WO2024055773A1 - 一种基于粉末床与五轴增减材复合制造方法 - Google Patents

一种基于粉末床与五轴增减材复合制造方法 Download PDF

Info

Publication number
WO2024055773A1
WO2024055773A1 PCT/CN2023/111460 CN2023111460W WO2024055773A1 WO 2024055773 A1 WO2024055773 A1 WO 2024055773A1 CN 2023111460 W CN2023111460 W CN 2023111460W WO 2024055773 A1 WO2024055773 A1 WO 2024055773A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
additive
sub
manufacturing
angle
Prior art date
Application number
PCT/CN2023/111460
Other languages
English (en)
French (fr)
Inventor
张琦
王寅
陈宇凯
陆宇
王俊尧
韩宾
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2024055773A1 publication Critical patent/WO2024055773A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of additive and subtractive material composite manufacturing, and specifically relates to a composite manufacturing method based on powder bed and five-axis additive and subtractive materials.
  • Additive-subtractive composite manufacturing technology combines the advantages of high design freedom of additive manufacturing and high surface accuracy of CNC machining, eliminates the "step effect" caused by the discrete accumulation principle of additive manufacturing, and improves the surface accuracy of additive manufacturing parts. , expands the manufacturing range of CNC machining, and provides a solution for integrated precision manufacturing of parts that are difficult to manufacture by CNC machining (such as parts with complex internal structures).
  • DED direct energy deposition
  • PBF powder bed fusion
  • the current additive-subtractive material composite manufacturing method is only suitable for DED additive-subtractive material composite manufacturing with a high degree of freedom, and is not suitable for PBF additive-subtractive material composite manufacturing that is suitable for integrated precision manufacturing of complex internal structures.
  • powder bed additive manufacturing technology is limited by the maximum construction angle (the angle between the tangent of the model surface and the construction direction (Z direction)).
  • Z direction the maximum construction angle
  • some internal structural supports are often difficult to remove, and removing the supports will cause the release of internal stress in the part, resulting in deformation of the part and affecting the overall accuracy of the part.
  • the purpose of the present invention is to provide a composite manufacturing method based on powder bed and five-axis additive and subtractive materials, fully considering the impact of PBF process characteristics and constraints on the CNC machining process, and through reasonable
  • the model's self-supporting design and tool selection enable powder bed support-free printing of large-angle overhanging inner cavity structures, which enables integrated precision manufacturing of complex internal structure parts and is conducive to surface quality improvement and shape control of parts in additive-subtractive material composite manufacturing.
  • a composite manufacturing method based on powder bed and five-axis additive and subtractive materials including the following steps:
  • Model preprocessing Carry out model adaptive compensation based on the design model, and determine whether the compensated model has STL errors. If there are errors, repair the model until a complete, error-free, watertight STL model is formed. Afterwards, the model is used as the additive model of the entire additive-subtractive material composite manufacturing for subsequent processing;
  • the model adaptive compensation rule in step (a) is to expand the outer contour of the model and shrink the inner contour to achieve the effect of leaving a suitable finishing allowance. This step is achieved by developing a model adaptive compensation algorithm; in addition, if the model If there is a large-angle overhanging structure, the corresponding structure needs to be designed to be self-supporting.
  • the unsupported strategy is: when constructing a sub-model containing a large-angle overhanging inner cavity structure, set the first layer cutting area to the lower 9/10 part of the first layer self-supporting structure and retain the upper 1/10 part; set the third The n (n>1) layer cutting area is the lower 9/10 part of the n-th layer’s self-supporting structure and the upper 1/10 part of the n-1 layer; the cutting area of the last layer is set to be the last layer’s self-supporting structure part and the penultimate layer.
  • the upper 1/10 part of the second layer according to the selected processing tool parameters and set cutting area, each layer of subtractive processing tool path is generated for subtractive processing.
  • the processing tool uses a T-shaped milling cutter to process the self-supporting structure with a negative angle; according to the different forms of the processed curved surfaces, T-shaped milling cutters with different specifications and parameters are selected.
  • the model reconstruction stage is based on the machining accuracy requirements.
  • the sub-models obtained in the model decomposition stage and the processing tool path files obtained in the inner surface tool path planning stage are alternately processed by additive manufacturing and CNC processing in accordance with the construction sequence until all sub-models are processed. Composite manufacturing is completed.
  • step (c) refers to: During the composite manufacturing process of the additive model in the decomposition and reconstruction stage, due to the CNC machining being limited by the process characteristics of PBF, part of the inner surface of the part cannot be finished; when it is removed After the powder and support are affected, the five-axis machine tool is used to finish the unmachined inner surface of the part again. work.
  • the equipment used in the composite manufacturing method based on powder bed and five-axis additive and subtractive materials includes an atmosphere protection shell 1.
  • a five-axis swing head 2 is provided inside the atmosphere protection shell 1.
  • a cutter is connected to the bottom of the five-axis swing head 2.
  • the five-axis swing head 2 is connected to the linear motor 10, and the linear motor 10 is connected to the laser galvanometer 3; the bottom of the atmosphere protection shell 1 is provided with a powder spreading scraper 4; the atmosphere protection shell 1 is provided with a forming substrate 7 in the lower middle.
  • a powder bin 5 and a powder top mechanism 6 are provided on one side, and a powder collection bin 8 is provided on the other side; the atmosphere protection shell 1 functions to form a low-oxygen environment to prevent over-burning of the powder.
  • the present invention comprehensively considers the impact of PBF process characteristics and constraints on the CNC machining process, and divides the powder bed and five-axis additive and subtractive composite manufacturing methods into three steps: model preprocessing, decomposition and reconstruction, and post-processing, which is beneficial to Achieve precision integration of complex internal structural parts.
  • the model adaptive compensation algorithm used in the present invention has the advantages of universality, accuracy, and speed, which can reduce the tedious and error-prone manual compensation of complex structural parts, and is conducive to improving the surface quality of parts in additive and subtractive material composite manufacturing. and shape control.
  • the present invention uses a self-supporting optimized design to replace the support structure used in the additive manufacturing of the original large-angle overhang structure, which can improve the printing quality of the large-angle overhang structure.
  • the present invention realizes the supporting function of the lower structure to subsequent layers through a customized support-free strategy and T-shaped cutter. Compared with the traditional method, which has the disadvantages of difficult removal of the internal support structure and poor surface forming quality, the present invention can be used in increasing the number of layers.
  • the internal self-supporting structure is removed step by step during the subtractive composite manufacturing process, enabling integrated precision manufacturing of structural parts with large overhanging inner cavities.
  • the present invention adopts a reprocessing step in the post-processing step. After removing the influence of the powder bed and support, some unprocessed areas in the decomposition and reconstruction stage can be processed again, which is beneficial to improving the overall surface quality of the part.
  • Figure 1 is a flow chart of the present invention.
  • Figure 2 is a schematic diagram of the adaptive compensation rule of the model of the present invention.
  • Figure 3 is a schematic diagram of the basic idea of the model adaptive compensation algorithm of the present invention
  • Figure (a) shows the triangular patches around a certain vertex distributed on the same plane
  • Figure (b) shows the triangular patches around a certain vertex distributed on two planes.
  • Picture (c) shows the distribution of triangular patches around a certain vertex on three or more planes.
  • Figure 4 is an example diagram of the self-supporting design of the present invention. (a) is the design model and (b) is the optimization model.
  • FIG. 5 is a schematic diagram of the equipment used in the present invention.
  • Figure 6 is a schematic diagram of the alternation between additive manufacturing and CNC machining in the present invention.
  • Figure 7 is a schematic diagram of the impact of different model placement angles on the internal processable area of the present invention.
  • Figure (a) is a horizontal placement
  • Figure (b) is an oblique placement.
  • Figure 8 is a schematic diagram of the additive and subtractive composite manufacturing process of a complex internal cavity part according to an embodiment of the present invention.
  • Figure 9 is a schematic diagram of the composite unsupported manufacturing process of a large-angle overhang inner cavity structure with additive and subtractive materials according to an embodiment of the present invention.
  • a composite manufacturing method based on powder bed and five-axis additive and subtractive materials includes the following steps:
  • Model preprocessing Since the surface accuracy of additive-subtractive composite manufacturing parts is guaranteed by CNC, taking into account the finishing allowance, model adaptive compensation needs to be carried out based on the design model to obtain the additive model; in addition, In order to prevent the compensated additive model from producing STL errors (such as crossed triangle patches, etc.), the compensated model needs to be repaired until a complete, error-free, watertight STL model is formed, which can be used as the entire additive model. The additive model manufactured by subtractive composite manufacturing is then processed later;
  • step (b) Decomposition and reconstruction: After comprehensively considering the impact of the PBF process characteristics and constraints on the CNC machining process and the model characteristics, the additive model obtained in step (a) is model decomposed to obtain multiple interior designs that can be planned at once. The sub-models of the surface tool path are then reconstructed alternately according to the construction order until all sub-models are compositely manufactured;
  • the model adaptive compensation rule is to expand the outer contour of the model and shrink the inner contour to achieve the effect of leaving a suitable finishing allowance; model compensation can be realized manually through CAD software, but when facing a relatively complex structure For complex parts, manual compensation is often cumbersome and prone to errors; in addition, manual compensation cannot make adaptive adjustments to different areas based on the process characteristics of PBF; therefore, developing a model adaptive compensation algorithm will allow the remaining finishing allowance to be reduced. It has been improved in many aspects such as time, effect, and adaptability.
  • the adaptive meaning is: under certain equipment, materials and processes, the model deviation caused by the additive process is compensated for different model characteristics according to different model characteristics. This is because considering that the finishing allowance is generally small, during the printing process, Due to equipment, materials, processes and model characteristics (mainly the inclination angle of the triangular surface), the size of the actual model and the designed model will also be inconsistent. If this deviation exceeds the value of the finishing allowance, it will be detrimental to the progress of CNC machining. ; Therefore, in addition to leaving a finishing allowance, model compensation also needs to compensate for the model deviation caused by the additive process; the adaptive rule prints the model at different tilt angles and measures the length and length between the actual size and the design size. Angle deviation is explored.
  • the basic idea of the model adaptive compensation algorithm is: in order to leave a finishing allowance, the plane where each triangular patch in the original model is located is moved along the direction of the normal vector, that is, the finishing allowance and the addition amount are translated to the outside of the model.
  • the sum of model deviations in the material process obtain the three new vertex coordinates of each triangular patch by calculating the intersection points of each plane after translation, and recalculate the normal vector; convert the three vertices and normal vector of each triangular patch after transformation according to The rules are output into STL format, and the compensated model can be obtained.
  • the vertex transformation rule can be regarded as a translation distance D along the combined vector direction of the two planes, that is, the vertex's
  • the coordinate transformation formula is:
  • A is the plane equation coefficient matrix
  • m is the transformed point coordinates
  • model adaptive compensation can also be used in other forms of additive and subtractive material composite manufacturing to achieve the reservation of finishing allowance in the additive and subtractive material composite manufacturing process from the model level.
  • the self-supporting design is as follows: first determine the maximum construction angle of the powder bed additive manufacturing equipment; then find the surface in the design model where the angle between the tangent direction and the construction direction is greater than the maximum construction angle, that is, the large-angle overhang surface; finally, The included angle of the large-angle overhanging surface is compensated to the maximum construction angle of the device, making it self-supporting during the printing process and obtaining an optimized model; the self-supporting structure added in the self-supporting design can be removed in subsequent subtractive processing.
  • the step (b) includes three stages: model decomposition, inner surface tool path planning and model reconstruction;
  • the model decomposition stage is to use multiple cutting planes perpendicular to the construction direction to decompose the additive model into multiple parts based on the internal structural characteristics of the additive model under the determined placement angle, processing accuracy and tool parameters of the additive model.
  • the sub-model of the internal surface machining tool path can be planned at one time and the sub-model construction sequence can be output;
  • the CNC machining in order to improve manufacturing efficiency and prevent damage to the support structure, the CNC machining at this time only processes the inner surface of the part.
