CN109202378B - 一种金属零部件的增减复合智能修复方法 - Google Patents

一种金属零部件的增减复合智能修复方法 Download PDF

Info

Publication number
CN109202378B
CN109202378B CN201811005029.3A CN201811005029A CN109202378B CN 109202378 B CN109202378 B CN 109202378B CN 201811005029 A CN201811005029 A CN 201811005029A CN 109202378 B CN109202378 B CN 109202378B
Authority
CN
China
Prior art keywords
metal part
repair
axis
repaired
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811005029.3A
Other languages
English (en)
Other versions
CN109202378A (zh
Inventor
吕云卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Jiaotong University
Original Assignee
Dalian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Jiaotong University filed Critical Dalian Jiaotong University
Priority to CN201811005029.3A priority Critical patent/CN109202378B/zh
Publication of CN109202378A publication Critical patent/CN109202378A/zh
Application granted granted Critical
Publication of CN109202378B publication Critical patent/CN109202378B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种金属零部件的增减复合智能修复方法,利用三维扫描装置获得待修复金属零部件实体模型;与未损坏的金属零部件实体模型进行差值对比,得到需要修复的缺失部分模型;对需要修复的缺失部分模型进行增材填充路径规划;进行激光3D打印的增材填充修复;利用三维扫描装置获得增材填充修复完成的金属零部件的实体模型;与未损坏的金属零部件实体模型进行差值对比,得到增材填充修复完成之后的多余部分模型;对增材填充修复完成之后的多余部分模型进行减材加工路径规划;进行减材处理。本发明可实现对金属零部件的全自动智能修复和后期加工,工作效率高,稳定性好,可大幅度降低金属零部件修复的人工成本,具有大规模工业化应用的潜力。

Description

一种金属零部件的增减复合智能修复方法
技术领域
本发明涉及金属零部件修复技术领域,更具体地,涉及一种金属零部件的增减复合智能修复方法。
背景技术
金属零部件的修复技术在资源节约型和环境友好型社会的建设中表现出越来越重要的作用,在金属零部件的再制造中得到日益广泛的应用,对于金属零件的维修保障工程发展具有重要意义和应用价值,修复技术也因此得到了巨大的发展。
金属零部件修复的最终目的都是为了恢复损伤零部件的性能,使之与原新产品性能接近或相同。常规的金属零部件的修复技术主要有电镀、电弧或火焰堆焊、等离子喷涂(焊)和激光熔覆等。目前,常规的金属零部件的修复工作主要通过人工完成,受待修零件形状以及损伤缺陷的限制,常规的金属零部件修复技术加工精度不高,喷涂质量难以保障。而且,金属零部件在使用常规技术修复之后需要进一步人工机械加工来修整粗糙不平的零件表面和去除多余修复部分,工作量大,人工成本极高。因此,如何全自动、高效、精准、低成本地利用智能方法修复金属零部件,是金属零部件修复技术领域亟待解决的问题。
发明内容
本发明的目的在于提供一种金属零部件的增减复合智能修复方法,能够全自动、更高效、更精准的修复金属零部件。
为实现上述目的,本发明的技术方案如下:
一种金属零部件的增减复合智能修复方法,其特征在于,包括以下步骤:
步骤S1:利用三维扫描装置扫描待修复金属零部件表面,获得待修复金属零部件表面每一个点的三维XYZ绝对坐标,并依据三维XYZ绝对坐标构建待修复金属零部件的实体模型;
步骤S2:将待修复金属零部件的实体模型与未损坏的金属零部件实体模型进行差值对比,得到需要修复的缺失部分模型;
步骤S3:对需要修复的缺失部分模型进行增材填充路径规划;
步骤S4:按照规划的增材填充路径对金属零部件的需要修复的缺失部分进行激光3D打印的增材填充修复;
步骤S5:利用三维扫描装置扫描增材填充修复完成的金属零部件表面,获得修复后金属零部件表面每一个点的三维XYZ绝对坐标,并依据三维XYZ绝对坐标构建增材填充修复完成的金属零部件的实体模型;
步骤S6:将增材填充修复完成的金属零部件的实体模型与未损坏的金属零部件实体模型进行差值对比,得到增材填充修复完成之后的多余部分模型;
步骤S7:对增材填充修复完成之后的多余部分模型进行减材加工路径规划;
步骤S8:按照规划的减材加工路径对增材填充修复完成之后的多余部分进行减材处理。
进一步地,所述步骤S1或步骤S5中,得到金属零部件表面每一个点的三维XYZ绝对坐标后,还包括清除异常坐标数据的过程。
进一步地,比较每一个点的Z轴坐标绝对值|Zi|与该点在XY平面3毫米范围内所有点的Z轴坐标平均值
Figure GDA0001893908840000021
大小,若某一点的
Figure GDA0001893908840000022
则认定该点为异常坐标数据。
进一步地,所述步骤S3中,增材填充路径规划的过程为:根据需要修复的缺失部分的三维XYZ绝对坐标数据的Z轴坐标值,将缺失部分XYZ绝对坐标数据按照指定的层间高度ΔZ沿着Z轴分成若干层;根据每一层缺失部分XYZ绝对坐标数据的X轴坐标值,将每一层缺失部分XYZ绝对坐标数据按照指定的宽度ΔX沿着X轴分成若干段;根据每一段缺失部分XYZ绝对坐标数据的Y轴坐标值,设定增材填充路径从Y轴最小值走到Y轴最大值。
进一步地,所述步骤S4中,进行激光3D打印的增材填充修复时,设定的打印参数包括激光功率、打印层厚、激光光斑直径、打印速度、搭接率、物料出料率。
进一步地,所述步骤S4中,当打印与金属零部件相接触的边界时,将物料出料率缩小一倍,或将打印速度提高一倍。
进一步地,所述步骤S7中,减材加工路径规划的过程为:根据增材填充修复完成之后的多余部分的三维XYZ绝对坐标数据的Z轴坐标值,将多余部分XYZ绝对坐标数据按照指定的层间高度ΔZ′沿着Z轴分成若干层;根据每一层多余部分XYZ绝对坐标数据的X轴坐标值,将每一层多余部分XYZ绝对坐标数据按照指定的宽度ΔX′沿着X轴分成若干段;根据每一段多余部分XYZ绝对坐标数据的Y轴坐标值,设定减材填充路径从Y轴最小值走到Y轴最大值。
进一步地,所述步骤S8中,所述减材处理的工具为车刀。
进一步地,所述未损坏的金属零部件实体模型的获得,可以利用绘图软件根据实际零部件尺寸绘制而成,或利用三维扫描装置扫描未损坏的金属零部件获得。
进一步地,所述三维扫描装置为激光扫描仪或光栅三维扫描仪,所述光栅三维扫描仪为白光扫描或蓝光扫描。
