CN109195980B - 一种钠-葡萄糖协同转运蛋白抑制剂药物的新晶型及其制备方法和用途 - Google Patents

一种钠-葡萄糖协同转运蛋白抑制剂药物的新晶型及其制备方法和用途 Download PDF

Info

Publication number
CN109195980B
CN109195980B CN201780029501.4A CN201780029501A CN109195980B CN 109195980 B CN109195980 B CN 109195980B CN 201780029501 A CN201780029501 A CN 201780029501A CN 109195980 B CN109195980 B CN 109195980B
Authority
CN
China
Prior art keywords
crystal form
crystal
degrees
sotagliflozin
ray powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780029501.4A
Other languages
English (en)
Other versions
CN109195980A (zh
Inventor
陈敏华
张炎锋
邹坡
刘凯
张晓宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal Pharmaceutical Suzhou Co Ltd
Original Assignee
Crystal Pharmaceutical Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystal Pharmaceutical Suzhou Co Ltd filed Critical Crystal Pharmaceutical Suzhou Co Ltd
Publication of CN109195980A publication Critical patent/CN109195980A/zh
Application granted granted Critical
Publication of CN109195980B publication Critical patent/CN109195980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/14Acyclic radicals, not substituted by cyclic structures attached to a sulfur, selenium or tellurium atom of a saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Abstract

本发明涉及一种钠‑葡萄糖协同转运蛋白抑制剂药物(Sotagliflozin)的新晶型及其制备方法和用途,本发明另外涉及包含Sotagliflozin新晶型的药物组合物及使用Sotagliflozin新晶型及医药组合物治疗疾病的方法。本发明提供的晶型具有良好的稳定性、较低的引湿性、工艺可开发和易处理性等有利性能,且制备方法简单,成本低廉,对未来该药物的优化和开发具有重要价值。