  • each sub-model after the additive model is decomposed is used as a blank, and the design model is used as a blank.
  • the target components are processed separately; if the model has a large-angle overhanging inner cavity structure, the unsupported integrated manufacturing of the internal large-angle overhanging structure needs to be achieved through a support-free strategy; the inner surface tool path planning stage will generate the same number of processes as the number of sub-models.
  • Tool path file
  • the model reconstruction stage is based on the machining accuracy requirements.
  • the sub-models obtained in the model decomposition stage and the processing tool path files obtained in the inner surface tool path planning stage are alternately processed by additive manufacturing and CNC processing in accordance with the construction sequence until all sub-models are processed. Composite processing is completed.
  • step (c) refers to the fact that during the composite manufacturing process of the additive model in the decomposition and reconstruction stage, CNC machining is limited by the process characteristics of PBF (for example, the swing head cannot be processed below the surface of the powder bed. , interference with the support structure, etc.), making it impossible to finish the inner surface of the part; after the influence of the powder and support is removed, a five-axis machine tool is used to finish the unmachined inner surface of the part again.
  • PBF process characteristics of PBF
  • the equipment used in the composite manufacturing method based on powder bed and five-axis additive and subtractive materials includes: atmosphere protection shell 1, five-axis rotating head 2, laser galvanometer 3, powder spreading scraper 4, powder bin 5. Powder top mechanism 6, forming base plate 7, powder collecting bin 8, cutter 9 and linear motor 10; the atmosphere protection shell 1 is equipped with a five-axis swing head 2, and the bottom of the five-axis swing head 2 is connected with a cutter 9, five The axial swing head 2 is connected to the linear motor 10, and the linear motor 10 is connected to the laser galvanometer 3; the bottom of the atmosphere protection shell 1 is provided with a powder spreading scraper 4;
  • a powder bin 5 and a powder top mechanism 6 are arranged on one side, and a powder collecting bin 8 is arranged on the other side;
  • the atmosphere protection shell 1 functions to form a low-oxygen environment to prevent the powder from over-burning;
  • the powder collection bin 8 functions to collect excess powder during the powder spreading process.
  • additive manufacturing and CNC processing are alternately performed, that is, the lowermost sequence sub-model 1101 is first formed through additive manufacturing.
  • the specific additive manufacturing process is: driven by the linear motor 10, the laser galvanometer 3 moves to the center of the forming substrate 7 and print layer by layer.
  • the powder top mechanism 6 pushes the powder bin 5 moves up, the forming substrate 7 moves down, and the powder spreading scraper 4 moves back and forth until the entire sub-model 1101 is printed;
  • the laser galvanometer 3 exits the center of the forming substrate 7, and the five-axis swing head 2 moves to the appropriate position to perform CNC processing on the sub-model 1101.
  • the powder spreading scraper 4 The powder top mechanism 6 and the forming substrate 7 remain stationary.
  • the five-axis swing head 2 is withdrawn, the laser galvanometer 3 is moved to the center of the forming substrate 7, and additive manufacturing is continued on the sub-model 1102 to construct the The next sequence of sub-models 1103; in this way, additive manufacturing and CNC processing of each sub-model are carried out according to the construction sequence until all sub-models are combined and completed.
  • the position selection of the cutting surface should be determined based on the model placement angle and internal structure. Taking the "J" shaped internal flow channel as an example, to achieve integrated precision manufacturing of the model, different cutting surfaces need to be used.
  • the model is divided into multiple sub-models according to the structural characteristics of its internal flow channel (generally the inner top surface/edge is selected as the cutting surface).
  • the model when the model is placed horizontally, select three cutting planes P 1 , P 2 , and P 3 to divide the model into four sub-models, and then increase or decrease each sub-model in sequence according to the construction sequence.
  • the reprocessing means that after removing the influence of factors such as the powder bed and support, part of the unprocessed inner surface in step (b) can be finished again; in Figure 7 (a), the inner surface s1 and s3, but the inner surface s2 cannot be reprocessed due to limited model characteristics; in Figure 7 (b), the partial area of the inner surfaces s3 and s4 between the cutting planes P 2 and P 3 is removed after the support and powder are removed All can be reprocessed.
  • a complex internal cavity part is used to illustrate the composite manufacturing method of the present invention based on powder bed and five-axis additive and subtractive materials.
  • the design model in Figure 8 has a side V-shaped inner cavity, which can be divided into three sections and has a circular shape. For corner features, if traditional multi-axis CNC machining is used, the inner surface of the middle section cannot be processed; if additive manufacturing is used, unmelted powder will adhere to the surface of the inner cavity and the roughness will be large.
  • the integrated precision manufacturing of the inner cavity model can be achieved by adopting a composite manufacturing method based on powder bed and five-axis additive and subtractive materials of the present invention.
  • the specific manufacturing process is as follows:
  • model adaptive compensation and STL repair (a1) on the design model to obtain an additive model with appropriate finishing allowance; select the horizontal placement direction, and select segmentation according to the internal cavity characteristics (corner) of the additive model Surface (b1), divide the additive model into three sub-models (b2) according to the selected cutting surfaces P 1 and P 2 , and alternately perform additive manufacturing and CNC processing of the sub-models in accordance with the construction order (b3) ⁇ (b8) , where steps (b3), (b5), and (b7) are additive manufacturing processes; (b4), (b6), and (b8) are CNC machining processes.
  • the working area is only the inner surface of the cavity; after the three sub-models have been compositely manufactured, take the model out of the powder bed, plan the surface machining tool path (c1), and mill the outer surface of the model (c2) to obtain The final integrated precision formed inner cavity parts.
  • the design model is converted into an additive model through self-supporting design (a1); then the model decomposition plane (b1) is determined according to the model characteristics and the parameters of the tool 9 , and the additive model is divided into Eight sub-models (b2); the sub-models are alternately subjected to additive manufacturing and CNC processing (b3) to (b15) in order of construction, where steps (b3), (b5),..., (b15) are the additive manufacturing process ; (b4), (b6),..., (b14) are CNC machining processes; the cutting area of (b4) is the lower 9/10 part of the first layer of self-supporting structure, and the upper 1/10 part is retained; (b6) , (b8),..., (b12) The cutting area is the lower 9/10 part of the current layer of self-supporting structure and the upper 1/10 part of the lower layer; the cutting area of (b14) is the last layer of self-supporting structure part and the reciprocal The upper 1/10 part of the second layer; by reserving the self-

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种基于粉末床与五轴增减材复合制造方法,包括模型预处理:在设计模型基础上进行模型自适应补偿,对补偿后的模型进行修复,得到增材模型;分解重构:将增材模型进行分解,得到多个可一次性规划出内表面刀路的子模型,再将子模型按照构建顺序依次交替进行增材制造和数控加工,直至所有子模型均加工完成;后处理:在完成所有子模型的复合加工后,需去除支撑结构并对零件外表面进行铣削;此外,在去除粉床和支撑影响后,部分未加工的内部结构进行再加工,由此得到最终所需的零件;本发明能够实现传统数控加工难以加工的具有复杂内部结构零件的制造,为复杂内部结构零件的一体化精密制造提供技术支持。

Description

一种基于粉末床与五轴增减材复合制造方法 技术领域
本发明涉及增减材复合制造技术领域,具体涉及一种基于粉末床与五轴增减材复合制造方法。
背景技术
增减材复合制造技术综合了增材制造设计自由度高和数控加工表面精度高的优势,消除了增材制造因离散堆积原理所产生的“台阶效应”,提高了增材制造零部件表面精度,扩大了数控加工的可制造范围,为数控加工难以制造的零部件(如:具有复杂内部结构的零件)一体化精密制造提供了解决方案。
金属增减材复合制造的增材方式主要有直接能量沉积(DED)和粉末床熔融(PBF)两种;其中以DED为增材方式的复合制造设备可通过在五轴数控机床上集成熔覆头来实现,设备的制造及控制均容易实现,适用于大型零件的快速制造和零件修复;而基于PBF工艺的复合制造方式相较DED工艺有着更高的表面精度,可成型精细结构,更适合复杂内部结构一体化精密制造(如:具有内部流道的零件),在航空航天、汽车、生物医疗等领域有着广阔的应用前景。
现有的增减材复合制造方法([1]V.T.Le,H.Paris,G.Mandil,The development of a strategy for direct part reuse using additive and subtractive manufacturing technologies,Addit.Manuf.22(2018)687–699;[2]S.T.Newman,Z.C.Zhu,V.Dhokia,A.Shokrani,Process planning for additive and subtractive manufacturing technologies,CIRP Ann.—Manuf.Technol.64(2015)467–470;)多面向零件的修复过程,且仅以模型本身特征来规划制造阶段中增材制造和数控加工之间的操作顺序,而基于PBF增减材复合制造受限于粉末床的影响,其构建方向单一,且在复合制造过程中转摆头无法低于粉末床上表面进行加工。因此,目前的增减材复合制造方法仅适用于自由度高的DED增减材复合制造,对于适合复杂内部结构一体化精密制造的PBF增减材复合制造并不适用。
此外,粉末床增材制造技术受限于最大构建角度(模型面切向与构建方向(Z向)夹角),当打印大角度悬垂结构时,需要对该部分结构添加支撑结构,以抵抗热变形及刮刀作用力;当打印完成后,需要对支撑结构进行去除。但有些内部结构的支撑,往往难以去除,并且在去除支撑时会引起零件内应力的释放,导致零件变形,影响零件整体精度。
现有的粉末床无支撑打印技术多是采用非接触式刮刀或工艺参数实时优化的方式实现,例如CN108436082A,其虽然可减少零件的支撑数量,但对于接近90°的悬垂结构仍需添加支撑,仍会造成内部支撑难以去除的情况,且大角 度悬垂结构下表面成形质量较差,内部缺陷较多。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供了一种基于粉末床与五轴增减材复合制造方法,充分考虑了PBF工艺特点和约束对数控加工过程的影响,并通过合理的模型自支撑设计和刀具选择实现大角度悬垂内腔结构的粉末床无支撑打印,能够实现复杂内部结构零件的一体化精密制造,有利于增减材复合制造中零件表面质量改善和形状控制。
为了实现上述目的,本发明采用以下技术方案:
一种基于粉末床与五轴增减材复合制造方法,包括以下步骤:
(a)模型预处理:在设计模型基础上进行模型自适应补偿,对补偿后的模型判断其有无STL错误,若有误则进行模型修复,直至形成一个完整、无错误、水密的STL模型后,该模型即作为整个增减材复合制造的增材模型再进行后续加工;
(b)分解重构:将增材模型进行模型分解,得到多个可一次性规划出内表面刀路的子模型,再将子模型按照构建顺序依次交替进行模型重构,直至所有子模型复合制造完成;
(c)后处理:在所有子模型完成复合制造后,需去除支撑结构并铣削外表面;此外,在去除粉床和支撑影响后,部分未加工的内部结构进行再加工,由此得到最终所需的零件。
所述步骤(a)中模型自适应补偿规则为将模型外轮廓扩张、内轮廓收缩,以达到留出合适精加工余量的效果,该步骤通过开发模型自适应补偿算法实现;此外,若模型中存在大角度悬垂结构,则需对相应结构进行自支撑设计。
所述无支撑策略为:在构建含有大角度悬垂内腔结构的子模型时,设置第一层切削区域为第一层自支撑结构的下9/10部分,保留上1/10部分;设置第n(n>1)层切削区域为第n层自支撑结构的下9/10部分及n-1层上1/10部分;设置最后一层切削区域为最后一层自支撑结构部分及倒数第二层上1/10部分;根据所选加工刀具参数及设置切削区域生成各层减材加工刀路用于减材加工。
所述加工刀具选用T型铣刀,对负角度的自支撑结构进行加工;根据加工曲面形式不同,选用不同规格及参数的T型铣刀。
所述模型重构阶段为根据加工精度要求,将模型分解阶段获得的子模型和内表面刀路规划阶段获得的加工刀路文件按照构建序列交替进行增材制造和数控加工,直至所有子模型均被复合制造完毕。
所述步骤(c)的再加工是指:增材模型在分解重构阶段的复合制造过程中,因数控加工受限于PBF的工艺特点,使得零件部分内表面无法被精加工;当去除掉粉末和支撑影响后,利用五轴机床对零件部分未加工内表面再次进行精加 工。
所述一种基于粉末床与五轴增减材复合制造方法所使用的设备包括气氛保护外壳1,气氛保护外壳1内部设有五轴转摆头2,五轴转摆头2底部连接有刀具9,五轴转摆头2连接在直线电机10上,直线电机10上连接有激光振镜3;气氛保护外壳1底部设有铺粉刮刀4;气氛保护外壳1下方中部设有成形基板7,一侧设有粉仓5及顶粉机构6,另一侧设有收粉仓8;气氛保护外壳1作用为形成一个低氧环境,防止粉末过烧。
本发明的有益效果为:
(1)本发明综合考虑了PBF工艺特点和约束对数控加工过程的影响,将粉末床与五轴增减材复合制造方法分为模型预处理、分解重构、后处理三个步骤,有利于实现复杂内部结构零件一体化精密。
(2)本发明所采用模型自适应补偿算法具有普适、准确、快速的优点,可减少对复杂结构件手工补偿时繁琐且易错的情况,有利于增减材复合制造中零件表面质量改善和形状控制。
(3)本发明采用自支撑优化设计代替原大角度悬垂结构增材制造时的支撑结构,可提升大角度悬垂结构的打印质量。
(4)本发明通过定制的无支撑策略及T形刀具,实现下层结构对后续层的支撑功能,相较于传统方法的内部支撑结构难以去除、表面成形质量差等缺点,本发明可在增减材复合制造过程中对内部自支撑结构进行分步去除,可实现具有大角度悬垂内腔结构零件的一体化精密制造。
(5)本发明在后处理步骤中采取再加工工序,可在去除掉粉末床和支撑影响后,使分解重构阶段部分未加工区域可再次被加工,有利于零件整体表面质量的提升。
附图说明
图1为本发明的流程图。
图2为本发明模型自适应补偿规则的示意图。
图3为本发明模型自适应补偿算法的基本思想示意图;其中图(a)为某个顶点周围三角面片分布在同一平面,图(b)为某个顶点周围三角面片分布在两个平面;图(c)为某个顶点周围三角面片分布在三个及以上平面。
图4为本发明自支撑设计示例图;其中(a)为设计模型,(b)为优化模型。
图5为本发明使用的设备示意图。
图6为本发明增材制造和数控加工交替示意图。
图7为本发明不同模型摆放角度对内部可加工区域影响示意图;其中图(a)为水平摆放,图(b)为倾斜摆放。
图8为本发明实施例某复杂内部腔体零件增减材复合制造过程示意图。
图9为本发明实施例大角度悬垂内腔结构增减材复合无支撑制造过程示意图。
具体实施方式
下面将结合附图和实施例对本发明做详细描述。
参照图1,一种基于粉末床与五轴增减材复合制造方法,包括以下步骤:
(a)模型预处理:因增减材复合制造零部件的表面精度是靠CNC保证,考虑到精加工余量,需在设计模型基础上进行模型自适应补偿,以获得增材模型;此外,为防止补偿后的增材模型产生STL错误(如交叉三角面片等),需对补偿后的模型进行修复,直至形成一个完整、无错误、水密的STL模型后,该模型即可作为整个增减材复合制造的增材模型再进行后续加工;
(b)分解重构:在综合考虑PBF工艺特点和约束对数控加工过程的影响和模型特征下,将步骤(a)所得到的增材模型进行模型分解,得到多个可一次性规划出内表面刀路的子模型,再将子模型按照构建顺序依次交替进行模型重构,直至所有子模型均复合制造完成;
(c)后处理:在所有子模型完成复合制造后,需去除支撑结构并对铣削外表面;此外,在去除粉床和支撑影响后,部分未加工的内部结构进行再加工,由此得到最终所需的零件。
参照图2,所述模型自适应补偿规则为将模型外轮廓扩张、内轮廓收缩,以达到留出合适精加工余量的效果;模型补偿可通过CAD软件进行手工实现,但在面对结构较为复杂的零件时,手工补偿往往较为繁琐且容易出现纰漏;此外,手工补偿无法结合PBF的工艺特点对不同区域做出自适应调整;因此,开发模型自适应补偿算法将使精加工余量的留出在时间、效果、自适应性等多个方面得到提升。
所述自适应含义为:在确定的设备、材料及工艺下,针对不同模型特点而弥补因增材过程引起的模型偏差,这是因为考虑到精加工余量一般较小,在打印过程中,因设备、材料、工艺及模型特点(主要为三角面片倾斜角度)也会造成实际模型和设计模型尺寸不一致,这种偏差若累计超出精加工余量的值,则会不利于数控加工的进行;因此,模型补偿除了需要留出精加工余量外,还需弥补因增材过程引起的模型偏差;自适应规则通过打印不同倾斜角度下模型,并测量实际尺寸与设计尺寸之间的长度、角度偏差进行探索。
参照图3,所述模型自适应补偿算法的基本思想为:为留出精加工余量,将原模型中各三角面片所在平面沿法矢量方向,即向模型外侧平移精加工余量和增材过程中模型偏差之和;通过计算平移后各平面的交点来获取各三角面片新的三个顶点坐标,并重新计算法矢量;将变换后各三角面片的三个顶点及法矢量按照规则输出成STL格式,即可得到补偿后的模型。
所述模型自适应补偿算法求解各三角面片平移后新顶点的数学原理为:
不失一般性地假设某顶点变化前坐标为M0=(x0,y0,z0),变换后坐标为M,M0点周围三角面片分布在n个独立平面上,其独立平面法矢量分别为:在不考虑自适应规则时,各三角面片沿法矢量方向平移距离均为d;
如图3中(a)所示,当某个顶点周围三角面片分布在同一平面时,即n=1时,顶点变换规则可看成沿所在平面法矢量方向平移距离d,即顶点的坐标变换公式为:
如图3中(b)所示,当某个顶点周围三角面片分布在两个平面时,即n=2时,顶点变换规则可看成沿两平面合矢量方向平移距离D,即顶点的坐标变换公式为:
如图3中(c)所示,当某个顶点周围三角面片分布在三个及以上平面时,即n≥3时,此时求解变化后的顶点坐标可转化为多个平面求交点问题,即顶点的坐标变换公式为:
arg min‖Am-b‖
其中,A为平面方程系数矩阵,m为变换后点坐标,b为常数项,其表达式如下:

m=(x,y,z)T
将各面片的平移方向和距离按照实验探索的自适应规则对上述坐标变换规则中的法矢量方向和距离d进行修正即可实现模型自适应补偿。
所述模型自适应补偿在改变自适应规则后,还应用于其他形式的增减材复合制造中,从模型层面实现增减材复合制造过程中精加工余量的预留。
参照图4,所述自支撑设计为:首先确定粉末床增材制造设备最大构建角度;然后寻找设计模型中切向与构建方向夹角大于最大构建角度的面,即大角度悬垂面;最后将大角度悬垂面夹角补偿至设备最大构建角度,使其在打印过程中实现自支撑,得到优化模型;自支撑设计中所添加的自支撑结构,能够在后续减材加工中去除。
参照图1,所述步骤(b)包括模型分解、内表面刀路规划和模型重构三个阶段;
所述模型分解阶段为在确定的增材模型摆放角度、加工精度和刀具参数下,根据增材模型内部结构特征,用多个垂直于构建方向的切分面将增材模型分解成多个可一次规划出内表面加工刀路的子模型,并输出子模型构建序列;
所述内表面刀路规划阶段为提高制造效率,防止支撑结构破坏,此时的数控加工仅加工零件内表面,规划加工刀路时将增材模型分解后的各子模型作为毛坯,设计模型作为目标部件分别进行;若模型存在大角度悬垂内腔结构,则需通过无支撑策略实现内部大角度悬垂结构的无支撑一体化制造;内表面刀路规划阶段将生成与子模型个数相同的加工刀路文件;
所述模型重构阶段为根据加工精度要求,将模型分解阶段获得的子模型和内表面刀路规划阶段获得的加工刀路文件按照构建序列交替进行增材制造和数控加工,直至所有子模型均被复合加工完毕。
所述步骤(c)的再加工是指:增材模型在分解重构阶段的复合制造过程中,因数控加工受限于PBF的工艺特点(如:转摆头无法低于粉末床上表面进行加工、与支撑结构产生干涉等),使得零件部分内表面无法被精加工;当去除掉粉末和支撑影响后,利用五轴机床对零件部分未加工内表面再次进行精加工。
参照图5,所述一种基于粉末床与五轴增减材复合制造方法所使用的设备包括:气氛保护外壳1、五轴转摆头2、激光振镜3、铺粉刮刀4、粉仓5、顶粉机构6、成形基板7、收粉仓8、刀具9和直线电机10;气氛保护外壳1内部设有五轴转摆头2,五轴转摆头2底部连接有刀具9,五轴转摆头2连接在直线电机10上,直线电机10上连接有激光振镜3;气氛保护外壳1底部设有铺粉刮刀4;
气氛保护外壳1下方中部设有成形基板7,一侧设有粉仓5及顶粉机构6,另一侧设有收粉仓8;
其中,气氛保护外壳1作用为形成一个低氧环境,防止粉末过烧;收粉仓8作用为收集铺粉过程中多余的粉末。
参照图5、图6,增材制造与数控加工交替进行即先通过增材制造成形最下端序列子模型1101,其具体增材制造过程为:在直线电机10的驱动下,激光振镜3移动至成形基板7中心位置并进行逐层打印,此时顶粉机构6推动粉仓 5上移,成形基板7下移,铺粉刮刀4左右来回移动,直至打印完成整个子模型1101;
子模型1101打印完成后,在直线电机10的驱动下,激光振镜3退出成形基板7中心,五轴转摆头2移动至合适位置对子模型1101进行数控加工,此时铺粉刮刀4、顶粉机构6、成形基板7均保持静止,当按照所规划刀路对子模型1101加工完成后,即可得到最下端序列增减材复合制造后的子模型1102;
当最下端序列子模型1102增减材复合制造完毕后,再将五轴转摆头2退出,将激光振镜3移动至成形基板7的中心,在子模型1102上继续进行增材制造,构建下一序列子模型1103;如此往复按照构建序列对各子模型进行增材制造和数控加工,直至所有子模型复合直至完毕。
参照图7,所述切分面的位置选择应根据模型摆放角度和内部结构决定,以“几”字形内流道为例,若要实现该模型的一体化精密制造,需采用不同切分面根据其内流道结构特点(一般选取内顶面/边为切分面)将模型切分成多个子模型。如图7中(a)所示,当模型水平摆放时,选择三个切分面P1、P2、P3将模型分成四个子模型,再根据构建顺序将各子模型依次进行增减材复合制造,此时的大部分内表面均可被精加工,但内表面s1、s2、s3因受粉末床及模型自身限制影响无法在步骤(b)中被精加工;如图中7(b)所示,当模型倾斜摆放时,选择四个切分面P1、P2、P3、P4将模型分成五个子模型,因模型倾斜,故需在外部增加支撑结构;当所有子模型均被增减材复合制造完毕后,仅有内表面s3、s4在切分面P2和P3之间的部分区域无法被精加工。
参照图7,所述再加工即在去掉粉末床与支撑等因素影响后,在步骤(b)中部分未被加工的内表面可再次精加工;如图7中(a)中内表面s1和s3,但内表面s2因受限于模型特点将无法再加工;图7中(b)中内表面s3、s4在切分面P2和P3之间的部分区域在去除掉支撑与粉末后均可再加工。
参照图8,以某复杂内部腔体零件对本发明一种基于粉末床与五轴增减材复合制造方法进行说明,图8中设计模型具有侧V型内腔,主要可分三段并具有圆角特征,采用传统多轴数控加工,则中间段内表面无法被加工;若采用增材制造加工,则内腔表面有未融化粉末粘连,粗糙度较大。采用本发明一种基于粉末床与五轴增减材复合制造方法即可实现该内腔型模型一体化精密制造,具体制造流程如下:
首先对设计模型进行模型自适应补偿和STL修复(a1),得到带有合适精加工余量的增材模型;选择水平摆放方向,并根据增材模型内部腔体特点(转角)选择切分面(b1),根据选择的切分面P1、P2将增材模型分成三个子模型(b2),将子模型按照构建顺序依次交替进行增材制造和数控加工(b3)~(b8),其中步骤(b3)、(b5)、(b7)为增材制造过程;(b4)、(b6)、(b8)为数控加工过程,其数控加 工区域仅为腔体内表面;当三个子模型均被复合制造完毕后,将模型从粉末床中取出,并对规划外表加工刀路(c1),将模型外表面进行铣削(c2)即可得到最终一体化精密成形的内腔零件。
参照图9,以某具有大角度悬臂内腔结构对本发明一种基于粉末床与五轴增减材复合制造方法的无支撑打印方法进行说明,具体制造流程如下:
首先通过自支撑设计(a1)将设计模型转换为增材模型;再根据模型特征和刀具9的参数确定模型分解平面(b1),根据选择的切分面P1-P7将增材模型分成八个子模型(b2);将子模型按照构建顺序依次交替进行增材制造和数控加工(b3)~(b15),其中步骤(b3)、(b5)、…、(b15)为增材制造过程;(b4)、(b6)、…、(b14)为数控加工过程;其中(b4)的切削区域为第一层自支撑结构的下9/10部分,保留上1/10部分;(b6)、(b8)、…、(b12)的切削区域为当前层自支撑结构的下9/10部分及下层的上1/10部分;(b14)的切削区域为最后一层自支撑结构部分及倒数第二层上1/10部分;通过预留每层上1/10部分自支撑结构,可实现对上层增材制造的顺利进行;在所有子模型全部加工完成后即得到目标零件。该方法克服了内腔传统支撑结构难以去除的问题,使得增材制造大角度悬垂内腔尺寸及表面精度有效提高。