从上述技术方案可以看出,本发明通过将激光3D增材和传统减材方法相结合,并利用扫描装置和计算机技术,可以实现金属零部件的更精准、更高质量的修复。
具体实施方式
下面对本发明的具体实施方式作进一步的详细说明。
一种金属零部件的增减复合智能修复方法,包括以下步骤:
步骤S1:将待修复的金属零部件固定到数控机床的加工平台,利用三维扫描装置扫描待修复金属零部件表面,获得待修复金属零部件表面每一个点的三维XYZ绝对坐标,利用计算机软件,并依据三维XYZ绝对坐标构建待修复金属零部件的实体模型。三维扫描装置可以为激光扫描仪或光栅三维扫描仪,光栅三维扫描仪可以为白光扫描或蓝光扫描。三维扫描装置的测量精度为0.001~0.005mm。
由于扫描装置采集的数据点量非常大,受环境的影响,难免出现非正常数据,为了确保扫描结果的正确性,对采集的三维XYZ绝对坐标的数值进行异常坐标数据的筛选和清除,比较每一个点的Z轴坐标绝对值|Zi|与该点在XY平面3毫米范围内所有点的Z轴坐标平均值
Figure GDA0001893908840000031
大小,若某一点的
Figure GDA0001893908840000032
则认定该点为异常坐标数据。清除异常坐标数据后,再生成待修复金属零部件的实体模型。
步骤S2:将待修复金属零部件的实体模型与未损坏的金属零部件实体模型进行差值对比,得到需要修复的缺失部分模型。未损坏的金属零部件实体模型的获得,可以利用绘图软件根据实际零部件尺寸绘制而成,或利用三维扫描装置扫描未损坏的金属零部件获得。
步骤S3:对需要修复的缺失部分模型进行增材填充路径规划。增材填充路径规划的过程为:根据需要修复的缺失部分的三维XYZ绝对坐标数据的Z轴坐标值,将缺失部分XYZ绝对坐标数据按照指定的层间高度ΔZ沿着Z轴分成若干层;根据每一层缺失部分XYZ绝对坐标数据的X轴坐标值,将每一层缺失部分XYZ绝对坐标数据按照指定的宽度ΔX沿着X轴分成若干段;根据每一段缺失部分XYZ绝对坐标数据的Y轴坐标值,设定增材填充路径从Y轴最小值走到Y轴最大值。
步骤S4:按照规划的增材填充路径对金属零部件的需要修复的缺失部分进行激光3D打印的增材填充修复。激光3D打印装置的物料可以为丝材或粉末,激光3D打印的熔覆头可以为激光熔覆头、等离子熔覆头、热喷涂熔覆头或电弧喷涂熔覆头。进行激光3D打印的增材填充修复时,设定的打印参数包括激光功率、打印层厚、激光光斑直径、打印速度、搭接率、物料出料率。打印层厚等于增材填充路径规划中设计的层间高度ΔZ,通过调整激光功率、激光光斑直径、打印速度、搭接率、和物料出料率等参数,使打印出来的物料按照增材填充路径规划中的指定的宽度ΔX成型。通过增材填充路径规划可以使修复材料更均匀的填充缺少部分,提高修复质量。
3D打印修复过程中,当打印与金属零部件相接触的边界时,如果仍使用原打印参数,导致边界处堆积物料过量,影响材料质地的均一性,因此,通过调整打印参数使物料保持均匀,具体地,可以将物料出料率缩小一倍,或将打印速度提高一倍。
步骤S5:利用三维扫描装置扫描增材填充修复完成的金属零部件表面,获得修复后金属零部件表面每一个点的三维XYZ绝对坐标,并依据三维XYZ绝对坐标构建增材填充修复完成的金属零部件的实体模型。优选地,采用和步骤S1中相同的清除异常数据方法,清除异常的三维XYZ绝对坐标,然后得到增材填充修复完成的金属零部件的实体模型。
步骤S6:将增材填充修复完成的金属零部件的实体模型与未损坏的金属零部件实体模型进行差值对比,得到增材填充修复完成之后的多余部分模型。
步骤S7:对增材填充修复完成之后的多余部分模型进行减材加工路径规划。减材处理的方式可以包括车削和/或打磨。优先选择车削进行减材,具体过程为:根据增材填充修复完成之后的多余部分的三维XYZ绝对坐标数据的Z轴坐标值,将多余部分XYZ绝对坐标数据按照指定的层间高度ΔZ′沿着Z轴分成若干层;根据每一层多余部分XYZ绝对坐标数据的X轴坐标值,将每一层多余部分XYZ绝对坐标数据按照指定的宽度ΔX′沿着X轴分成若干段;根据每一段多余部分XYZ绝对坐标数据的Y轴坐标值,设定减材填充路径从Y轴最小值走到Y轴最大值。述减材处理的工具为车刀。车刀刀刃的宽度大于等于宽度ΔX′,每次车削的厚度等于层间高度ΔZ′。
打磨可以使用磨头工具,减材处理还可以是上述车削刀具和打磨工具的组合。
步骤S8:按照规划的减材加工路径对增材填充修复完成之后的多余部分进行减材处理。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种金属零部件的增减复合智能修复方法,其特征在于,包括以下步骤:
步骤S1:利用三维扫描装置扫描待修复金属零部件表面,获得待修复金属零部件表面每一个点的三维XYZ绝对坐标,并依据三维XYZ绝对坐标构建待修复金属零部件的实体模型;
步骤S2:将待修复金属零部件的实体模型与未损坏的金属零部件实体模型进行差值对比,得到需要修复的缺失部分模型;
步骤S3:对需要修复的缺失部分模型进行增材填充路径规划;
步骤S4:按照规划的增材填充路径对金属零部件的需要修复的缺失部分进行激光3D打印的增材填充修复;
步骤S5:利用三维扫描装置扫描增材填充修复完成的金属零部件表面,获得修复后金属零部件表面每一个点的三维XYZ绝对坐标,并依据三维XYZ绝对坐标构建增材填充修复完成的金属零部件的实体模型;
步骤S6:将增材填充修复完成的金属零部件的实体模型与未损坏的金属零部件实体模型进行差值对比,得到增材填充修复完成之后的多余部分模型;
步骤S7:对增材填充修复完成之后的多余部分模型进行减材加工路径规划;
步骤S8:按照规划的减材加工路径对增材填充修复完成之后的多余部分进行减材处理;
其中,所述步骤S1或步骤S5中,得到金属零部件表面每一个点的三维XYZ绝对坐标后,还包括清除异常坐标数据的过程;即比较每一个点的Z轴坐标绝对值|Zi|与该点在XY平面3毫米范围内所有点的Z轴坐标平均值
Figure FDA0002593018840000012
大小,若某一点的
Figure FDA0002593018840000011
则认定该点为异常坐标数据。
2.根据权利要求1所述的金属零部件的增减复合智能修复方法,其特征在于,所述步骤S3中,增材填充路径规划的过程为:根据需要修复的缺失部分的三维XYZ绝对坐标数据的Z轴坐标值,将缺失部分XYZ绝对坐标数据按照指定的层间高度ΔZ沿着Z轴分成若干层;根据每一层缺失部分XYZ绝对坐标数据的X轴坐标值,将每一层缺失部分XYZ绝对坐标数据按照指定的宽度ΔX沿着X轴分成若干段;根据每一段缺失部分XYZ绝对坐标数据的Y轴坐标值,设定增材填充路径从Y轴最小值走到Y轴最大值。
3.根据权利要求1所述的金属零部件的增减复合智能修复方法,其特征在于,所述步骤S4中,进行激光3D打印的增材填充修复时,设定的打印参数包括激光功率、打印层厚、激光光斑直径、打印速度、搭接率、物料出料率。
4.根据权利要求3所述的金属零部件的增减复合智能修复方法,其特征在于,所述步骤S4中,当打印与金属零部件相接触的边界时,将物料出料率缩小一倍,或将打印速度提高一倍。
5.根据权利要求1所述的金属零部件的增减复合智能修复方法,其特征在于,所述步骤S7中,减材加工路径规划的过程为:根据增材填充修复完成之后的多余部分的三维XYZ绝对坐标数据的Z轴坐标值,将多余部分XYZ绝对坐标数据按照指定的层间高度ΔZ′沿着Z轴分成若干层;根据每一层多余部分XYZ绝对坐标数据的X轴坐标值,将每一层多余部分XYZ绝对坐标数据按照指定的宽度ΔX′沿着X轴分成若干段;根据每一段多余部分XYZ绝对坐标数据的Y轴坐标值,设定减材填充路径从Y轴最小值走到Y轴最大值。
6.根据权利要求5所述的金属零部件的增减复合智能修复方法,其特征在于,所述步骤S8中,所述减材处理的工具为车刀。
7.根据权利要求1所述的金属零部件的增减复合智能修复方法,其特征在于,所述未损坏的金属零部件实体模型的获得,可以利用绘图软件根据实际零部件尺寸绘制而成,或利用三维扫描装置扫描未损坏的金属零部件获得。
8.根据权利要求1所述的金属零部件的增减复合智能修复方法,其特征在于,所述三维扫描装置为激光扫描仪或光栅三维扫描仪,所述光栅三维扫描仪为白光扫描或蓝光扫描。
CN201811005029.3A 2018-08-30 2018-08-30 一种金属零部件的增减复合智能修复方法 Active CN109202378B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811005029.3A CN109202378B (zh) 2018-08-30 2018-08-30 一种金属零部件的增减复合智能修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811005029.3A CN109202378B (zh) 2018-08-30 2018-08-30 一种金属零部件的增减复合智能修复方法

Publications (2)

Publication Number Publication Date
CN109202378A CN109202378A (zh) 2019-01-15
CN109202378B true CN109202378B (zh) 2021-02-05

Family

ID=64986539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811005029.3A Active CN109202378B (zh) 2018-08-30 2018-08-30 一种金属零部件的增减复合智能修复方法

Country Status (1)

Country Link
CN (1) CN109202378B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110640146B (zh) * 2019-10-28 2021-08-24 南京工程学院 一种零件表面缺损区域模块化增减材复合修复方法
CN111266575B (zh) * 2019-12-31 2022-03-08 南京理工大学 一种定量修复增材件表面缺陷的方法
CN111774565B (zh) * 2020-06-01 2022-05-10 成都飞机工业(集团)有限责任公司 基于特征提取思维模型的3d打印送粉修复识别方法
CN112100838B (zh) * 2020-09-08 2024-04-02 中国科学院苏州生物医学工程技术研究所 三维几何结构约束的增材修复方法及***
CN113204214B (zh) * 2021-04-28 2024-04-09 中国人民解放军陆军装甲兵学院 移动式模块化多能束能场增减材复合修复设备及方法
CN114850888B (zh) * 2022-05-27 2023-09-05 中南大学 轴类回转体零件电弧增材修复及变形强化装置
CN118003031B (zh) * 2024-04-09 2024-06-14 中国长江电力股份有限公司 一种增材修复轴瓦的自适应加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695789A1 (fr) * 2005-02-25 2006-08-30 Snecma Procédé de réparation de disque aubagé monobloc, éprouvette de début et de fin campagne
CN104227313A (zh) * 2014-09-03 2014-12-24 广州民航职业技术学院 一种腐蚀损伤零件的修复方法及装置
CN105339551A (zh) * 2013-06-23 2016-02-17 阿迪博茨有限公司 用于移动增材制造的方法和设备
CN105499904A (zh) * 2016-01-04 2016-04-20 湘潭大学 一种基于增减材制造的零件修复装置及其使用方法
CN105728724A (zh) * 2016-03-18 2016-07-06 山东能源重装集团大族再制造有限公司 一种链轮的3d打印修复方法
CN107999753A (zh) * 2017-12-01 2018-05-08 中国兵器装备集团自动化研究所 一种同步反馈增减材协同制造***及其使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969821B2 (en) * 2003-06-30 2005-11-29 General Electric Company Airfoil qualification system and method
KR20070068797A (ko) * 2005-12-27 2007-07-02 현대중공업 주식회사 프로펠러의 자동화 가공방법
FR2970195B1 (fr) * 2011-01-06 2014-01-31 Ctf France Automate pour la maintenance de rails et procede de mise en oeuvre
CA2977757A1 (en) * 2016-09-22 2018-03-22 Sulzer Management Ag Method for manufacturing or for repairing a component of a rotary machine as well as a component manufactured or repaired using such a method
CN108213713B (zh) * 2016-12-14 2020-06-19 北京有色金属研究总院 一种基于脉冲激光和连续激光增材的薄壁零部件复合修复方法
CN106624826B (zh) * 2017-01-17 2019-04-09 华南理工大学 一种微束等离子3d打印与铣削复合加工设备与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695789A1 (fr) * 2005-02-25 2006-08-30 Snecma Procédé de réparation de disque aubagé monobloc, éprouvette de début et de fin campagne
CN105339551A (zh) * 2013-06-23 2016-02-17 阿迪博茨有限公司 用于移动增材制造的方法和设备
CN104227313A (zh) * 2014-09-03 2014-12-24 广州民航职业技术学院 一种腐蚀损伤零件的修复方法及装置
CN105499904A (zh) * 2016-01-04 2016-04-20 湘潭大学 一种基于增减材制造的零件修复装置及其使用方法
CN105728724A (zh) * 2016-03-18 2016-07-06 山东能源重装集团大族再制造有限公司 一种链轮的3d打印修复方法
CN107999753A (zh) * 2017-12-01 2018-05-08 中国兵器装备集团自动化研究所 一种同步反馈增减材协同制造***及其使用方法

Also Published As

Publication number Publication date
CN109202378A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN109202378B (zh) 一种金属零部件的增减复合智能修复方法
CN110508811B (zh) 一种增减材复合制造过程中的质量检测及自动修正方法
US10583490B2 (en) Methods for preparing a hybrid article
CN1291344C (zh) Cam***和程序以及控制cam***的方法
JP7067721B2 (ja) 加工物上に付加的に印刷するための付加製造システム及び較正方法
CN111962069B (zh) 变形高温合金及不锈钢压气机转子叶片叶尖修复方法及工装
CN104674210A (zh) 一种工件激光自动化修复方法
EP3690699A1 (en) Additive manufacturing systems and methods of generating cad models for additively printing on workpieces
EP3689506B1 (en) Additive manufacturing systems and methods of additively printing on workpieces
CN106077901A (zh) 基于热作模具失效部位的电弧增材制造方法
CN101204758B (zh) 一种皮革花纹模具的制作方法
CN107856309A (zh) 一种增材制造与再制造快速路径规划方法
CN104385590B (zh) 一种三维打印***进行产品自检的方法
CN107695611A (zh) 一种无原始模型的失效模具快速修复方法
US20220227061A1 (en) Additive manufacturing systems and methods of pretreating and additively printing on workpieces
CN112663042A (zh) 一种激光增材修复的轨迹规划方法
CN108972006A (zh) 一种金属零部件的增减复合智能修复***
CN105373078B (zh) 一种加工锻铸件毛坯的微量定位方法
CN110153582B (zh) 焊接方案生成方法、装置以及焊接***
WO2024055773A1 (zh) 一种基于粉末床与五轴增减材复合制造方法
CN111063020B (zh) 基于PowerMill软件的工件三维轮廓加工方法
CN114065419B (zh) 一种大型复杂构件电弧增材再制造变层厚切片方法
CN115647391A (zh) 基于增减材复合打印的轮廓扫描路径规划方法
CN112719290B (zh) 工件的制造方法和制造***
CN112388107A (zh) 一种增材制造成形几何在线监控与校正方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant