkane, alkene, alkynes, aromatic hydrocarbon, ethers, preferably For acetylene;
The Equipment for Heating Processing are as follows: tube furnace, batch-type furnace, board-like furnace or high-temperature rotary furnace, preferably high-temperature rotary furnace;
The metal oxide are as follows: aluminum oxide, magnesia, calcium oxide, iron oxide, di-iron trioxide, zinc oxide, oxygen Change a combination of one or more object of copper;
The carbon material are as follows: natural graphite, artificial graphite, carbonaceous mesophase spherules, carbon nanotube, graphene, in carbon fiber A combination of one or more object;
The acid solution are as follows: sulfuric acid solution, hydrochloric acid solution, nitric acid solution, phosphoric acid solution, one kind of hydrofluoric acid solution or two Kind or more composition;
Preferably, the vapor deposition temperature is 750~1400 DEG C, and sintering temperature is 500~1250 DEG C;
Preferably, acid solutions are 3~9mol/L.
Preferably, the weight accounting of carbon-coated nano-silicon is 5~20%, the weight accounting of metal oxide is 30~ 60%, remaining is carbon material.
The present invention has the advantages that compared with prior art
(1) preparation method of porous nano Si-C composite material of the present invention, before being washed with acid solution, nanometer For silicon face by carbon coating, carbon layer on surface has completely cut off contact of the nano-silicon with solution, causes silicon that can not react with solution, avoids The loss of silicon, reduces danger;
(2) present invention has coated one layer of carbon in Si particle surface deposition using the method for vapor deposition, and the material of acquisition is led Electrical property is more preferable;
(3) present invention uses the presoma of acid elution porous nano Si-C composite material, can reduce that final product is porous to be received The pH value of rice Si-C composite material, in lithium ion battery production, high ph-values normally result in negative electrode slurry condensation, mobility Difference can not be coated, and the porous nano Si-C composite material of low ph value of the present invention will avoid after being made into battery cathode slurry Condense phenomenon.
(4) when selecting acetylene as gaseous carbon source, the efficiency highest for the carbon that is vapor-deposited.
(5) present invention process is simple, is easy to carry out large-scale production.
Specific embodiment
Present invention will be further explained below with reference to specific examples.It should be understood that these embodiments be only used for the present invention without For limiting the scope of the invention.Externally it should be understood that after reading the contents of the present invention, those skilled in the art are to this hair Bright to make various changes or modifications, these equivalent forms also fall within the scope of the appended claims of the present application.
Embodiment 1
(1) partial size is put into high-temperature rotary furnace in the silicon particle 200g of 50nm, is warming up to vapor deposition temperature 1200 ℃;
(2) start to be passed through acetylene, duration 3h, flow 1L/min;
(3) reaction stops, and natural cooling is cooled to room temperature to get carbon-coated nano-silicon is arrived;
(4) carbon-coated nano-silicon, magnesia and natural graphite are mixed, wherein the weight accounting of carbon-coated nano-silicon It is 5%, the weight accounting of magnesia is 35%, remaining is natural graphite.Three's mixture is placed into batch-type furnace and is sintered, is led to The nitrogen of 1L/min, sintering temperature are 700 DEG C, and sintering time is for 24 hours that natural cooling is cooled to room temperature, obtains porous nano silicon The presoma of carbon composite;
(5) presoma is washed with the sulfuric acid solution of 8mol/L, is then washed with deionized water, be after dry Obtain porous nano Si-C composite material.
Performance evaluation uses simulated battery, the production method is as follows:
The porous nano Si-C composite material for using embodiment to prepare respectively makes simulated battery, production as active material Steps are as follows:
1, ingredient and mechanical stirring, according to active material 3.4g, conductive agent 0.2g (is not needed then) with the presence of carbon black situation, It is living that the ratio of 5% Kynoar PVDF 8g and N-Methyl pyrrolidone NMP 0.8g weigh porous nano Si-C composite material Property substance, conductive agent, 5% PVDF and NMP, then mechanical stirring mode is used to be configured to solid content as 32.26% slurry, stirred About 15min is mixed, slurry preferably, measures slurry pH value in honey paste.
2, slurry is coated on copper foil, makes pole piece.
3, pole piece dries drying, is placed directly in air dry oven, and 95~100 DEG C are toasted 2 hours, and it is dry to be then placed in vacuum Dry case, 95~100 DEG C vacuum drying 10 hours.
4, assembled battery, makees cathode with lithium piece, makees diaphragm with polypropylene or polyethylene, with 1mol/L LiPF6 (volume ratio Ethylene carbonate and dimethyl carbonate mixed liquor for 1: 1) it is used as electrolyte, it is assembled into simulated battery.
5, simulation electricity is measured using the blue electric battery test system of the LAND type of the CT2001C of Wuhan Jin Nuo Electronics Co., Ltd. The data in pond, voltage range are 0.005~2.0V, and charging and discharging currents are the chemical property that 0.2C evaluates material, negative electrode slurry PH value is 8, reversible capacity 510mAh/g, efficiency for charge-discharge 89%, and circulation is after 15 weeks, capacity retention ratio 97%.
Embodiment 2
(1) partial size is put into high-temperature rotary furnace in the silicon particle 50g of 10nm, is warming up to 750 DEG C of temperature of vapor deposition;
(2) start to be passed through propane, duration 10h, flow 0.5L/min;
(3) reaction stops, and natural cooling is cooled to room temperature to get carbon-coated nano-silicon is arrived;
(4) carbon-coated nano-silicon, aluminum oxide and carbonaceous mesophase spherules are mixed, wherein carbon-coated nano-silicon Weight accounting is 20%, and the weight accounting of aluminum oxide is 60%, remaining is carbonaceous mesophase spherules.Three's mixture is placed It is sintered into batch-type furnace, leads to the nitrogen of 1L/min, sintering temperature is 1100 DEG C, and sintering time 2h, natural cooling is cooled to room Temperature obtains the presoma of porous nano Si-C composite material;
(5) presoma is washed with the nitric acid solution of 1mol/L, is then washed with deionized water, be after dry Obtain porous nano Si-C composite material.
Performance evaluation uses simulated battery, the production method is as follows:
The porous nano Si-C composite material for using embodiment to prepare respectively makes simulated battery, production as active material Steps are as follows:
1, ingredient and mechanical stirring, according to active material 3.4g, conductive agent 0.2g (is not needed then) with the presence of carbon black situation, It is living that the ratio of 5% Kynoar PVDF 8g and N-Methyl pyrrolidone NMP 0.8g weigh porous nano Si-C composite material Property substance, conductive agent, 5% PVDF and NMP, then mechanical stirring mode is used to be configured to solid content as 32.26% slurry, stirred About 15min is mixed, slurry preferably, measures slurry pH value in honey paste.
2, slurry is coated on copper foil, makes pole piece.
3, pole piece dries drying, is placed directly in air dry oven, and 95~100 DEG C are toasted 2 hours, and it is dry to be then placed in vacuum Dry case, 95~100 DEG C vacuum drying 10 hours.
4, assembled battery, makees cathode with lithium piece, makees diaphragm with polypropylene or polyethylene, with 1mol/L LiPF6 (volume ratio Ethylene carbonate and dimethyl carbonate mixed liquor for 1: 1) it is used as electrolyte, it is assembled into simulated battery.
5, simulation electricity is measured using the blue electric battery test system of the LAND type of the CT2001C of Wuhan Jin Nuo Electronics Co., Ltd. The data in pond, voltage range are 0.005~2.0V, and charging and discharging currents are the chemical property that 0.2C evaluates material.Negative electrode slurry PH value is 8.6, reversible capacity 570mAh/g, efficiency for charge-discharge 85%, and circulation is after 15 weeks, capacity retention ratio 95%.
Embodiment 3
(1) partial size is put into high-temperature rotary furnace in the silicon particle 1000g of 100nm, is warming up to vapor deposition temperature 1400 ℃;
(2) start to be passed through ethylene, duration 2h, flow 15L/min;
(3) reaction stops, and natural cooling is cooled to room temperature to get carbon-coated nano-silicon is arrived;
(4) carbon-coated nano-silicon, zinc oxide and artificial graphite are mixed, wherein the weight accounting of carbon-coated nano-silicon It is 15%, the weight accounting of zinc oxide is 10%, remaining is artificial graphite.Three's mixture is placed into batch-type furnace and is sintered, The nitrogen of logical 1L/min, sintering temperature are 1300 DEG C, and sintering time 5h, natural cooling is cooled to room temperature, obtains porous nano The presoma of Si-C composite material;
(5) presoma is washed with the hydrochloric acid solution of 5mol/L, is then washed with deionized water, be after dry Obtain porous nano Si-C composite material.
Performance evaluation uses simulated battery, the production method is as follows:
The porous nano Si-C composite material for using embodiment to prepare respectively makes simulated battery, production as active material Steps are as follows:
1, ingredient and mechanical stirring, according to active material 3.4g, conductive agent 0.2g (is not needed then) with the presence of carbon black situation, It is living that the ratio of 5% Kynoar PVDF 8g and N-Methyl pyrrolidone NMP 0.8g weigh porous nano Si-C composite material Property substance, conductive agent, 5% PVDF and NMP, then mechanical stirring mode is used to be configured to solid content as 32.26% slurry, stirred About 15min is mixed, slurry preferably, measures slurry pH value in honey paste.
2, slurry is coated on copper foil, makes pole piece.
3, pole piece dries drying, is placed directly in air dry oven, and 95~100 DEG C are toasted 2 hours, and it is dry to be then placed in vacuum Dry case, 95~100 DEG C vacuum drying 10 hours.
4, assembled battery, makees cathode with lithium piece, makees diaphragm with polypropylene or polyethylene, with 1mol/L LiPF6 (volume ratio Ethylene carbonate and dimethyl carbonate mixed liquor for 1: 1) it is used as electrolyte, it is assembled into simulated battery.
5, simulation electricity is measured using the blue electric battery test system of the LAND type of the CT2001C of Wuhan Jin Nuo Electronics Co., Ltd. The data in pond, voltage range are 0.005~2.0V, and charging and discharging currents are the chemical property that 0.2C evaluates material.Negative electrode slurry PH value is 8.1, reversible capacity 533mAh/g, efficiency for charge-discharge 87%, and circulation is after 15 weeks, capacity retention ratio 92%.
Embodiment 4
(1) partial size is put into tube furnace in the silicon particle 50g of 30nm, is warming up to 1100 DEG C of temperature of vapor deposition;
(2) start to be passed through propane, duration 5h, flow 1L/min;
(3) reaction stops, and natural cooling is cooled to room temperature to get carbon-coated nano-silicon is arrived;
(4) carbon-coated nano-silicon, copper oxide and natural graphite are mixed, wherein the weight accounting of carbon-coated nano-silicon It is 15%, the weight accounting of copper oxide is 30%, remaining is natural graphite.Three's mixture is placed into batch-type furnace and is sintered, The nitrogen of logical 1L/min, sintering temperature are 600 DEG C, and sintering time 12h, natural cooling is cooled to room temperature, obtains porous nano The presoma of Si-C composite material;
(5) presoma is washed with the phosphoric acid solution of 2mol/L, is then washed with deionized water, be after dry Obtain porous nano Si-C composite material.
Performance evaluation uses simulated battery, the production method is as follows:
The porous nano Si-C composite material for using embodiment to prepare respectively makes simulated battery, production as active material Steps are as follows:
1, ingredient and mechanical stirring, according to active material 3.4g, conductive agent 0.2g (is not needed then) with the presence of carbon black situation, It is living that the ratio of 5% Kynoar PVDF 8g and N-Methyl pyrrolidone NMP 0.8g weigh porous nano Si-C composite material Property substance, conductive agent, 5% PVDF and NMP, then mechanical stirring mode is used to be configured to solid content as 32.26% slurry, stirred About 15min is mixed, slurry preferably, measures slurry pH value in honey paste.
2, slurry is coated on copper foil, makes pole piece.
3, pole piece dries drying, is placed directly in air dry oven, and 95~100 DEG C are toasted 2 hours, and it is dry to be then placed in vacuum Dry case, 95~100 DEG C vacuum drying 10 hours.
4, assembled battery, makees cathode with lithium piece, makees diaphragm with polypropylene or polyethylene, with 1mol/L LiPF6 (volume ratio Ethylene carbonate and dimethyl carbonate mixed liquor for 1: 1) it is used as electrolyte, it is assembled into simulated battery.
5, simulation electricity is measured using the blue electric battery test system of the LAND type of the CT2001C of Wuhan Jin Nuo Electronics Co., Ltd. The data in pond, voltage range are 0.005~2.0V, and charging and discharging currents are the chemical property that 0.2C evaluates material, negative electrode slurry PH value is 8.2, reversible capacity 536mAh/g, efficiency for charge-discharge 86%, and circulation is after 15 weeks, capacity retention ratio 93%.
Embodiment 5
(1) partial size is put into high-temperature rotary furnace in the silicon particle 200g of 100nm, is warming up to vapor deposition temperature 900 ℃;
(2) start to be passed through ethylene, duration 8h, flow 0.5L/min;
(3) reaction stops, and natural cooling is cooled to room temperature to get carbon-coated nano-silicon is arrived;
(4) carbon-coated nano-silicon, iron oxide and artificial graphite are mixed, wherein the weight accounting of carbon-coated nano-silicon It is 12%, the weight accounting of iron oxide is 60%, remaining is artificial graphite.Three's mixture is placed into batch-type furnace and is sintered, The nitrogen of logical 1L/min, sintering temperature are 550 DEG C, and sintering time 12h, natural cooling is cooled to room temperature, obtains porous nano The presoma of Si-C composite material;
(5) presoma is washed with the nitric acid solution of 4mol/L, is then washed with deionized water, be after dry Obtain porous nano Si-C composite material.
Performance evaluation uses simulated battery, the production method is as follows:
The porous nano Si-C composite material for using embodiment to prepare respectively makes simulated battery, production as active material Steps are as follows:
1, ingredient and mechanical stirring, according to active material 3.4g, conductive agent 0.2g (is not needed then) with the presence of carbon black situation, It is living that the ratio of 5% Kynoar PVDF 8g and N-Methyl pyrrolidone NMP 0.8g weigh porous nano Si-C composite material Property substance, conductive agent, 5% PVDF and NMP, then mechanical stirring mode is used to be configured to solid content as 32.26% slurry, stirred About 15min is mixed, slurry preferably, measures slurry pH value in honey paste.
2, slurry is coated on copper foil, makes pole piece.
3, pole piece dries drying, is placed directly in air dry oven, and 95~100 DEG C are toasted 2 hours, and it is dry to be then placed in vacuum Dry case, 95~100 DEG C vacuum drying 10 hours.
4, assembled battery, makees cathode with lithium piece, makees diaphragm with polypropylene or polyethylene, with 1mol/L LiPF6 (volume ratio Ethylene carbonate and dimethyl carbonate mixed liquor for 1: 1) it is used as electrolyte, it is assembled into simulated battery.
5, simulation electricity is measured using the blue electric battery test system of the LAND type of the CT2001C of Wuhan Jin Nuo Electronics Co., Ltd. The data in pond, voltage range are 0.005~2.0V, and charging and discharging currents are the chemical property that 0.2C evaluates material, negative electrode slurry PH value is 8.4, reversible capacity 425mAh/g, efficiency for charge-discharge 87%, and circulation is after 15 weeks, capacity retention ratio 96%.
Embodiment 6
(1) partial size is put into high-temperature rotary furnace in the silicon particle 200g of 80nm, is warming up to vapor deposition temperature 1600 ℃;
(2) start to be passed through ethylene, duration 5h, flow 2L/min;
(3) reaction stops, and natural cooling is cooled to room temperature to get carbon-coated nano-silicon is arrived;
(4) carbon-coated nano-silicon, iron oxide and artificial graphite are mixed, wherein the weight accounting of carbon-coated nano-silicon It is 5%, the weight accounting of iron oxide is 30%, remaining is artificial graphite.Three's mixture is placed into batch-type furnace and is sintered, is led to The nitrogen of 1L/min, sintering temperature are 500 DEG C, and sintering time is for 24 hours that natural cooling is cooled to room temperature, obtains porous nano silicon The presoma of carbon composite;
(5) presoma is washed with the hydrochloric acid solution of 3mol/L, is then washed with deionized water, be after dry Obtain porous nano Si-C composite material.
Performance evaluation uses simulated battery, the production method is as follows:
The porous nano Si-C composite material for using embodiment to prepare respectively makes simulated battery, production as active material Steps are as follows:
1, ingredient and mechanical stirring, according to active material 3.4g, conductive agent 0.2g (is not needed then) with the presence of carbon black situation, It is living that the ratio of 5% Kynoar PVDF 8g and N-Methyl pyrrolidone NMP 0.8g weigh porous nano Si-C composite material Property substance, conductive agent, 5% PVDF and NMP, then mechanical stirring mode is used to be configured to solid content as 32.26% slurry, stirred About 15min is mixed, slurry preferably, measures slurry pH value in honey paste.
2, slurry is coated on copper foil, makes pole piece.
3, pole piece dries drying, is placed directly in air dry oven, and 95~100 DEG C are toasted 2 hours, and it is dry to be then placed in vacuum Dry case, 95~100 DEG C vacuum drying 10 hours.
4, assembled battery, makees cathode with lithium piece, makees diaphragm with polypropylene or polyethylene, with 1mol/L LiPF6 (volume ratio Ethylene carbonate and dimethyl carbonate mixed liquor for 1: 1) it is used as electrolyte, it is assembled into simulated battery.
5, simulation electricity is measured using the blue electric battery test system of the LAND type of the CT2001C of Wuhan Jin Nuo Electronics Co., Ltd. The data in pond, voltage range are 0.005~2.0V, and charging and discharging currents are the chemical property that 0.2C evaluates material, negative electrode slurry PH value is 8.5, reversible capacity 401mAh/g, efficiency for charge-discharge 72%, and circulation is after 15 weeks, capacity retention ratio 95%.

Claims (7)

1. a kind of preparation method of porous nano Si-C composite material, comprising the following steps:
(1) partial size is put into Equipment for Heating Processing in 50~1000g of silicon particle of 5~100nm, is warming up to vapor deposition temperature 650~1650 DEG C;
(2) start to be passed through gaseous carbon source, the duration is 1~10h, flow 0.1-20L/min;
(3) reaction stops, and natural cooling is cooled to room temperature to get carbon-coated nano-silicon is arrived;
(4) carbon-coated nano-silicon, metal oxide and carbon material are mixed, wherein the weight accounting of carbon-coated nano-silicon is 2~35%, the weight accounting of metal oxide is 2~85%, remaining is carbon material.Three's mixture is placed into heat treatment to set Nitrogen or inert gas shielding are led in standby middle sintering, and sintering temperature is 500~1650 DEG C, and sintering time is 2~36h, natural cooling It is cooled to room temperature, obtains the presoma of porous nano Si-C composite material;
(5) presoma is washed with the acid solution of 0.5~10mol/L, is then washed with deionized water, be after dry Obtain porous nano Si-C composite material;
The gaseous carbon source is a combination of one or more object of alkane, alkene, alkynes, aromatic hydrocarbon, ethers;
The metal oxide are as follows: aluminum oxide, magnesia, calcium oxide, iron oxide, di-iron trioxide, zinc oxide, copper oxide A combination of one or more object;
The carbon material are as follows: natural graphite, artificial graphite, carbonaceous mesophase spherules, carbon nanotube, graphene, one in carbon fiber Kind or two or more compositions;
The acid solution are as follows: sulfuric acid solution, hydrochloric acid solution, nitric acid solution, phosphoric acid solution, hydrofluoric acid solution it is one or two kinds of with On composition.
2. according to the preparation method of porous nano Si-C composite material described in claims 1, which is characterized in that the heat Processing equipment are as follows: tube furnace, batch-type furnace, board-like furnace or high-temperature rotary furnace.
3. according to the preparation method of porous nano Si-C composite material described in claims 1, which is characterized in that the gas phase is heavy Accumulated temperature degree is 750~1400 DEG C.
4. according to the preparation method of porous nano Si-C composite material described in claims 1, which is characterized in that the gaseous carbon Source is acetylene.
5. according to the preparation method of porous nano Si-C composite material described in claims 1, which is characterized in that the acid solution Concentration is 3~9mol/L.
6. according to the preparation method of porous nano Si-C composite material described in claims 1, which is characterized in that the carbon coating The weight accounting of nano-silicon be 5~20%, the weight accounting of metal oxide is 30~60%, remaining is carbon material.
7. according to the preparation method of porous nano Si-C composite material described in claims 1, which is characterized in that the sintering temperature Degree is 500~1250 DEG C.
CN201710560159.2A 2017-07-10 2017-07-10 A kind of preparation method of porous nano Si-C composite material Pending CN109244378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710560159.2A CN109244378A (en) 2017-07-10 2017-07-10 A kind of preparation method of porous nano Si-C composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710560159.2A CN109244378A (en) 2017-07-10 2017-07-10 A kind of preparation method of porous nano Si-C composite material

Publications (1)

Publication Number Publication Date
CN109244378A true CN109244378A (en) 2019-01-18

Family

ID=65083856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710560159.2A Pending CN109244378A (en) 2017-07-10 2017-07-10 A kind of preparation method of porous nano Si-C composite material

Country Status (1)

Country Link
CN (1) CN109244378A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647298A (en) * 2019-01-31 2019-04-19 济南大学 Polyethylene-zinc oxide micrometer nanometer hierarchical structure composite micro-sphere material and application
CN109860579A (en) * 2019-04-02 2019-06-07 合肥国轩高科动力能源有限公司 A kind of negative electrode material and preparation method thereof with core-shell structure
CN111261856A (en) * 2020-01-20 2020-06-09 广东工业大学 Carbon sheet cage coated porous silicon material and preparation method and application thereof
CN111584838A (en) * 2020-05-06 2020-08-25 厦门大学 Porous silicon/silicon-carbon composite material and preparation method and application thereof
CN111785945A (en) * 2020-07-21 2020-10-16 湖南中科星城石墨有限公司 Graphene-coated nano silicon and preparation method thereof, silicon-carbon negative electrode material and preparation method thereof
CN112467140A (en) * 2020-08-14 2021-03-09 珠海中科兆盈丰新材料科技有限公司 High-safety graphite silicon carbon composite material and preparation method thereof
CN113036109A (en) * 2021-03-12 2021-06-25 广州巨湾技研有限公司 Preparation method of high-rate silicon-carbon negative electrode microspheres and high-rate silicon-carbon negative electrode microspheres
CN113130870A (en) * 2021-04-09 2021-07-16 珠海冠宇电池股份有限公司 Composite silicon material and lithium ion battery
CN113479947A (en) * 2021-06-29 2021-10-08 清华大学深圳国际研究生院 Porous nano material surface modification method, filtering type disinfection device and method
CN114744172A (en) * 2022-04-06 2022-07-12 广东海洋大学 Silicon-carbon composite negative electrode material and preparation method and application thereof
CN116454256A (en) * 2023-06-16 2023-07-18 北京壹金新能源科技有限公司 Preparation method of silicon-carbon composite material, silicon-carbon composite material and battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226241A (en) * 2014-08-27 2016-01-06 深圳市国创新能源研究院 A kind of silicon-carbon composite cathode material of lithium ion battery and preparation method thereof
KR20160001481A (en) * 2014-06-27 2016-01-06 주식회사 엘지화학 Surface coated porous silicon based anode active material and preparation method thereof
WO2016159663A1 (en) * 2015-03-31 2016-10-06 주식회사 엘지화학 Porous silicon-silicon oxide-carbon composite, and method for preparing same
CN106159229A (en) * 2016-07-28 2016-11-23 深圳市贝特瑞新能源材料股份有限公司 Silicon based composite material, preparation method and comprise the lithium ion battery of this composite
CN106328898A (en) * 2016-10-10 2017-01-11 东莞市凯金新能源科技股份有限公司 Method for preparing lithium ion battery anode composite material through template method
CN106450192A (en) * 2016-10-14 2017-02-22 浙江天能能源科技股份有限公司 Silicon/carbon composite material for lithium ion battery and preparation method and application thereof
US20170117539A1 (en) * 2015-10-22 2017-04-27 Samsung Electronics Co., Ltd. Electrode active material, electrode and secondary battery including the same, and method of preparing the electrode active material
CN106784707A (en) * 2016-12-28 2017-05-31 江西正拓新能源科技股份有限公司 A kind of preparation method of nano-silicone wire/carbon composite lithium ion battery cathode material
CN106848257A (en) * 2017-03-26 2017-06-13 合肥国轩高科动力能源有限公司 A kind of preparation method of the carbon coating silicium cathode material of hollow structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160001481A (en) * 2014-06-27 2016-01-06 주식회사 엘지화학 Surface coated porous silicon based anode active material and preparation method thereof
CN105226241A (en) * 2014-08-27 2016-01-06 深圳市国创新能源研究院 A kind of silicon-carbon composite cathode material of lithium ion battery and preparation method thereof
WO2016159663A1 (en) * 2015-03-31 2016-10-06 주식회사 엘지화학 Porous silicon-silicon oxide-carbon composite, and method for preparing same
US20170117539A1 (en) * 2015-10-22 2017-04-27 Samsung Electronics Co., Ltd. Electrode active material, electrode and secondary battery including the same, and method of preparing the electrode active material
CN106159229A (en) * 2016-07-28 2016-11-23 深圳市贝特瑞新能源材料股份有限公司 Silicon based composite material, preparation method and comprise the lithium ion battery of this composite
CN106328898A (en) * 2016-10-10 2017-01-11 东莞市凯金新能源科技股份有限公司 Method for preparing lithium ion battery anode composite material through template method
CN106450192A (en) * 2016-10-14 2017-02-22 浙江天能能源科技股份有限公司 Silicon/carbon composite material for lithium ion battery and preparation method and application thereof
CN106784707A (en) * 2016-12-28 2017-05-31 江西正拓新能源科技股份有限公司 A kind of preparation method of nano-silicone wire/carbon composite lithium ion battery cathode material
CN106848257A (en) * 2017-03-26 2017-06-13 合肥国轩高科动力能源有限公司 A kind of preparation method of the carbon coating silicium cathode material of hollow structure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647298B (en) * 2019-01-31 2021-04-06 济南大学 Polyethylene-zinc oxide micron nano multilevel structure composite microsphere material and application
CN109647298A (en) * 2019-01-31 2019-04-19 济南大学 Polyethylene-zinc oxide micrometer nanometer hierarchical structure composite micro-sphere material and application
CN109860579A (en) * 2019-04-02 2019-06-07 合肥国轩高科动力能源有限公司 A kind of negative electrode material and preparation method thereof with core-shell structure
CN111261856A (en) * 2020-01-20 2020-06-09 广东工业大学 Carbon sheet cage coated porous silicon material and preparation method and application thereof
CN111584838A (en) * 2020-05-06 2020-08-25 厦门大学 Porous silicon/silicon-carbon composite material and preparation method and application thereof
CN111584838B (en) * 2020-05-06 2021-03-16 厦门大学 Porous silicon/silicon-carbon composite material and preparation method and application thereof
CN111785945A (en) * 2020-07-21 2020-10-16 湖南中科星城石墨有限公司 Graphene-coated nano silicon and preparation method thereof, silicon-carbon negative electrode material and preparation method thereof
CN112467140B (en) * 2020-08-14 2022-07-01 珠海中科兆盈丰新材料科技有限公司 High-safety graphite silicon carbon composite material and preparation method thereof
CN112467140A (en) * 2020-08-14 2021-03-09 珠海中科兆盈丰新材料科技有限公司 High-safety graphite silicon carbon composite material and preparation method thereof
CN113036109A (en) * 2021-03-12 2021-06-25 广州巨湾技研有限公司 Preparation method of high-rate silicon-carbon negative electrode microspheres and high-rate silicon-carbon negative electrode microspheres
CN113130870A (en) * 2021-04-09 2021-07-16 珠海冠宇电池股份有限公司 Composite silicon material and lithium ion battery
CN113479947A (en) * 2021-06-29 2021-10-08 清华大学深圳国际研究生院 Porous nano material surface modification method, filtering type disinfection device and method
CN114744172A (en) * 2022-04-06 2022-07-12 广东海洋大学 Silicon-carbon composite negative electrode material and preparation method and application thereof
CN114744172B (en) * 2022-04-06 2024-03-22 广东海洋大学 Silicon-carbon composite anode material and preparation method and application thereof
CN116454256A (en) * 2023-06-16 2023-07-18 北京壹金新能源科技有限公司 Preparation method of silicon-carbon composite material, silicon-carbon composite material and battery
CN116454256B (en) * 2023-06-16 2023-10-03 北京壹金新能源科技有限公司 Preparation method of silicon-carbon composite material, silicon-carbon composite material and battery

Similar Documents

Publication Publication Date Title
CN109244378A (en) A kind of preparation method of porous nano Si-C composite material
CN105810914B (en) A kind of sodium-ion battery sulfur doping porous carbon materials and preparation method thereof
CN109256535B (en) Silicon @ carbon composite material with yolk shell structure and preparation and application thereof
WO2015188726A1 (en) Nitrogen-doped graphene coated nano-sulfur anode composite material, and preparation method and application thereof
CN105810915B (en) A kind of preparation of order mesoporous carbon ball composite material of the embedding sulphur of graphene coated and the application as lithium sulfur battery anode material
CN105460917B (en) A kind of nitrogen-doped carbon nanometer pipe and preparation method with hierarchy
Geng et al. Improved electrochemical performance of biomass-derived nanoporous carbon/sulfur composites cathode for lithium-sulfur batteries by nitrogen doping
CN105336940B (en) A kind of sodium titanate nano wire/graphene composite negative pole material and preparation method thereof
CN108394884A (en) A kind of preparation method of chitosan-based high-specific surface area nitrogen/phosphor codoping carbon nanosheet
CN103078087B (en) A kind of preparation method of lithium titanate/carbon nano tube composite cathode material
WO2022021933A1 (en) Negative electrode material for nonaqueous electrolyte secondary battery, and preparation method therefor
Xie et al. Fabrication of a novel TiO 2/S composite cathode for high performance lithium–sulfur batteries
CN108199014A (en) A kind of porous nitrogen-doped carbon/Fe2O3/ grapheme foam flexible composite, preparation method and applications
CN111063872A (en) Silicon-carbon negative electrode material and preparation method thereof
CN110323443A (en) A kind of spherical N doping redox graphene material and its application
CN105702956A (en) Negative material for sodium-ion battery and preparation method of negative material
CN108615854A (en) A kind of silicon substrate lithium ion battery anode active material and its preparation and application
CN110416501B (en) Electrostatic self-assembly three-dimensional flower-shaped cobalt disulfide/rGO composite material and preparation method and application thereof
CN102299334A (en) Carbon coated LiFePO4 porous anode and preparation method thereof
CN105047870A (en) Nitrogen-doped carbon-coated silicon composite material and preparation method thereof
CN108923027B (en) Organic acid modified Si/TiO2Negative electrode material of/rGO @ C lithium ion battery and preparation method and application thereof
WO2017197675A1 (en) Lithium titanate-modified material and manufacturing method thereof
CN104466182A (en) Nitrogen-doped nanocarbon coated/oxidized modified graphite composite material and preparation method thereof
CN114242961A (en) Graphene/silicon oxide-coated nano-silicon composite material, and preparation method and application thereof
CN109244458A (en) Three-dimensional netted porous graphene/iron phosphate compound anode material of lithium and preparation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190118

WD01 Invention patent application deemed withdrawn after publication