Claims (13)

  1. 一种基于粉末床与五轴增减材复合制造方法,其特征在于,包括以下步骤:
    (a)模型预处理:在设计模型基础上进行模型自适应补偿,对补偿后的模型判断其有无STL错误,若有误则进行模型修复,直至形成一个完整、无错误、水密的STL模型后,该模型即作为整个增减材复合制造的增材模型再进行后续加工;
    (b)分解重构:将增材模型进行模型分解,得到多个可一次性规划出内表面刀路的子模型,再将子模型按照构建顺序依次交替进行模型重构,直至所有子模型复合制造完成;
    (c)后处理:在所有子模型完成复合制造后,需去除支撑结构并铣削外表面;此外,在去除粉床和支撑影响后,部分未加工的内部结构进行再加工,由此得到最终所需的零件。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤(a)中模型自适应补偿规则为将模型外轮廓扩张、内轮廓收缩,以达到留出合适精加工余量的效果,该步骤通过开发模型自适应补偿算法实现;此外,若模型中存在大角度悬垂结构,则需对相应结构进行自支撑设计。
  3. 根据权利要求2所述的方法,其特征在于,所述自适应含义为:在确定的设备、材料及工艺下,针对不同模型特点而弥补因增材过程引起的模型偏差,模型补偿除了需要留出精加工余量外,还需弥补因增材过程引起的模型偏差;自适应规则通过打印不同倾斜角度下模型,并测量实际尺寸与设计尺寸之间的长度、角度偏差进行探索。
  4. 根据权利要求2所述的方法,其特征在于,所述模型自适应补偿算法的基本思想为:为留出精加工余量,将原模型中各三角面片所在平面沿法矢量方向,即向模型外侧平移精加工余量和增材过程中模型偏差之和;通过计算平移后各平面的交点来获取各三角面片新的三个顶点坐标,并重新计算法矢量;将变换后各三角面片的三个顶点及法矢量按照规则输出成STL格式,即得到补偿后的模型。
  5. 根据权利要求4所述的方法,其特征在于,所述模型自适应补偿算法求解各三角面片平移后新顶点的数学原理为:
    假设某顶点变化前坐标为M0=(x0,y0,z0),变换后坐标为M,M0点周围三角面片分布在n个独立平面上,其独立平面法矢量分别为: 在不考虑自适应规则时,各三角面片沿法矢量方向平移距离均为d;
    当某个顶点周围三角面片分布在同一平面时,即n=1时,顶点变换规则看 成沿所在平面法矢量方向平移距离d,即顶点的坐标变换公式为:
    当某个顶点周围三角面片分布在两个平面时,即n=2时,顶点变换规则看成沿两平面合矢量方向平移距离D,即顶点的坐标变换公式为:
    当某个顶点周围三角面片分布在三个及以上平面时,即n≥3时,此时求解变化后的顶点坐标转化为多个平面求交点问题,即顶点的坐标变换公式为:
    arg min‖Am-b‖
    其中,A为平面方程系数矩阵,m为变换后点坐标,b为常数项,其表达式如下:

    m=(x,y,z)T
    将各面片的平移方向和距离按照自适应规则对上述坐标变换规则中的法矢量方向和距离d进行修正即实现模型自适应补偿。
  6. 根据权利要求2所述的方法,其特征在于,所述模型自适应补偿在改变自适应规则后,还应用于其他形式的增减材复合制造中,从模型层面实现增减材复合制造过程中精加工余量的预留。
  7. 根据权利要求2所述的方法,其特征在于,所述自支撑设计为:首先确定粉末床增材制造设备最大构建角度;然后寻找设计模型中切向与构建方向夹角大于最大构建角度的面,即大角度悬垂面;最后将大角度悬垂面夹角补偿至设备最大构建角度,使其在打印过程中实现自支撑,得到优化模型。
  8. 根据权利要求7所述的方法,其特征在于,自支撑设计中所添加的自支撑结构,能够在后续减材加工中去除。
  9. 根据权利要求1所述的方法,其特征在于,所述步骤(b)包括模型分解、内表面刀路规划和模型重构三个阶段;
    所述模型分解阶段为在确定的增材模型摆放角度、加工精度和刀具参数下, 根据增材模型内部结构特征,用多个垂直于构建方向的切分面将增材模型分解成多个可一次规划出内表面加工刀路的子模型,并输出子模型构建序列;
    所述内表面刀路规划阶段时的数控加工仅加工零件内表面,规划加工刀路时将增材模型分解后的各子模型作为毛坯,设计模型作为目标部件分别进行;若模型存在大角度悬垂内腔结构,则需通过无支撑策略实现内部大角度悬垂结构的无支撑一体化制造:内表面刀路规划阶段将生成与子模型个数相同的加工刀路文件;
    所述模型重构阶段为根据加工精度要求,将模型分解阶段获得的子模型和内表面刀路规划阶段获得的加工刀路文件按照构建序列交替进行增材制造和数控加工,直至所有子模型均被复合制造完毕。
  10. 根据权利要求9所述的方法,其特征在于,所述无支撑策略为:在构建含有大角度悬垂内腔结构的子模型时,设置第一层切削区域为第一层自支撑结构的下9/10部分,保留上1/10部分;设置第n(n>1)层切削区域为第n层自支撑结构的下9/10部分及n-1层上1/10部分;设置最后一层切削区域为最后一层自支撑结构部分及倒数第二层上1/10部分;根据所选加工刀具参数及设置切削区域生成各层减材加工刀路用于减材加工。
  11. 根据权利要求10所述的方法,其特征在于,所述加工刀具选用T型铣刀,对负角度的自支撑结构进行加工;根据加工曲面形式不同,选用不同规格及参数的T型铣刀。
  12. 根据权利要求1所述的方法,其特征在于,所述步骤(c)的再加工是指:增材模型在分解重构阶段的复合制造过程中,因数控加工受限于PBF的工艺特点,使得零件部分内表面无法被精加工;当去除掉粉末和支撑影响后,利用五轴机床对零件部分未加工内表面再次进行精加工。
  13. 根据权利要求1所述一种基于粉末床与五轴增减材复合制造方法所使用的设备,其特征在于:包括气氛保护外壳(1),气氛保护外壳(1)内部设有五轴转摆头(2),五轴转摆头(2)底部连接有刀具(9),五轴转摆头(2)连接在直线电机(10)上,直线电机(10)上连接有激光振镜(3);气氛保护外壳(1)底部设有铺粉刮刀(4);气氛保护外壳(1)下方中部设有成形基板(7),一侧设有粉仓(5)及顶粉机构(6),另一侧设有收粉仓(8);气氛保护外壳(1)作用为形成一个低氧环境,防止粉末过烧。
PCT/CN2023/111460 2022-09-15 2023-08-07 一种基于粉末床与五轴增减材复合制造方法 WO2024055773A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211119934.8 2022-09-15
CN202211119934.8A CN115392049A (zh) 2022-09-15 2022-09-15 一种基于粉末床与五轴增减材复合制造方法

Publications (1)

Publication Number Publication Date
WO2024055773A1 true WO2024055773A1 (zh) 2024-03-21

Family

ID=84125789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111460 WO2024055773A1 (zh) 2022-09-15 2023-08-07 一种基于粉末床与五轴增减材复合制造方法

Country Status (2)

Country Link
CN (1) CN115392049A (zh)
WO (1) WO2024055773A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115392049A (zh) * 2022-09-15 2022-11-25 西安交通大学 一种基于粉末床与五轴增减材复合制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197481A1 (en) * 2002-04-22 2003-10-23 Gonzalez Jose Raul Modular hybrid multi-axis robot
CN108549327A (zh) * 2018-05-03 2018-09-18 南京航空航天大学 一种复杂结构件五轴增减材混合加工序列规划方法
CN111872458A (zh) * 2020-08-04 2020-11-03 中国科学院工程热物理研究所 零件加工方法
CN113369895A (zh) * 2021-05-31 2021-09-10 西安交通大学 一种粉末床五轴增减材复合制造装备
CN115392049A (zh) * 2022-09-15 2022-11-25 西安交通大学 一种基于粉末床与五轴增减材复合制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197481A1 (en) * 2002-04-22 2003-10-23 Gonzalez Jose Raul Modular hybrid multi-axis robot
CN108549327A (zh) * 2018-05-03 2018-09-18 南京航空航天大学 一种复杂结构件五轴增减材混合加工序列规划方法
CN111872458A (zh) * 2020-08-04 2020-11-03 中国科学院工程热物理研究所 零件加工方法
CN113369895A (zh) * 2021-05-31 2021-09-10 西安交通大学 一种粉末床五轴增减材复合制造装备
CN115392049A (zh) * 2022-09-15 2022-11-25 西安交通大学 一种基于粉末床与五轴增减材复合制造方法

Also Published As

Publication number Publication date
CN115392049A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
Umaras et al. Additive manufacturing-considerations on geometric accuracy and factors of influence
JP7221002B2 (ja) ハイブリッド物品を準備するための方法
WO2024055773A1 (zh) 一种基于粉末床与五轴增减材复合制造方法
CN110640146B (zh) 一种零件表面缺损区域模块化增减材复合修复方法
CN106125666B (zh) 以切削力波动为约束的曲面加工刀具轨迹规划方法
US20220379380A1 (en) Hybrid additive and subtractive manufacturing
CN101204758B (zh) 一种皮革花纹模具的制作方法
CN110561667A (zh) 鞋底成型模具及其金属3d打印制造方法
CN112236289A (zh) 用于自动工具路径生成的方法和***
JP7446055B2 (ja) 切削工具を製造するための方法及び機械設備
CN110465658B (zh) 提高激光选区熔化成形复杂结构零件尺寸精度的方法
Kapil et al. 5-axis slicing methods for additive manufacturing process
CN113536488A (zh) 基于配准算法的毛坯质量包容性分析和余量优化方法
CN104708003A (zh) 一种皮秒激光器复合加工slm设备及激光快速成形方法
Zheng-Qing et al. A repair strategy based on tool path modification for damaged turbine blade
Kumar et al. Preprocessing and postprocessing in additive manufacturing
JP2019107763A5 (zh)
Li et al. A novel process planning method of 3+ 2-axis additive manufacturing for aero-engine blade based on machine learning
Zhao et al. Measured data-driven shape-adaptive machining via spatial deformation of tool cutter positions
Pandey Rapid prototyping technologies, applications and part deposition planning
CN111400798B (zh) 一种建筑3d切片建造方法及3d打印装置
CN116604334A (zh) 一种离心轮结构增减材复合制造方法及***
CN102574310A (zh) 用于生产风力涡轮叶片的阴模的直接生产
Qin et al. Multi-axis direct metal deposition process with effective regrouping strategy
Lauwers et al. Five-axis rough milling strategies for complex shaped cavities based on morphing technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864507

Country of ref document: EP

Kind code of ref document: A1