Description

一种钠-葡萄糖协同转运蛋白抑制剂药物的新晶型及其制备 方法和用途
技术领域
本发明涉及药物晶体技术领域。具体而言,涉及一种钠-葡萄糖协同转运蛋白抑制剂药物的新晶型及其制备方法和用途。
背景技术
Sotagliflozin是由莱西肯医药公司(Lexicon)研发的一款试验性新型口服钠-葡萄糖协同转运蛋白1和2(SGLT-1和SGLT-2)双重抑制剂,目前处于临床III期,该药物有可能成为糖尿病患者的一种治疗选择。Sotagliflozin先前在探索性(II期)研究中已显示出令人鼓舞的结果,包括降低血糖、改善血糖可变性及用于1型糖尿病时与安慰剂相比可减少餐时胰岛素的剂量。在2型糖尿病患者(包括那些有肾损伤的患者)中进行的探索性II期研究表明其可以降低血糖、减轻体重及改善血压。Sotagliflozin的化学名称为:(2S,3R,4R,5S,6R)-2-(4-氯-3-(4- 乙氧基苄基)苯基)-6-(甲基硫)四氢-2H-吡喃-3,4,5-三醇,其结构式如式(I)所示:
Figure BDA0001863130760000011
专利CN101343296B公开了Sotagliflozin的合成方法,但并未记载Sotagliflozin相关的晶型信息。专利CN102112483A(其通过引用的方式并入到本申请中)中公开了Sotagliflozin 的两个无水晶型1形晶体和2形晶体(本发明以下分别简称为现有1形晶体和现有2形晶体)。本发明的发明人发现,现有1形晶体重复性差,现有2形晶体相比1形晶体易重复制备,然而现有2形晶体在高水活度下并不稳定。同时还发现现有2形晶体的研磨稳定性较差,在制备制剂的过程中容易发生转晶;现有2形晶体还还存在粒径分布宽,粒径分布不均匀等缺陷,不利于药物开发过程的后处理。
药物活性成分新的晶型(包括无水物、水合物、溶剂化物等)扩大了制剂学上可选用的原料形态,并可能会产生更具加工优势或提供具有更好理化特性的物质,其中加工优势比如易加工处理、易提纯或作为中间晶型促进转化为其他晶型等,更好理化特性比如具有更好的生物利用度、储存更稳定等。对某些药学上有用的化合物来说,其新晶型还可以帮助改善药物的性能。
因此,仍有需要开发Sotagliflozin的新的且与现有的晶型例如现有1形晶体和2形晶体相比在某一个或几个方面更优越的晶型,以便于更好的进行工业化药物制剂生产和满足后期药品运用中对于晶体性质或药品性质的严苛要求。
发明内容
本发明的主要目的是提供Sotagliflozin稳定的新晶型及其制备方法和用途。
本发明提供了Sotagliflozin的多种新晶型,分别命名为晶型I、晶型II、晶型III、晶型 V、晶型VI、晶型VII、晶型VIII。为实现上述目的,本发明采取的第一种方案是:提供Sotagliflozin的晶型I,使用Cu-Kα辐射,该晶型I的X射线粉末衍射图在衍射角2θ为3.6°±0.2°、 12.7°±0.2°及14.1°±0.2°处有特征峰。
除上述特征峰外,本发明的晶型I的X射线粉末衍射图还优选在衍射角2θ为15.6°±0.2°、 17.1°±0.2°、18.7°±0.2°、9.0°±0.2°、21.0°±0.2°、25.7°±0.2°中的一处或多处具有特征峰。
根据本发明的一个优选方面,晶型I的X射线粉末衍射图还在衍射角2θ为15.6°±0.2°、 17.1°±0.2°及18.7°±0.2°中的一处或两处或三处有特征峰。更优选地,本发明的晶型I的X射线粉末衍射图在衍射角2θ为15.6°±0.2°、17.1°±0.2°及18.7°±0.2°处有特征峰。
根据本发明的又一优选方面,本发明的晶型I的X射线粉末衍射图还在衍射角2θ为9.0°±0.2°、21.0°±0.2°及25.7°±0.2°中的一处或两处或三处有特征峰。更优选地,本发明的晶型I的X射线粉末衍射图在衍射角2θ为9.0°±0.2°、21.0°±0.2°及25.7°±0.2°处有特征峰。
在本发明的一个具体且优选的实施方式中,晶型I的X射线粉末衍射图在衍射角2θ为 3.6°±0.2°、9.0°±0.2°、12.7°±0.2°、14.1°±0.2°、15.6°±0.2°、17.1°±0.2°、18.7°±0.2°、21.0°±0.2°及25.7°±0.2°处有特征峰。
在本发明的又一个具体且优选的实施方式中,晶型I的X射线粉末衍射图在衍射角2θ为3.6°±0.2°、9.0°±0.2°、12.7°±0.2°、14.1°±0.2°、15.6°±0.2°、17.1°±0.2°、18.7°±0.2°、21.0°±0.2°及25.7°±0.2°处有特征峰。
在一个优选的实施例中,本发明的晶型I的X射线粉末衍射图基本如图1所示。
在一个优选的实施例中,本发明的晶型I是水合物。
在一个优选的实施例中,当进行差示扫描量热分析(DSC)时,本发明的晶型I加热至 69℃附近时开始脱水,其DSC如图2所示。
在一个优选的实施例中,当进行热重分析(TGA)时,本发明的晶型I加热至115℃时,具有约3.3%的质量损失梯度,其TGA如图3所示。
在一个具体的实施例中,本发明的晶型I的液态核磁氢谱数据如下所示,1H NMR(400 MHz,CDCl3)δ7.38(d,J=8.2Hz,1H),7.21(dd,J=8.2,2.1Hz,1H),7.16(d,J=2.0Hz,1H), 7.09(d,J=8.7Hz,2H),6.86-6.76(m,2H),4.37(d,J=9.6Hz,1H),4.18(d,J=9.4Hz,1H),4.10 -3.96(m,4H),3.68(td,J=8.8,2.3Hz,1H),3.58-3.46(m,2H),2.79(d,J=2.3Hz,1H),2.51(d, J=1.9Hz,1H),2.18(s,3H),1.40(t,J=7.0Hz,3H),其液态核磁氢谱图如图4所示。
本发明还进一步提供晶型I的制备方法,其选自:
方法1:将Sotagliflozin固体溶于醇类、酮类或环醚类溶剂中得到Sotagliflozin溶液,向溶液中缓慢滴加水或者将溶液滴加到水中,有固体析出,在室温下搅拌1~72小时,过滤干燥得到白色固体,即为本发明的晶型I;或
方法2:将Sotagliflozin固体加入到水中,配成悬浮液,在室温下悬浮搅拌5~15天,过滤干燥,得到本发明的晶型I。
根据本发明的一个具体且优选方面,方法1中所述醇类、酮类、环醚类溶剂分别优选为甲醇、丙酮、四氢呋喃。
根据本发明,方法1中所述搅拌时间优选为6~72小时,更优选为12~72小时,具体可以为例如约24小时。
根据本发明,方法2中所述搅拌时间优选为6~15天,更优选为7~12天,进一步优选为 8天。
本发明采取的第二种方案是:提供Sotagliflozin的晶型II,使用Cu-Kα辐射,该晶型II 的X射线粉末衍射图在衍射角2θ为3.7°±0.2°、4.5°±0.2°及14.6°±0.2°处有特征峰。
除上述特征峰外,本发明的晶型II还优选在衍射角2θ为13.4°±0.2°、18.1°±0.2°、 6.2°±0.2°、22.0°±0.2°、10.6°±0.2°及15.9°±0.2°中的一处或多处有特征峰。
根据本发明的一个优选方面,晶型II的X射线粉末衍射图还在衍射角2θ为13.4°±0.2°、 18.1°±0.2°及6.2°±0.2°中的一处或两处或三处有特征峰。更优选地,晶型II的X射线粉末衍射图在衍射角2θ为13.4°±0.2°、18.1°±0.2°及6.2°±0.2°处有特征峰。
根据本发明的又一优选方面,晶型II的X射线粉末衍射图在衍射角2θ为22.0°±0.2°、 10.6°±0.2°及15.9°±0.2°中的一处或两处或三处有特征峰。更优选地,本发明的晶型II的X射线粉末衍射图在衍射角2θ为22.0°±0.2°、10.6°±0.2°及15.9°±0.2°处有特征峰。
在根据本发明的一个优选的实施方式中,晶型II的X射线粉末衍射图在衍射角2θ为 3.7°±0.2°、4.5°±0.2°、6.2°±0.2°、10.6°±0.2°、13.4°±0.2°、14.6°±0.2°、15.9°±0.2°、18.1°±0.2°及22.0°±0.2°处有特征峰。
在一个优选的实施例中,本发明的晶型II的X射线粉末衍射图基本如图5所示。
在一个具体的实施例中,本发明的晶型II是水合物。
在一个优选的实施例中,当进行差示扫描量热分析(DSC)时,本发明的晶型II加热至62℃附近时开始脱水,其DSC如图6所示。
在一个优选的实施例中,当进行热重分析(TGA)时,本发明的晶型II加热至112℃时,具有约5.7%的质量损失梯度,其TGA如图7所示。
在一个具体的实施例中,本发明的晶型II的液态核磁氢谱数据如下所示,1H NMR(400 MHz,CDCl3)δ7.38(d,J=8.2Hz,1H),7.21(dd,J=8.2,2.1Hz,1H),7.16(d,J=2.0Hz,1H), 7.09(d,J=8.6Hz,2H),6.85–6.78(m,2H),4.37(d,J=9.6Hz,1H),4.18(d,J=9.4Hz,1H),4.11 –3.96(m,4H),3.68(td,J=8.9,2.3Hz,1H),3.52(tdd,J=12.1,9.3,2.5Hz,2H),2.79(d,J=2.3 Hz,1H),2.51(d,J=1.9Hz,1H),2.18(s,3H),1.40(t,J=7.0Hz,3H),其液态核磁氢谱图如图8 所示。
本发明还进一步提供本发明的晶型II的制备方法,其选自:
方法1:将Sotagliflozin固体溶于烷基腈类溶剂中得到Sotagliflozin溶液,向溶液中缓慢滴加水或者将溶液滴加到水中,有固体析出,在室温下搅拌1~72小时,过滤干燥得到白色固体,即为本发明的晶型II;或
方法2:将Sotagliflozin固体溶于环醚类溶剂或酯类溶剂中得到Sotagliflozin溶液,向溶液中缓慢滴加正庚烷或者将溶液滴加到正庚烷中,有固体析出,在室温下搅拌1~72小时,过滤干燥得到白色固体,即为本发明的晶型II;或
方法3:将Sotagliflozin固体溶于酮类溶剂中得到Sotagliflozin溶液,向溶液中缓慢滴加甲苯或者将溶液滴加到甲苯中,有固体析出,在室温下搅拌1~72小时,过滤干燥得到白色固体,即为本发明的晶型II;或
方法4:将Sotagliflozin固体(优选现有2形晶体)加入到酮类溶剂与水的混合溶剂或烷基腈类溶剂与水的混合溶剂中,在温度50℃~75℃下悬浮搅拌5~20天,过滤干燥,得到本发明的晶型II。
在本发明的晶型II的制备方法中:
方法1中所述的烷基腈类溶剂优选为乙腈;方法1中所述的搅拌时间优选6~72小时,更优选6~36小时,进一步优选12~36小时,更进一步优选24~30小时;
方法2中所述的环醚类溶剂、酯类溶剂分别优选为四氢呋喃和乙酸乙酯;方法2中所述的搅拌时间优选6~72小时,更优选6~36小时,进一步优选12~36小时,更进一步优选24~30 小时;
方法3中所述的酮类溶剂优选为丙酮;方法3中所述的搅拌时间优选6~72小时,更优选6~36小时,进一步优选12~36小时,更进一步优选24~30小时;
方法4中所述的酮类溶剂与水的混合溶剂优选为丙酮与水的混合溶剂,二者的体积比可以为1/2~1/10,优选为1/3~1/8,更优选为1/4~1/6;所述的烷基腈类溶剂与水的混合溶剂为乙腈与水的混合溶剂,二者的体积可以为1/2~1/10,优选为1/3~1/8,更优选为1/4~1/6;方法4 中的搅拌时间优选为8~18天,更优选为10~15天,具体例如14天。
本发明采取的第三种方案是:提供Sotagliflozin的晶型III,使用Cu-Kα辐射,该晶型 III的X-射线粉末衍射在衍射角2θ为4.3°±0.2°、14.6°±0.2°及19.6°±0.2°处有特征峰。
除上述特征峰外,本发明的晶型III还优选在衍射角2θ为4.9°±0.2°、15.3°±0.2°、 17.5°±0.2°、12.8°±0.2°、25.0°±0.2°及26.4°±0.2°中的一处或多处有特征峰。
根据本发明的一个优选方面,晶型III的X-射线粉末衍射在衍射角2θ为4.9°±0.2°、 15.3°±0.2°及17.5°±0.2°中的一处或两处或三处有特征峰;更优选地,晶型III的X射线粉末衍射图在衍射角2θ为4.9°±0.2°、15.3°±0.2°及17.5°±0.2°处有特征峰。
根据本发明的又一优选方面,晶型III的X-射线粉末衍射在衍射角2θ为12.8°±0.2°、 25.0°±0.2°及26.4°±0.2°中的一处或两处或三处有特征峰;更优选地,晶型III的X射线粉末衍射图在衍射角2θ为12.8°±0.2°、25.0°±0.2°及26.4°±0.2°处有特征峰。
在一个优选的实施方式中,本发明的晶型III的X射线粉末衍射图在衍射角2θ为4.3°±0.2°、4.9°±0.2°、12.8°±0.2°、14.6°±0.2°、15.3°±0.2°、17.5°±0.2°、25.0°±0.2°、19.6°±0.2°及26.4°±0.2°处有特征峰。
在一个优选的实施例中,本发明的晶型III的X射线粉末衍射图基本如图9所示。
在一个具体的实施例中,本发明的晶型III是无水物。
在一个优选的实施例中,当进行差示扫描量热分析(DSC)时,晶型III加热至131℃附近时开始熔化,其DSC如图10所示。
在一个优选的实施例中,当进行热重分析(TGA)时,晶型III加热至125℃时,具有约1.3%的质量损失梯度,其TGA如图11所示。
在一个具体的实施例中,本发明的晶型III的液态核磁氢谱数据如下所示,1H NMR(400 MHz,DMSO)δ7.38(d,J=8.2Hz,1H),7.26(d,J=1.9Hz,1H),7.20(dd,J=8.3,2.0Hz,1H), 7.10(d,J=8.6Hz,2H),6.83(d,J=8.6Hz,2H),5.26(d,J=5.7Hz,1H),5.17(d,J=4.8Hz,1H), 4.98(d,J=5.7Hz,1H),4.34(d,J=9.4Hz,1H),4.09(d,J=9.4Hz,1H),4.03-3.92(m,4H),3.26 (td,J=8.6,4.9Hz,1H),3.22–3.10(m,2H),2.03(s,3H),1.30(t,J=7.0Hz,3H),液态核磁氢谱图如图12所示。
本发明还进一步提供本发明的晶型III的制备方法,其选自:
方法1:将Sotagliflozin固体溶于卤代烷烃中,在室温下缓慢挥发得到白色固体。
方法2:将Sotagliflozin固体溶于卤代烷烃与烷烃的混合溶剂中,在室温下缓慢挥发得到白色固体。
在本发明的晶型III的制备方法中,方法1中所述的卤代烷烃可以且优选为氯仿;方法 2所述的卤代烷烃和烷烃分别可以且优选为氯仿和正庚烷,卤代烷烃和烷烃的体积比可以为 1/1~10/1,更优选为3/1~6/1,具体例如4/1。
本发明采取的第四种方案是:提供Sotagliflozin的晶型V,使用Cu-Kα辐射,该晶型V 的X-射线粉末衍射在衍射角2θ为5.4°±0.2°、9.9°±0.2°及19.7°±0.2°处有特征峰。
除上述特征峰外,本发明的晶型V还优选在衍射角2θ为12.8°±0.2°、13.6°±0.2°、 15.1°±0.2°,6.5°±0.2°、18.2°±0.2°及20.4°±0.2°中的一处或多处有特征峰。
根据本发明的一个优选方面,所述晶型V的X-射线粉末衍射在衍射角2θ为12.8°±0.2°、 13.6°±0.2°及15.1°±0.2°中的一处或两处或三处有特征峰;优选地,所述晶型V的X射线粉末衍射图在衍射角2θ为12.8°±0.2°、13.6°±0.2°及15.1°±0.2°处有特征峰。
根据本发明的又一优选方面,所述晶型V的X-射线粉末衍射在衍射角2θ为6.5°±0.2°、 18.2°±0.2°及20.4°±0.2°中的一处或两处或三处有特征峰;优选地,所述晶型V的X射线粉末衍射图在衍射角2θ为6.5°±0.2°、18.2°±0.2°及20.4°±0.2°处有特征峰。
在一个优选的实施方式中,本发明的晶型V的X-射线粉末衍射在衍射角2θ为5.4°±0.2°、 6.5°±0.2°、9.9°±0.2°、12.8°±0.2°、13.6°±0.2°、15.1°±0.2°、18.2°±0.2°、19.7°±0.2°及20.4°±0.2°处有特征峰。
在一个优选的实施例中,本发明的晶型V的X射线粉末衍射图基本如图13所示。
在一个具体的实施例中,本发明的晶型V是水合物。
在一个优选的实施例中,当进行差示扫描量热分析(DSC)时,本发明的晶型V加热至30℃附近时开始脱水,其DSC如图14所示。
在一个优选的实施例中,当进行热重分析(TGA)时,本发明的晶型V加热至115℃时,具有约12.7%的质量损失梯度,其TGA如图15所示。
在一个具体的实施例中,本发明的晶型V的液态核磁氢谱数据如下所示,1H NMR(400 MHz,CDCl3)δ7.38(d,J=8.2Hz,1H),7.21(dd,J=8.2,2.1Hz,1H),7.16(d,J=2.0Hz,1H), 7.09(d,J=8.6Hz,2H),6.82(d,J=8.6Hz,2H),4.37(d,J=9.6Hz,1H),4.18(d,J=9.4Hz,1H), 4.11–3.95(m,4H),3.72–3.65(m,1H),3.52(ddd,J=21.5,9.3,2.4Hz,2H),2.81(d,J=2.3Hz, 1H),2.52(d,J=1.9Hz,1H),2.18(s,3H),1.40(t,J=7.0Hz,3H),其液态核磁氢谱图如图16所示。
本发明还进一步提供本发明的晶型V的制备方法,其包括:在加热温度40~70℃下,将 Sotagliflozin固体溶于醇类溶剂与水的混合溶剂中,配成澄清溶液,将所得澄清溶液转移至温度0~10℃的冷却环境,搅拌12~96小时,过滤干燥得到白色固体。
在本发明的晶型V的制备方法中,加热温度优选50~60℃;冷却环境的温度优选为约 5℃;醇类溶剂优选为甲醇,醇类溶剂(甲醇)与水的体积比可以为2/1~2/3,更优选地为1/1;冷却环境下,搅拌的时间优选为36~96小时,更优选为48~96小时,最优选72~84小时。
本发明采取的第五种方案是:提供Sotagliflozin的晶型VI,使用Cu-Kα辐射,该晶型 VI的X-射线粉末衍射在衍射角2θ为4.8°±0.2°、9.5°±0.2°及14.5°±0.2°处有特征峰。
除上述特征峰外,本发明的晶型VI还优选在衍射角2θ为11.1°±0.2°、19.1°±0.2°、 21.5°±0.2°、7.7°±0.2°、20.0°±0.2°及25.4°±0.2°中的一处或多处有特征峰。
根据本发明的一个优选方面,晶型VI的X-射线粉末衍射在衍射角2θ为11.1°±0.2°、 19.1°±0.2°及21.5°±0.2°中的一处或两处或三处有特征峰;更优选地,本发明的晶型VI的X 射线粉末衍射图在衍射角2θ为11.1°±0.2°、19.1°±0.2°及21.5°±0.2°处有特征峰。
根据本发明的又一优选方面,所述晶型VI的X-射线粉末衍射在衍射角2θ为7.7°±0.2°、 20.0°±0.2°及25.4°±0.2°中的一处或两处或三处有特征峰;更优选地,本发明的晶型VI的X 射线粉末衍射图在衍射角2θ为7.7°±0.2°、20.0°±0.2°及25.4°±0.2°处有特征峰。
在一个优选的实施方式中,本发明的晶型VI的X-射线粉末衍射在衍射角2θ为4.8°±0.2°、7.7°±0.2°、9.5°±0.2°、11.1°±0.2°、14.5°±0.2°、19.1°±0.2°、20.0°±0.2°、21.5°±0.2°及25.4°±0.2°处有特征峰。
在一个优选的实施例中,本发明的晶型VI的X射线粉末衍射图基本如图17所示。
在一个具体实施例中,本发明的晶型VI是水合物。
在一个优选的实施例中,当进行差示扫描量热分析(DSC)时,本发明的晶型VI加热至80℃附近时开始脱水,其DSC如图18所示。
在一个优选的实施例中,当进行热重分析(TGA)时,本发明的晶型VI加热至116℃时,具有约3.6%的质量损失梯度,其TGA如图19所示。
在一个具体实施例中,本发明的晶型VI的液态核磁氢谱数据如下所示,1H NMR(400 MHz,CDCl3)δ7.38(d,J=8.2Hz,1H),7.21(dd,J=8.2,2.1Hz,1H),7.17(d,J=2.0Hz,1H), 7.09(d,J=8.7Hz,2H),6.85–6.79(m,2H),4.37(d,J=9.6Hz,1H),4.18(d,J=9.4Hz,1H),4.11 –3.96(m,4H),3.68(t,J=9.0Hz,1H),3.58-3.46(m,2H),2.83(s,1H),2.53(d,J=1.6Hz,1H), 2.18(s,3H),1.40(t,J=7.0Hz,3H),其液态核磁氢谱图如图20所示。
本发明还进一步提供本发明的晶型VI的制备方法,其包括:将Sotagliflozin固体放入水中,在温度35~65℃下悬浮搅拌24~96小时,过滤干燥,得到晶型VI。
本发明的晶型VI的制备方法中,悬浮搅拌时的温度优选为45~55℃,更优选为约50℃。;悬浮搅拌时间优选为36~84小时,更优选为48~84小时,最优选为约72小时。
本发明采取的第六种方案是:提供Sotagliflozin的晶型VII,使用Cu-Kα辐射,该晶型 VII的X射线粉末衍射图在衍射角2θ为10.5°±0.2°、13.8°±0.2°及15.8°±0.2°处有特征峰。
除上述特征峰外,本发明的晶型VII还优选在衍射角2θ为16.7°±0.2°、20.3°±0.2°、 22.6°±0.2°、6.7°±0.2°、18.5°±0.2°及19.1°±0.2°中的一处或多处有特征峰。
根据本发明的一个优选方面,晶型VII的X-射线粉末衍射在衍射角2θ为16.7°±0.2°、 20.3°±0.2°及22.6°±0.2°中的一处或两处或三处有特征峰;更优选地,所述晶型VII的X射线粉末衍射图在衍射角2θ为16.7°±0.2°、20.3°±0.2°及22.6°±0.2°处有特征峰。
根据本发明的又一优选方面,晶型VII的X-射线粉末衍射在衍射角2θ为6.7°±0.2°、 18.5°±0.2°及19.1°±0.2°中的一处或两处或三处有特征峰;更优选地,所述晶型VII的X射线粉末衍射图在衍射角2θ为6.7°±0.2°、18.5°±0.2°及19.1°±0.2°处有特征峰。
在一个优选的实施方式中,本发明的晶型VII的X-射线粉末衍射在衍射角2θ为6.7°±0.2°、10.5°±0.2°、13.8°±0.2°、15.8°±0.2°、16.7°±0.2°、18.5°±0.2°、19.1°±0.2°、20.3°±0.2°及22.6°±0.2°处有特征峰。
在一个优选的实施例中,本发明的晶型VII的X射线粉末衍射图基本如图21所示。
在一个优选的实施例中,当进行差示扫描量热分析(DSC)时,本发明的晶型VII加热至120℃附近时开始熔化,其DSC如图22所示。
在一个优选的实施例中,当进行热重分析(TGA)时,本发明的晶型VII加热至114℃时,具有约1.9%的质量损失梯度,其TGA如图23所示。
在一个具体实施例中,本发明的晶型VII的液态核磁氢谱数据如下所示,1H NMR(400 MHz,CDCl3)δ7.38(d,J=8.2Hz,1H),7.21(dd,J=8.2,2.1Hz,1H),7.16(d,J=2.1Hz,1H), 7.09(d,J=8.7Hz,2H),6.85-6.79(m,2H),4.37(d,J=9.6Hz,1H),4.18(d,J=9.4Hz,1H),4.10 -3.97(m,4H),3.71-3.64(m,1H),3.58-3.45(m,2H),2.81(d,J=2.2Hz,1H),2.53(d,J=1.9 Hz,1H),2.18(s,3H),1.40(t,J=7.0Hz,3H),其液态核磁氢谱图如图24所示。
本发明还进一步提供本发明的晶型VII的制备方法,其包括:将本发明Sotagliflozin晶型II以5~10℃/min的升温速率加热至90~100℃,并在90℃~100℃保留0.5~5分钟,得到白色固体。
在一个具体的实施例中,将本发明的晶型II以10℃/min的升温速率加热至90℃,并在 90℃保留0.5min,得到白色固体,即得本发明的晶型VII。
本发明采取的第七种方案是:提供Sotagliflozin的晶型VIII,使用Cu-Kα辐射,该晶型 VIII的X-射线粉末衍射在衍射角2θ为6.2°±0.2°、10.9°±0.2°及17.7°±0.2°处有特征峰。
除上述特征峰外,本发明的晶型VIII还优选在衍射角2θ为6.2°±0.2°、10.4°±0.2°、 10.9°±0.2°、14.9°±0.2°、15.7°±0.2°、17.7°±0.2°、18.8°±0.2°、20.9°±0.2°及24.1°±0.2°中的一处或多处有特征峰。
根据本发明的一个优选方面,晶型VIII的X-射线粉末衍射还在衍射角2θ为14.9°±0.2°、 15.7°±0.2°及20.9°±0.2°中的一处或两处或三处有特征峰;更优选地,本发明的晶型VIII的X 射线粉末衍射图在衍射角2θ为14.9°±0.2°、15.7°±0.2°及20.9°±0.2°处有特征峰。
根据本发明的又一优选方面,本发明的晶型VIII的X-射线粉末衍射在衍射角2θ为10.4°±0.2°、18.8°±0.2°、24.1°±0.2°中的一处或两处或三处有特征峰;更优选地,本发明的晶型VIII的X射线粉末衍射图在衍射角2θ为10.4°±0.2°、18.8°±0.2°、24.1°±0.2°处有特征峰。
在一个优选的实施方式中,本发明的晶型VIII的X-射线粉末衍射在衍射角2θ为6.2°±0.2°、10.4°±0.2°、10.9°±0.2°、14.9°±0.2°、15.7°±0.2°、17.7°±0.2°、18.8°±0.2°、20.9°±0.2°及24.1°±0.2°处有特征峰。
在一个优选的实施例中,本发明的晶型VIII的X射线粉末衍射图基本如图25所示。
在一个优选的实施例中,当进行差示扫描量热分析(DSC)时,晶型VIII加热至91℃附近时开始脱溶剂,其DSC如图26所示。
本发明还进一步提供本发明的晶型VIII的制备方法,其包括:将本发明的晶型V的固体加热到温度60~80℃,并恒定2分钟以上,所得固体即为本发明的晶型VIII。其中:优选的加热速率为10℃/分钟;优选加热到约65℃。
本发明的Sotagliflozin的晶型I、晶型II、晶型III、晶型V、晶型VI、晶型VII以及晶型VIII具有以下有益性质:
①稳定性好;
②制备工艺简单,可重复放大;
③结晶度好;
此外,与现有2形晶体相比,晶型I、晶型II的优势包括其在高水活度环境中更稳定;相比现有2形晶体,晶型I和晶型VI具有更好的机械稳定性,更适合成药和储存;现有2形晶体粒度分布较宽,有团聚现象,且呈细针状,晶型I、晶型V、晶型VII、晶型VIII粒度分布均匀,有助于简化制剂过程的后处理工艺,提高质量控制;晶型II、晶型III、晶型VII、晶型VIII具有相比现有2形晶体,具有更高的溶解度,有利于药物吸收。
本发明通过提供Sotagliflozin新的晶型I、晶型II、晶型III、晶型V、晶型VI、晶型VII、晶型VIII,解决了现有技术晶型存在的问题。这些新的晶型具有选自以下至少一项的有利性质:溶解度高,制备简单且所用溶剂毒性低,结晶度好,好的颗粒形态、低吸湿性、更好的流动性、更好的稳定性。
本发明中,“晶体”或“晶型”指的是被所示的X射线衍射图表征所证实的。本领域技术人员能够理解,这里所讨论的理化性质可以被表征,其中的实验误差取决于仪器的条件、样品的准备和样品的纯度。特别是,本领域技术人员公知,X射线衍射图通常会随着仪器的条件而有所改变。特别需要指出的是,X射线衍射图的相对强度也可能随着实验条件的变化而变化,所以峰强度的顺序不能作为唯一或决定性因素。另外,由于样品高度等实验因素的影响,会造成峰角度的整体偏移,通常允许一定的偏移。因而,本领域技术人员可以理解的是,本发明中一个晶型的X-射线衍射图不必和这里所指的例子中的X射线衍射图完全一致。任何具有和这些图谱中的特征峰相同或相似的图的晶型均属于本发明的范畴之内。本领域技术人员能够将本发明所列的图谱和一个未知晶型的图谱相比较,以证实这两组图谱反映的是相同还是不同的晶型。
“晶型”和“多晶型”以及其他相关词汇在本发明中指的是固体化合物在晶体结构中以特定的晶型状态存在。多晶型理化性质的不同可以体现在储存稳定性、可压缩性、密度、溶出速度等方面。
本发明中所使用的短语“有效治疗量”或“治疗有效量”是指引起由研究人员、兽医、医生或其他临床医师在组织、***、动物、个体或人中所要寻求的生物反应或药物反应的活性化合物或药剂的量。
在一些实施方案中,本发明的Sotagliflozin的新晶型,包括晶型I、晶型II、晶型III、晶型V、晶型VI、晶型VII、晶型VIII是纯的、单一的,基本没有混合任何其他晶型。本发明中,“基本没有”当用来指新晶型时指这个晶型含有少于20%(重量)的其他晶型,尤其指少于10%(重量)的其他晶型,更指少于5%(重量)的其他晶型,更指少于1%(重量)的其他晶型。
需要说明的是,本发明中提及的数值及数值范围不应被狭隘地理解为数值或数值范围本身,本领域技术人员应当理解其可以根据具体技术环境的不同,在不背离本发明精神和原则的基础上围绕具体数值有所浮动,本发明中,这种本领域技术人员可预见的浮动范围多以术语“约”来表示。
本发明提供的Sotagliflozin的晶型I、晶型II、晶型III、晶型V、晶型VI、晶型VII或晶型VIII具有适用于上述剂型的有利性质。
此外,本发明提供Sotagliflozin的晶型I、晶型II、晶型III、晶型V、晶型VI、晶型VII或晶型VIII中的一种或多种在制备具有抑制SGLT,尤其是抑制SGLT-2作用的药物中的用途。
本发明还提供一种药物组合物,其包含治疗有效量的本发明的Sotagliflozin的晶型I、晶型II、晶型III、晶型V、晶型VI、晶型VII、晶型VIII或这些晶型的任意组合及药学上可接受的载体、稀释剂或赋形剂。优选地,所述药物组合物用于预防和/或治疗糖尿病。该药物组合物可以采取本领域公知的方法来制备,在此不进行赘述。
附图说明
图1为实施例1中晶型I的X射线粉末衍射图;
图2为实施例2中晶型I的差示扫描量热分析图;
图3为实施例2中晶型I的热重分析图;
图4为实施例2中晶型I的液态核磁氢谱图;
图5为实施例7中晶型II的X射线粉末衍射图;
图6为实施例7中晶型II的差示扫描量热分析图;
图7为实施例7中晶型II的热重分析图;
图8为实施例7中晶型II的液态核磁氢谱图;
图9为实施例13中晶型III的X射线粉末衍射图;
图10为实施例13中晶型III的差示扫描量热分析图;
图11为实施例13中晶型III的热重分析图;
图12为实施例13中晶型III的液态核磁氢谱图;
图13为实施例15中晶型V的X射线粉末衍射图;
图14为实施例15中晶型V的差示扫描量热分析图;
图15为实施例15中晶型V的热重分析图;
图16为实施例15中晶型V的液态核磁氢谱图;
图17为实施例17中晶型VI的X射线粉末衍射图;
图18为实施例17中晶型VI的差示扫描量热分析图;
图19为实施例17中晶型VI的热重分析图;
图20为实施例17中晶型VI的液态核磁氢谱图;
图21为实施例19中晶型VII的X射线粉末衍射图;
图22为实施例19中晶型VII的差示扫描量热分析图;
图23为实施例19中晶型VII的热重分析图;
图24为实施例19中晶型VII的液态核磁氢谱图;
图25为实施例20中晶型VIII的X射线粉末衍射图;
图26为实施例20中晶型VIII的差示扫描量热分析图;
图27为实施例2中晶型I的X射线粉末衍射图;
图28为实施例3中晶型I的X射线粉末衍射图;
图29为实施例4中晶型I的X射线粉末衍射图;
图30为实施例5中晶型I的X射线粉末衍射图;
图31为实施例6中晶型I的X射线粉末衍射图;
图32为实施例8中晶型II的X射线粉末衍射图;
图33为实施例9中晶型II的X射线粉末衍射图;
图34为实施例10中晶型II的X射线粉末衍射图;
图35为实施例11中晶型II的X射线粉末衍射图;
图36为实施例12中晶型II的X射线粉末衍射图;
图37为实施例14中晶型III的X射线粉末衍射图;
图38为实施例16中晶型V的X射线粉末衍射图;
图39为实施例18中晶型VI的X射线粉末衍射图;
图40为实施例22中晶型I的DVS图;
图41为实施例23中晶型II的DVS图;
图42为实施例24中晶型III的DVS图;
图43为实施例25中晶型VI的DVS图;
图44为本发明的晶型I放置在25℃/60%相对湿度、40℃/75%相对湿度的条件下放置3个月前后的XRPD对比图;
图45为本发明的晶型II放置在25℃/60%相对湿度、40℃/75%相对湿度的条件下放置3个月前后的XRPD对比图;
图46为本发明的晶型III放置在25℃/60%相对湿度、40℃/75%相对湿度的条件下放置3个月前后的XRPD对比图;
图47为本发明的晶型VI放置在25℃/60%相对湿度、40℃/75%相对湿度的条件下放置3个月前后的XRPD对比图;
图48为现有2形晶体的偏光显微镜图;
图49为本发明晶型I的偏光显微镜图;
图50为现有2形晶体的PSD图;
图51为本发明晶型I的PSD图;
图52为本发明晶型V的PSD图;
图53为现有2形晶体的研磨前后的XRPD对比图;
图54为本发明的晶型I研磨前后的XRPD对比图;
图55为本发明的晶型VI研磨前后的XRPD对比图。
图56为本发明晶型VII的偏光显微镜图;
图57为本发明晶型VIII的PSD图
图58为实施例31中晶型VII的DVS图;
图59为实施例32中晶型VIII的DVS图;
具体实施方式
本发明进一步参考以下实施例限定,所述实施例详细描述本发明的晶型的制备和使用方法。对本领域技术人员显而易见的是,对于材料和方法两者的许多改变可在不脱离本发明范围的情况下实施。
本发明中所用到的缩写的解释如下:
XRPD:X射线粉末衍射;DSC:差示扫描量热分析;TGA:热重分析;
DVS:动态水分吸附;PSD:粒径分布;PLM:偏光显微镜;1H NMR:液态核磁氢谱;
MV:按照体积计算的平均粒径
D10:表示粒径分布中(体积分布)占10%所对应的粒径
D50:表示粒径分布中(体积分布)占50%所对应的粒径,又称中位径
D90:表示粒径分布中(体积分布)占90%所对应的粒径
采集数据所用的仪器及方法:
本发明所述的X射线粉末衍射图在Panalytical Empyrean X射线粉末衍射仪上采集。本发明所述的X射线粉末衍射的方法参数如下:
X射线反射参数:Cu,Kα
Kα1
Figure BDA0001863130760000131
1.540598;Kα2
Figure BDA0001863130760000132
1.544426
Kα2/Kα1强度比例:0.50
电压:45仟伏特(kV)
电流:40毫安培(mA)
扫描范围:自3.0至40.0度
差热分析(DSC)数据采自于TA Instruments Q2000 MDSC,仪器控制软件是Thermal Advantage,分析软件是Universal Analysis。通常取1~10毫克的样品放置于加盖(除非特别说明)的铝坩埚内,以10℃/min的升温速度在50mL/min干燥N2的保护下将样品从室温升至约300℃,同时TA软件记录样品在升温过程中的热量变化。在本申请中,熔点是按起始温度来报告的。
热重分析(TGA)数据采自于TA Instruments Q5000TGA,仪器控制软件是ThermalAdVantage,分析软件是Universal Analysis。通常取5~15mg的样品放置于白金坩埚内,以10℃ /min的升温速度在50mL/min干燥N2的保护下将样品从室温升至300℃,同时TA软件记录样品在升温过程中的重量变化。本发明晶型的含水量是根据TGA失重推测算出,如本领域技术人员所知,TGA失重是晶型含水量的参考,但并不能绝对代表晶型所含水分子数。
本发明所述动态水分吸附(DVS)图在由SMS公司(Surface Measurement SystemsLtd.) 生产的Intrinsic动态水分吸附仪上采集。所述的动态水分吸附仪的方法参数如下:
温度:25℃
载气,流速:N2,200毫升/分钟
单位时间质量变化:0.002%/分钟
相对湿度范围:20%RH-95%RH-0%RH-95%RH
核磁共振氢谱数据(1HNMR)采自于Bruker Avance II DMX 400M HZ核磁共振波谱仪。称量1-5mg样品,用0.5mL氘代二甲亚砜或氘代氯仿溶解,配成2-10mg/mL的溶液。
本发明中所述的粒径分布结果是在Microtrac公司的S3500型激光粒度分析仪上采集。 Microtrac S3500配备SDC(Sample Delivery Controller)进样***。本测试采用湿法,测试分散介质为Isopar G。所述的激光粒度分析仪的方法参数如下:
Figure BDA0001863130760000141
*:流速60%为65毫升/秒的60%。
本发明中纯度的检测采用高效液相色谱法检测,其检测方法如下:
Figure BDA0001863130760000142
Figure BDA0001863130760000151
本发明中溶解度的检测采用高效液相色谱法检测,其检测方法如下:
Figure BDA0001863130760000152
除非特殊说明,以下实施例均在室温条件下操作。
以下各实施例中所使用的Sotagliflozin原料或可通过专利CN101343296B中的制备方法得到或通过市售的方式得到,或可根据本发明方法制备。
实施例1 Sotagliflozin的晶型I的制备方法
称取456.4mg Sotagliflozin固体置于20mL玻璃瓶中,加入2.0mL丙酮,固体溶解得到澄清溶液。磁力搅拌下,将澄清溶液缓慢加入到18mL水中,立即有白色固体析出。室温下继续搅拌3天,过滤干燥得到白色固体。
经检测,本实施例得到的固体为本发明的晶型I。本实施例所得固体的X射线粉末衍射数据如表1所示,其XRPD图如图1所示。
表1
Figure BDA0001863130760000153
Figure BDA0001863130760000161
实施例2 Sotagliflozin的晶型I的制备方法
称取41.4mg Sotagliflozin固体置于5mL玻璃小瓶中,加入0.2mL丙酮,固体溶解得到澄清溶液。磁力搅拌下缓慢加入2.0mL水,立即有白色固体析出,搅拌24小时后,干燥过滤得到白色固体。经检测,本实施例得到的固体为本发明的晶型I。
本实施例所得固体的X射线粉末衍射数据如表2所示,其XRPD图如图27所示。DSC图像如图2所示,TGA如图3所示,1H NMR如图4所示。
表2
Figure BDA0001863130760000162
Figure BDA0001863130760000171
实施例3 Sotagliflozin的晶型I的制备方法
称取8.1mg Sotagliflozin固体置于1.5mL玻璃小瓶中,加入0.2mL甲醇,固体溶解得到澄清溶液。磁力搅拌下缓慢加入1.5mL水,立即有白色固体析出。室温下继续搅拌24小时,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型I。
本实施例所得固体的X射线粉末衍射数据如表3所示,其XRPD图如图28所示。
表3
Figure BDA0001863130760000172
Figure BDA0001863130760000181
实施例4 Sotagliflozin的晶型I的制备方法
称取8.5mg Sotagliflozin固体置于1.5mL玻璃小瓶中,加入0.075mL丙酮,固体溶解得到澄清溶液。磁力搅拌下缓慢加入1.5mL水,立即有白色固体析出。室温下继续搅拌24小时,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型I。
本实施例所得固体的X射线粉末衍射数据如表4所示,其XRPD图如图29所示。
表4
Figure BDA0001863130760000182
Figure BDA0001863130760000191
实施例5 Sotagliflozin的晶型I的制备方法
称取8.0mg Sotagliflozin固体置于1.5mL玻璃小瓶中,加入0.075mL四氢呋喃,固体溶解得到澄清溶液。磁力搅拌下,将澄清溶液缓慢加入到1.5mL水中,立即有白色固体析出。室温下继续搅拌24小时,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型I。
本实施例所得固体的X射线粉末衍射数据如表5所示,其XRPD图如图30所示。
表5
Figure BDA0001863130760000192
Figure BDA0001863130760000201
实施例6 Sotagliflozin的晶型I的制备方法
称取10.4mg Sotagliflozin固体(现有2形晶体)置于1.5mL玻璃小瓶中,加入0.5mL 水,在室温下搅拌8天,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型I。
本实施例所得固体的X射线粉末衍射数据如表6所示,其XRPD图如图31所示。
表6
Figure BDA0001863130760000202
Figure BDA0001863130760000211
实施例7 Sotagliflozin的晶型II的制备方法
称取39.5mg Sotagliflozin固体置于20mL玻璃瓶中,加入0.8mL乙酸乙酯,固体溶解得到澄清溶液。磁力搅拌下缓慢加入5.0mL正庚烷,搅拌24小时过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型II。
本实施例所得固体的X射线粉末衍射数据如表7所示,其XRPD图如图5所示。DSC 图像如图6所示,TGA如图7所示,1H NMR如图8所示。
表7
Figure BDA0001863130760000212
Figure BDA0001863130760000221
实施例8 Sotagliflozin的晶型II的制备方法
称取8.5mg Sotagliflozin固体置于1.5mL玻璃瓶中,加入0.3mL乙腈,固体溶解得到澄清溶液。磁力搅拌下缓慢加入1.5mL水,立即有白色固体析出。室温下继续搅拌24小时,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型II。
本实施例所得固体的X射线粉末衍射数据如表8所示,其XRPD图如图32所示。
表8
Figure BDA0001863130760000222
Figure BDA0001863130760000231
实施例9 Sotagliflozin的晶型II的制备方法
称取8.4mg Sotagliflozin固体置于1.5mL玻璃瓶中,加入0.075mL四氢呋喃,固体溶解得到澄清溶液。磁力搅拌下缓慢加入1.5mL正庚烷,立即有白色固体析出。室温下继续搅拌24小时,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型II。
本实施例所得固体的X射线粉末衍射数据如表9所示,其XRPD图如图33所示。
表9
Figure BDA0001863130760000232
Figure BDA0001863130760000241
实施例10 Sotagliflozin的晶型II的制备方法
称取8.4mg Sotagliflozin固体置于1.5mL玻璃瓶中,加入0.075mL丙酮,固体溶解得到澄清溶液。磁力搅拌下缓慢加入1.5mL甲苯,搅拌24小时过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型II。
本实施例所得固体的X射线粉末衍射数据如表10所示,其XRPD图如图34所示。
表10
Figure BDA0001863130760000242
Figure BDA0001863130760000251
实施例11 Sotagliflozin的晶型II的制备方法
称取8.3mg Sotagliflozin固体(专利无水晶型2形晶体)置于1.5mL玻璃小瓶中,加入 0.35mL乙腈与水的混合溶剂(乙腈与水的体积比为1/6),在70℃下搅拌14天,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型II。
本实施例所得固体的X射线粉末衍射数据如表11所示,其XRPD图如图35所示。
表11
2theta d间隔 强度%
3.68 24.02 100.00
4.46 19.80 82.61
5.24 16.88 33.85
6.19 14.27 23.59
7.27 12.17 17.29
7.88 11.22 7.76
9.12 9.70 11.04
10.55 8.38 9.69
12.40 7.14 3.47
13.37 6.62 21.63
14.60 6.07 56.69
15.90 5.57 7.91
18.13 4.89 32.85
18.68 4.75 4.53
22.03 4.04 21.64
22.77 3.91 3.56
24.96 3.57 3.79
29.47 3.03 3.47
33.30 2.69 1.56
33.89 2.65 1.99
实施例12 Sotagliflozin的晶型II的制备方法
称取8.3mg Sotagliflozin固体(现有2形晶体)置于1.5mL玻璃小瓶中,加入0.35mL 丙酮与水的混合溶剂(丙酮与水的体积比为1/6),并将小瓶加盖密封,在70℃下搅拌14 天,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型II。
本实施例所得固体的X射线粉末衍射数据如表12所示,其XRPD图如图36所示。
表12
2theta d间隔 强度%
3.67 24.07 100.00
4.45 19.87 33.61
6.16 14.35 11.16
7.27 12.15 10.97
9.12 9.70 9.69
10.57 8.37 4.22
10.96 8.07 5.43
12.44 7.11 3.09
13.38 6.62 8.40
14.61 6.06 59.97
15.19 5.83 2.45
15.89 5.58 3.27
18.13 4.89 16.88
18.67 4.75 2.45
19.46 4.56 1.69
21.68 4.10 4.95
22.02 4.04 30.32
25.00 3.56 3.33
25.42 3.50 3.67
25.86 3.45 2.82
29.50 3.03 5.79
30.95 2.89 1.11
32.22 2.78 1.35
33.31 2.69 2.29
34.55 2.60 1.23
实施例13 Sotagliflozin的晶型III的制备方法
称取39.2mg Sotagliflozin固体置于3mL玻璃小瓶中,加入1.0mL氯仿,固体溶解得到澄清溶液。在室温下缓慢挥发得到白色固体。经检测,本实施例得到的固体为本发明的晶型III。
本实施例所得固体的X射线粉末衍射数据如表13所示,其XRPD图如图9所示,DSC图像如图10所示,TGA如图11所示,1H NMR如图12所示。
表13
Figure BDA0001863130760000271
Figure BDA0001863130760000281
实施例14 Sotagliflozin的晶型III的制备方法
称取5.4mg Sotagliflozin固体置于1.5mL玻璃小瓶中,加入0.5mL氯仿与正庚烷的混合溶剂(氯仿与正庚烷的体积比为4/1),固体溶解得到澄清溶液。在室温下缓慢挥发得到白色固体。经检测,本实施例得到的固体为本发明的晶型III。
本实施例所得固体的X射线粉末衍射数据如表14所示,其XRPD图如图37所示。
表14
2theta d间隔 强度%
4.33 20.40 100.00
4.95 17.86 12.22
12.83 6.90 7.66
14.65 6.05 47.35
14.93 5.94 19.25
15.33 5.78 31.70
16.35 5.42 2.64
17.47 5.08 32.43
18.61 4.77 5.76
19.61 4.53 46.30
20.71 4.29 1.99
21.51 4.13 3.87
22.45 3.96 5.19
24.00 3.71 3.10
25.02 3.56 9.91
26.36 3.38 14.22
28.38 3.14 2.38
33.11 2.71 2.85
33.94 2.64 2.53
35.38 2.54 2.11
37.32 2.41 1.75
实施例15 Sotagliflozin的晶型V的制备方法
称取44.3mg Sotagliflozin固体置于5mL玻璃小瓶中,加入4mL甲醇与水的混合溶剂 (甲醇与水的体积比为1/1),在50℃下固体溶解得到澄清溶液。将澄清溶液转移至5℃的环境,搅拌3天,有白色固体析出。经检测,本实施例得到的固体为本发明的晶型V。
本实施例所得固体的X射线粉末衍射数据如表15所示,其XRPD图如图13所示,DSC图像如图14所示,TGA如图15所示,1H NMR如图16所示。
表15
Figure BDA0001863130760000291
Figure BDA0001863130760000301
实施例16 Sotagliflozin的晶型V的制备方法
称取101.8mg Sotagliflozin固体置于20mL玻璃瓶中,加入10mL甲醇与水的混合溶剂 (甲醇与水的体积比为2/3),在50℃下固体溶解得到澄清溶液。将澄清溶液转移至5℃的环境,搅拌24小时,有白色固体析出。经检测,本实施例得到的固体为本发明的晶型V。
本实施例所得固体的X射线粉末衍射数据如表16所示,其XRPD图如图38所示。
表16
Figure BDA0001863130760000302
Figure BDA0001863130760000311
实施例17 Sotagliflozin的晶型VI的制备方法
称取115.0mg Sotagliflozin固体(现有2形晶体)置于5mL玻璃小瓶中,加入3mL水,在50℃下搅拌7天,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明晶型VI。
本实施例所得固体的X射线粉末衍射数据如表17所示,其XRPD图如图17所示,DSC图像如图18所示,TGA如图19所示,1H NMR如图22所示。
表17
Figure BDA0001863130760000312
Figure BDA0001863130760000321
实施例18 Sotagliflozin的晶型VI的制备方法
称取18.8mg Sotagliflozin固体(现有2形晶体)置于1.5mL玻璃小瓶中,加入0.8mL 水,在50℃下搅拌3天,过滤干燥得到白色固体。经检测,本实施例得到的固体为本发明的晶型VI。
本实施例所得固体的X射线粉末衍射数据如表18所示,其XRPD图如图39所示。
表18
2theta d间隔 强度%
3.61 24.50 18.95
4.81 18.39 92.45
5.97 14.80 10.94
7.71 11.47 14.56
9.51 9.30 100.00
10.66 8.30 18.48
11.05 8.00 23.13
14.14 6.27 38.35
14.51 6.11 94.71
14.70 6.03 58.36
15.55 5.70 10.64
19.11 4.64 46.22
19.42 4.57 12.30
20.00 4.44 30.50
20.59 4.31 8.40
21.50 4.13 30.51
23.75 3.75 12.87
24.33 3.66 6.56
25.41 3.51 34.58
28.89 3.09 11.62
29.64 3.01 18.86
38.58 2.33 1.20
实施例19 Sotagliflozin的晶型VII的制备方法
称取5.6mg Sotagliflozin固体(本发明的晶型II),通过程序升温的方式,以10℃/min 的加热速率加热至90℃并在90℃保温0.5min,得到白色固体。经检测,本实施例得到的固体为本发明的晶型VII。
本实施例所得固体的X射线粉末衍射数据如表19所示,其XRPD图如图21所示,DSC如图22所示,TGA如图23所示,1H NMR如图24所示。
表19
Figure BDA0001863130760000331
Figure BDA0001863130760000341
实施例20 Sotagliflozin的晶型VIII的制备方法
称取1.7mg Sotagliflozin固体(本发明的晶型V),通过程序升温的方式,以10℃/min 的加热速率加热至65℃并在65℃保温2min,得到白色固体。经检测,本实施例得到的固体为本发明的晶型VIII。
本实施例所得固体的X射线粉末衍射数据如表20所示,其XRPD图如图25所示,DSC如图26所示。
表20
2theta d间隔 强度%
6.23 14.19 100.00
6.44 13.72 52.98
8.91 9.93 2.27
10.37 8.53 27.84
10.89 8.12 70.03
12.50 7.08 9.74
13.68 6.47 6.05
14.88 5.95 54.69
15.74 5.63 41.14
17.71 5.01 72.38
18.32 4.84 18.25
18.82 4.72 33.91
19.43 4.57 10.41
19.92 4.46 12.53
20.86 4.26 66.09
21.12 4.21 42.29
21.85 4.07 15.63
24.13 3.69 34.81
26.26 3.39 12.55
27.52 3.24 10.01
28.23 3.16 7.13
29.87 2.99 3.93
31.60 2.83 7.07
33.16 2.70 7.22
37.17 2.42 3.12
实施例21稳定性对比研究试验
将CN102112483A公开的现有2形晶体与本发明的晶型I、晶型II混在一起,并加入到不同水活度体系中进行搅拌,70小时后,用XRPD进行表征,结果如表21所示。
表21
溶剂(V/V) 水活度 起始晶型 最终晶型
H<sub>2</sub>O/IPA=6:94 0.5 现有2形晶体、晶型I、晶型II 晶型II
H<sub>2</sub>O/IPA=11:89 0.7 现有2形晶体、晶型I、晶型II 晶型II
H<sub>2</sub>O/IPA=15:85 0.8 现有2形晶体、晶型I、晶型II 晶型II
H<sub>2</sub>O/IPA=23:77 0.9 现有2形晶体、晶型I、晶型II 晶型II
H<sub>2</sub>O/IPA=35:65 0.95 现有2形晶体、晶型I、晶型II 晶型II
H<sub>2</sub>O 1.0 现有2形晶体、晶型I、晶型II 晶型I
该试验说明,在高水活度(高湿度)环境中,高于50%相对湿度时,晶型I、晶型II比现有2形晶体稳定。
需要说明的是,本发明中配制不同水活度所选用的溶剂包括但不限于H2O和IPA,在其他适合配制不同水活度的溶剂中,也能得出与本实验相同的结论。
实施例22本发明的晶型I的引湿性试验
称取13.8mg晶型I置于动态水分吸附仪(DVS)仪器中,在25℃条件下,经历一个20%-95%-0-95%相对湿度变化的循环,在80%相对湿度下增重3.55%,引湿性较低,其实验结果如表22所示,DVS图如图40所示。收集固体进行XRPD测试,晶型未发生改变。
表22
Figure BDA0001863130760000351
实施例23本发明的晶型II的引湿性试验
称取10.4mg晶型II置于DVS仪器中,在25℃条件下,经历一个20%-95%-0-95%相对湿度变化的循环,在80%相对湿度下增重2.46%,引湿性较低,其实验结果如表23所示,DVS图如图41所示。收集固体进行XRPD测试,晶型未发生改变。
表23
Figure BDA0001863130760000352
实施例24本发明的晶型III的引湿性试验
称取9.1mg晶型III置于DVS仪器中,在25℃条件下,经历一个20%-95%-0-95%相对湿度变化的循环,在80%相对湿度下增重0.13%,引湿性较低,其实验结果如表24所示,DVS图如图42所示。收集固体进行XRPD测试,晶型未发生改变。
表24
Figure BDA0001863130760000361
实施例25本发明的晶型VI的引湿性试验
称取4.5mg晶型VI置于DVS仪器中,在25℃条件下,经历一个20%-95%-0-95%相对湿度变化的循环,在80%相对湿度下增重1.80%,引湿性较低,其实验结果如表25所示,DVS图如图43所示。收集固体进行XRPD测试,晶型未发生改变。
表25
Figure BDA0001863130760000362
实施例26溶解度试验
将本发明的晶型I、晶型II、晶型III、晶型VII与现有2形晶体,分别用SGF(模拟人工胃液)配制成饱和溶液,将本发明的晶型II、晶型III、晶型VII、晶型VIII与现有2形晶体,分别用pH6.5FaSSIF(空腹状态下人工肠液)中配制成饱和溶液,在1个小时后通过高效液相色谱(HPLC)法测定饱和溶液中样品的含量。实验结果如表26~27所示。试验结果表明,本发明的晶型I、晶型III与晶型VII溶解度较现有2形晶体在SGF中溶解度显著提升,分别提升为现有2形晶体的1.7倍,2.2倍与2.5倍。本发明晶型III、晶型VII、晶型VIII在FaSSIF的溶解度较现有2形晶体显著提升,分别提升为现有2形晶体的1.4倍、 1.5倍和1.4倍。
表26
Figure BDA0001863130760000363
Figure BDA0001863130760000371
表27
Figure BDA0001863130760000372
实施例27稳定性试验
将本发明的晶型I、晶型II、晶型III、晶型VI分别在25℃/60%相对湿度、40℃/75%相对湿度的条件下放置3个月,测定其XRPD。晶型I、II、III、VI放置在上述两个条件下3个月前后的XRPD分别如图44、图45、图46、图47所示。实验结果统计于表28中。结果表明,本发明的晶型I、晶型II、晶型III、晶型VI放置在25℃/60%相对湿度、40℃/75%相对湿度的条件下放置3个月的晶型稳定性好。
表28
Figure BDA0001863130760000373
实施例28形貌分析试验
取现有2形晶体与本发明的晶型I分别拍摄偏光显微镜图片,现有2形晶体的偏光显微镜图如图48,本发明的晶型I的偏光显微镜图如49所示。可以看出,现有2形晶体呈细针状,而本发明的晶型I成棒状,颗粒粒径较为均匀。均匀的粒径有助于简化制剂过程的后处理工艺,提高质量控制。本发明晶型VII的偏光显微镜图如图56所示,可以看出,晶型VII 为形貌不规则块状固态,粒径分布均匀,与2形晶体的针状形貌相比,块状晶体流动性更好,可以显著提升原料药的过滤效率,有助于药物在制剂过程中的分散。
实施例29粒度对比试验
取本发明的晶型I、晶型V、晶型VIII与现有2形晶体,分别测试粒度分布,其结果如表29所示。
表29
晶型 MV(μm) SD D10(μm) D50(μm) D90(μm)
现有2形晶体 60.43 59.06 2.32 45.00 144.4
本发明的晶型I 14.48 9.76 3.34 8.97 31.63
本发明的晶型V 32.70 24.46 4.38 18.81 72.98
本发明的晶型VIII 51.93 37.50 7.30 36.60 112.4
经检测,现有2形晶体的PSD图如图50所示,本发明的晶型I的PSD图如图51所示,本发明的晶型V的PSD图如图52所示,本发明的晶型VIII的PSD图如图57所示。
结果表明,现有2形晶体的粒径分布比较宽,且成双峰分布,推测为样品团聚导致,不均匀的粒径分布与颗粒团聚对制剂的均一性会产生十分不利的影响,进而影响药品的溶出,药物的吸收,导致吸收或者溶出不均一,不同的批次有较大的差异。而本发明的晶型I、晶型V、晶型VIII的粒径分布较窄,而且几乎呈现单正态分布,均匀的粒径分布有助于保证制剂的均一性,简化制剂前处理工艺,对药品的开发有积极的影响。
实施例30机械稳定性试验
将本发明的晶型I、晶型VI、现有2形晶体,分别置于研钵中,手动研磨5分钟,测试固体XRPD。现有2形晶体、本发明的晶型I及晶型VI三者研磨前后的XRPD对比图分别如图53至图55所示(图中上 曲线 是研磨之前的XRPD图,图中下曲线 是研磨5分钟之后的XRPD图),结果如表30所示。
表30
Figure BDA0001863130760000381
结果表明,在一定机械应力的作用下,本发明的晶型I、晶型VI未发生改变,结晶度仅略有降低,包含少量的无定形,仍可保持稳定的物理化学性质。而现有2形晶体结晶度变弱,大部分变为无定形,机械稳定性差。本发明的晶型I、晶型VI的机械稳定性比现有2形晶体好,更适合成药和储存以及工艺过程。
实施例31本发明的晶型VII的引湿性试验
称取11.5mg晶型VII置于DVS仪器中,在25℃条件下,经历一个0%-95%-0%相对湿度变化的循环,在80%相对湿度下增重1.08%,引湿性较低,其实验结果如表31所示,DVS图如图58所示。收集固体进行XRPD测试,晶型未发生改变。
表31
Figure BDA0001863130760000391
实施例32本发明的晶型VIII的引湿性试验
称取10.6mg晶型VIII置于DVS仪器中,在25℃条件下,经历一个0%-95%-0%相对湿度变化的循环,在80%相对湿度下增重0.60%,引湿性较低,其实验结果如表32所示,DVS图如图59所示。收集固体进行XRPD测试,晶型未发生改变。
表32
Figure BDA0001863130760000392
本领域技术人员可以理解,在本说明书的教导之下,可以对本发明做出一些修改或变化。这些修改和变化也应当在本发明权利要求所限定的范围之内。

Claims (3)

1.一种Sotagliflozin的晶型III,其特征在于,其X射线粉末衍射图在2θ值为4.3°±0.2°、14.6°±0.2°、19.6°±0.2°、4.9°±0.2°、15.3°±0.2°、17.5°±0.2°、12.8°±0.2°、25.0°±0.2°及26.4°±0.2°处具有特征峰。
2.一种如权利要求1所述的Sotagliflozin的晶型III的制备方法,其特征在于,包括:将Sotagliflozin固体溶于氯仿,或氯仿与正庚烷的混合溶剂中,所述氯仿与正庚烷的体积比为4:1,在室温下缓慢挥发得到白色固体。
3.一种药物组合物,所述药物组合物包含治疗有效量的权利要求1所述的晶型III及药学上可接受的载体、稀释剂或赋形剂。
CN201780029501.4A 2016-05-25 2017-05-25 一种钠-葡萄糖协同转运蛋白抑制剂药物的新晶型及其制备方法和用途 Active CN109195980B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2016103552351 2016-05-25
CN201610355235 2016-05-25
PCT/CN2017/085813 WO2017202351A1 (zh) 2016-05-25 2017-05-25 一种钠-葡萄糖协同转运蛋白抑制剂药物的新晶型及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN109195980A CN109195980A (zh) 2019-01-11
CN109195980B true CN109195980B (zh) 2022-05-17

Family

ID=60411043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780029501.4A Active CN109195980B (zh) 2016-05-25 2017-05-25 一种钠-葡萄糖协同转运蛋白抑制剂药物的新晶型及其制备方法和用途

Country Status (5)

Country Link
US (1) US10626135B2 (zh)
EP (1) EP3466958B1 (zh)
JP (1) JP6727419B2 (zh)
CN (1) CN109195980B (zh)
WO (1) WO2017202351A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818722B (zh) * 2018-08-14 2022-12-02 苏州鹏旭医药科技有限公司 三种化合物及其制备方法和在合成索格列净中的用途
JP7273997B2 (ja) * 2019-07-05 2023-05-15 山東丹紅制薬有限公司 Sglt阻害剤の結晶形及びその使用
EP3771718A1 (en) * 2019-08-01 2021-02-03 Lexicon Pharmaceuticals, Inc. Process for preparing the crystalline form ii of sotagliflozin
EP3771480A1 (en) * 2019-08-01 2021-02-03 Lexicon Pharmaceuticals, Inc. Continuous process for preparing the crystalline form ii of sotagliflozin
JP2023523596A (ja) 2020-04-22 2023-06-06 バイエル アクチェンゲゼルシャフト 心血管疾患および/または腎疾患を治療および/または予防するためのフィネレノンとsglt2阻害剤の組み合わせ
CN113893256A (zh) * 2020-07-06 2022-01-07 诺未科技(北京)有限公司 化合物或其可药用盐、二聚体或三聚体在制备治疗癌症的药物中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042688A2 (en) * 2006-09-29 2008-04-10 Lexicon Pharmaceuticals, Inc. Phlorizin analogs as inhibitors of sodium glucose co-transporter 2
CN102112483A (zh) * 2008-07-17 2011-06-29 莱西肯医药有限公司 (2s,3r,4r,5s,6r)-2-(4-氯-3-(4-乙氧基苄基)苯基)-6-(甲基硫)四氢-2h-吡喃-3,4,5-三醇的固体形式及其使用方法
CN103254119A (zh) * 2007-07-10 2013-08-21 莱西肯医药有限公司 钠-葡萄糖协同转运蛋白2的抑制剂及其用法
US20150111840A1 (en) * 2011-01-05 2015-04-23 Jinling Chen Compositions comprising and methods of using inhibitors of sodium-glucose cotransporters 1 and 2
US20160022718A1 (en) * 2010-03-02 2016-01-28 Lexicon Pharmaceuticals, Inc. Methods of lowering blood pressure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101663324B1 (ko) * 2007-07-26 2016-10-06 렉시컨 파마슈티컬스 인코퍼레이티드 나트륨 글루코스 공-전달체 2 억제제의 제조에 유용한 방법 및 화합물
US20110077212A1 (en) * 2009-09-25 2011-03-31 Theracos, Inc. Therapeutic uses of sglt2 inhibitors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042688A2 (en) * 2006-09-29 2008-04-10 Lexicon Pharmaceuticals, Inc. Phlorizin analogs as inhibitors of sodium glucose co-transporter 2
CN103254119A (zh) * 2007-07-10 2013-08-21 莱西肯医药有限公司 钠-葡萄糖协同转运蛋白2的抑制剂及其用法
CN102112483A (zh) * 2008-07-17 2011-06-29 莱西肯医药有限公司 (2s,3r,4r,5s,6r)-2-(4-氯-3-(4-乙氧基苄基)苯基)-6-(甲基硫)四氢-2h-吡喃-3,4,5-三醇的固体形式及其使用方法
US20160022718A1 (en) * 2010-03-02 2016-01-28 Lexicon Pharmaceuticals, Inc. Methods of lowering blood pressure
US20150111840A1 (en) * 2011-01-05 2015-04-23 Jinling Chen Compositions comprising and methods of using inhibitors of sodium-glucose cotransporters 1 and 2

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"SGLT2抑制剂LX4211的合成方法研究";王瑞 等;《中国药物化学杂志》;20141231;第24卷(第6期);第464-469页 *

Also Published As

Publication number Publication date
US20190169219A1 (en) 2019-06-06
JP6727419B2 (ja) 2020-07-22
US10626135B2 (en) 2020-04-21
EP3466958A4 (en) 2019-06-12
EP3466958A1 (en) 2019-04-10
JP2019516804A (ja) 2019-06-20
EP3466958B1 (en) 2020-04-29
WO2017202351A1 (zh) 2017-11-30
CN109195980A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109195980B (zh) 一种钠-葡萄糖协同转运蛋白抑制剂药物的新晶型及其制备方法和用途
US20200157065A1 (en) Crystalline forms of ozanimod and ozanimod hydrochloride, and processes for preparation thereof
WO2011095059A1 (zh) 达沙替尼多晶型物及其制备方法和药物组合物
EP1817316A1 (en) Ascomycin crystalline forms and preparation thereof
CN111164085B (zh) 瑞博西林的共晶和瑞博西林单琥珀酸盐的共晶、其制备方法、组合物和用途
KR20190005195A (ko) 유리 형태의 크리사보롤의 결정 형태 및 그의 제조 방법 및 용도
CN112142679A (zh) 一种吉非替尼与香草酸共晶甲醇溶剂合物及其制备方法
KR20240019064A (ko) 피리딘 질소 산화물 화합물의 결정 형태 및 이의 용도
JP2020500912A (ja) ブロモドメインタンパク質阻害薬の結晶形及びその製造方法並びに用途
CN114105987B (zh) 恩替卡韦药用盐及其制备方法、药物组合物和应用
WO2018133705A1 (zh) Gft-505的晶型及其制备方法和用途
WO2014036865A1 (zh) 芬戈莫德粘酸盐及其晶体的制备方法和用途
WO2021000687A1 (zh) Pac-1晶型的制备方法
CN105992769B (zh) 一种钠-葡萄糖协同转运蛋白2抑制剂的l-脯氨酸复合物、其一水合物及晶体
CN111689947B (zh) 替加氟-l-脯氨酸共晶体及其制备方法
CN112225730A (zh) 一种稠环化合物的晶型、其组合物、制备方法及其应用
CN115427397A (zh) 硝羟喹啉前药的晶型、含其的药物组合物及其制备方法和应用
WO2023025271A1 (zh) 吡嗪类衍生物的晶型及其制备方法
CN105315266A (zh) 1-{2-氟-4-[5-(4-异丁基苯基)-1,2,4-噁二唑-3-基]-苄基}-3-吖丁啶羧酸的晶型
WO2011085130A1 (en) Solid state forms of fosamprenavir calcium salt and process for preparation thereof
WO2019137027A1 (zh) Galunisertib的晶型及其制备方法和用途
WO2018209667A1 (zh) 多环杂环化合物的晶型、其制备方法、应用及组合物
WO2019105217A1 (zh) Galunisertib的晶型及其制备方法和用途
CN117886783A (zh) 一种紫杉烷化合物的水合物晶型c及其制备方法、用途
AU2020378025A1 (en) Crystal form of Aprocitentan, preparation method therefor and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant