CN109190935B - 一种考虑服务区和车辆事故的高速公路充电站规划方法 - Google Patents

一种考虑服务区和车辆事故的高速公路充电站规划方法 Download PDF

Info

Publication number
CN109190935B
CN109190935B CN201810931390.2A CN201810931390A CN109190935B CN 109190935 B CN109190935 B CN 109190935B CN 201810931390 A CN201810931390 A CN 201810931390A CN 109190935 B CN109190935 B CN 109190935B
Authority
CN
China
Prior art keywords
accident
charging
vehicle
traffic
charging station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810931390.2A
Other languages
English (en)
Other versions
CN109190935A (zh
Inventor
葛少云
周昊
刘洪�
李吉峰
张旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810931390.2A priority Critical patent/CN109190935B/zh
Publication of CN109190935A publication Critical patent/CN109190935A/zh
Application granted granted Critical
Publication of CN109190935B publication Critical patent/CN109190935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种考虑服务区和车辆事故的高速公路充电站规划方法:建立考虑服务区的充电站规划的数学模型;通过考虑车辆事故的动态交通仿真方法得到车流量的分布,即基于蒙特卡洛的车辆事故抽样方法和高速公路车辆事故影响分析方法,是先通过事故频次和时空位置抽样,确定一天中发生事故的时间和路段,若当天未发生事故则采用路段传输模型进行分析;若出现车辆事故时即进行事故影响分析;根据车流量的分布建立充电等待时间模型,从而得到充电等待时间;根据车流量的分布和充电等待时间,采用改进遗传算法求解考虑服务区的充电站规划的数学模型。本发明充分考虑了已有服务区、车辆事故和等待时间等因素的影响,可以为高速公路充电站建设提供有效的指导。

Description

一种考虑服务区和车辆事故的高速公路充电站规划方法
技术领域
本发明涉及一种充电站规划方法。特别是涉及一种考虑服务区和车辆事故的高速公路充电站规划方法。
背景技术
电动汽车作为一种绿色无污染的出行工具,目前在世界范围内得到了大力推广。充电站是为电动汽车提供电量补充的基础设施,其合理布局是为电动汽车提供方便快捷充电服务的保证。从空间位置来看,充电站可以分为城市范围内的充电站和城际高速公路充电站。其中,高速公路作为连接城市的重要纽带,是支撑城市发展的重要基础设施,保证电动汽车在城市间行驶途中快速电量补给具有重要意义。
目前,国内外对于高速公路充电站规划已经有了部分研究。然而,作为高速公路上的重要基础设置,现有研究多忽略了服务区对于充电站规划的影响,服务区和充电站均处于高速公路场景中,研究方法上也都存在设施配置和收益计算等过程,具有一定的借鉴意义。同时,高速公路的具有全封闭、全立交等特点,车辆事故对于高速公路车流量分布具有较大影响。在充电站规划的车流模拟过程中,应当充分考虑车辆事故对于规划结果的影响。另外,充电等待时间是衡量充电站规划合理性的重要指标,相比于传统的通过排队论计算平均等待时间的方法,有必要采用更加细致的模型来体现等待时间对于充电站规划结果的影响。
考虑到传统规划方法的上述不足,本发明提出一种考虑服务区和车辆事故的高速公路充电站规划方法,充分考虑了已有服务区、车辆事故和等待时间等因素的影响,使得充电站规划方法更加实用。
发明内容
本发明所要解决的技术问题是,提供一种通过考虑服务区和车辆事故等影响因素,使得高速公路充电站建设更加合理的考虑服务区和车辆事故的高速公路充电站规划方法。
本发明所采用的技术方案是:一种考虑服务区和车辆事故的高速公路充电站规划方法,包括如下步骤:
1)建立考虑服务区的充电站规划的数学模型,包括:分别建立目标函数和约束条件;
2)通过考虑车辆事故的动态交通仿真方法得到车流量的分布,所述考虑车辆事故的动态交通仿真方法包括:基于蒙特卡洛的车辆事故抽样方法和高速公路车辆事故影响分析方法,是先通过事故频次和时空位置抽样,确定一天中发生事故的时间和路段,若当天未发生事故则采用路段传输模型进行分析;若出现车辆事故时即进行事故影响分析;
3)根据车流量的分布建立充电等待时间模型,从而得到充电等待时间;
4)根据车流量的分布和充电等待时间,采用改进遗传算法求解考虑服务区的充电站规划的数学模型。
步骤1)所述的目标函数为:
max(P1+P2-C1-C2-C3-C4) (1)
式中:P1为车辆充电收入;P2为乘客消费净收入;C1为充电桩建设成本;C2为停车场建设成本;C3为为乘客休息设施建设成本;C4为运行维护费用及其他配套设施建设成本;其中,
(1)车辆充电收入P1的计算公式为:
Figure BDA0001766710080000021
式中:n为新建充电站和服务区内规划的充电站数目之和;mi为第i个充电站在模拟周期内服务的车辆总数,Bj、SOCj分别为第i个充电站服务的第j辆车的电池容量和荷电状态;pc为充电电价。
(2)乘客消费净收入P2的计算公式如下:
Figure BDA0001766710080000022
式中:s为新建的充电站数目;mp为第p个新建充电站在模拟周期内服务的电动汽车总数;wq为第p个新建充电站服务的第q辆电动汽车的载客数;λ和bav分别为人均消费概率和金额;考虑到超市和餐厅需要一定成本购进商品,此处设置利润系数α,0<α<1,将乘客消费金额直接折算为净利润;
(3)充电桩建设成本C1的计算公式如下:
Figure BDA0001766710080000023
式中:n为新建充电站和服务区内规划的充电站数目之和;ri为第i个充电站建设的充电桩数目;pcha为单个充电桩价格;z为运行年限;
(4)停车场建设成本C2的计算公式如下:
Figure BDA0001766710080000024
式中:s为新建的充电站数目;qque,p为第p个充电站最大充电等待队列长度;ppark为单个停车位建设成本;z为运行年限;
(5)乘客休息设施建设成本C3的计算公式如下:
Figure BDA0001766710080000025
式中:s为新建的充电站数目;qque,p为第p个充电站最大充电等待队列长度;wav为电动汽车平均载客人数;β为乘客使用休息设施的概率;sav和pres分别为人均所需休息设施面积和单位面积休息设施建设成本;
(6)运行维护费用及其他配套设施建设成本,包括配电变压器、线路建设费用以及充电设施维修费用,是由固定投资成本折算得到,C4的计算公式为:
C4=(C1+C2+C3)×σ (7)
式中:σ为折算比例,取值为3%。
步骤1)所述的约束条件为:
(1)对服务区内建设的充电站设置充电桩数量上限:
ry≤rmax,y=1,2,...,V (8)
式中:V为规划区域内的服务区总数;ry为第y个服务区建设的充电桩数目;rmax为服务区内允许建设的最大充电桩数目;
(2)充电等待时间约束,任一车辆的等待时间tw均满足:
tw≤tw,max (9)
式中:tw,max为最大充电等待时间。
步骤2)包括:
(1)基于蒙特卡洛方法确定车辆事故发生的时间和地点
结合车辆事故统计数据,通过蒙特卡洛抽样确定事故发生的时空位置,再利用路段传输模型进行分析,得到考虑车辆事故的车流分布;
(1.1)事故频次抽样
无事故时长在设定路段的概率分布函数为:
Figure BDA0001766710080000031
式中:f(ta)表示事故发生时刻小于ta的概率;A为所述路段每年发生的车辆事故总数;e为自然底数,ta为事故发生时刻;
由于1-F(t)为区间[0,1]内的数,即无事故时长tna通过抽样方法确定:
Figure BDA0001766710080000032
式中:A为设定路段每年发生的车辆事故总数;R为[0,1]之间均匀分布的随机数;
抽样时,若tna>24,认为事故不属于当天;若tna≤24,再次进行抽样并将每次抽样得到的无事故时长tna进行相加,直至相加结果tna>24,并对当天发生的事故总数ad进行统计;
(1.2)事故时空位置抽样
将总长度1分为24个长度不等的区间,每个区间代表1个小时,不同长度表示事故发生在该小时内的概率,生成[0,1]之间的随机数Rt,当所生成的随机数落在相应的区间时,即认为事故发生在该区间所在的时间段;
(2)高速公路车辆事故影响分析
建立高速公路车辆事故影响分析模型,假设xa处在t1时刻发生车辆事故,在事故处理完成之前,道路通行能力持续受阻,将道路最大通行能力和正常通行状况分别记为qmax辆/小时和qnor辆/小时,则发生事故后通行能力为ηqmax辆/小时,其中η为事故影响系数,0≤η≤1。此时,如果道路仍能满足当前通行需求,即qnor≤ηqmax,则正常通行;如qnor>ηqmax,则分两阶段建立高速公路车辆事故影响分析模型;
(2.1)事故处理时段影响分析
由于qnor>ηqmax,则从道路上游到达事故处的车辆不断积累,逐渐产生阻塞,在t2时刻,最大阻塞车辆数目T为:
T=(qnor-ηqmax)(t2-t1) (12)
此时,由于车辆事故导致该路段最大通行能力发生变化,对路段传输模型在事故路段xa处进行改进,将F(xa,t1)、F(xa,t2)分别记为t1和t2时刻事故发生处xa到达和通过的车辆总数,则在事故处理时段经由事故发生处xa驶出的车辆数目为:
ΔFa(t2-t1)=min{F(xa,t2)-F(xa,i1),ηqmax(t2-t1)} (13)
车辆事故不但会导致上游车辆在事故处累积,也会对事故下游车流量产生影响,将事故发生处xa的下游处记为事故下游处xb,lab为xa和xb的距离,va和ρav分别为自由流速度和平均车流密度,则从t1+lab/va时刻开始,xb处开始受到事故车流量的影响,假设车流在路段上的传播满足先进先出原则,则自由流状态下时,对于t1<t<t2,由路段传输模型:
Figure BDA0001766710080000041
式中:F(xb,t1+lab/va)为事故下游处xb开始受到事故车流影响时的累计通过车辆数目;η为事故影响系数,0≤η≤1,即受到事故影响的下游道路车流密度暂时减小,该影响逐渐向下游传播;
(2.2)交通恢复时段影响分析
在t2时刻,事故处理完成,由于ηqmax<qnor,则事故发生处xa仍然堆积了大量的车辆,且上游路段不断有新的车辆到达事故处,故累计的车辆仍然需要一段时间离开,拥堵完全消散的t3时刻计算公式如下:
Figure BDA0001766710080000042
由于路段恢复最大通行能力,将F(xa,t2)、F(xa,t3)分别记为t2和t3时刻事故发生处xa处到达和通过的车辆总数,则该交通恢复时段离开事故发生处xa的车辆总数为:
ΔFa(t3-t2)=min{F(xa,t3)-F(xa,t2),qmax(t3-t2)} (16)
该交通恢复时段也会对下游路段产生影响,由路段传输模型,对于t2<t<t3,有:
Figure BDA0001766710080000043
式中:F(xb,t2+lab/va)为事故下游处xb开始受到事故车流影响时的累计通过车辆;η为事故影响系数,0≤η≤1;
从而得到事故发生处xa的车流变化及对下游的影响,即得到下游各地点在受事故影响时的车流量。
步骤3)所述的充电等待时间模型为:
Figure BDA0001766710080000051
式中,tw为任一电动汽车的等待时间;r为任一电动汽车到达的充电站配置的充电桩个数;在所述任一电动汽车到达充电站时,mw为已经在等待充电的电动汽车数目;Bav为电动汽车电池的平均容量;SOCav为电动汽车的平均荷电状态;P为充电桩的功率;
通过所述充电等待时间模型即可得到任一车辆的充电等待时间tw
步骤4)包括:
(1)输入路网、出行矩阵和车辆信息参数,设置改进遗传算法参数:种群数目为100个,最大进化代数为100代,交叉概率为0.8,变异概率为0.2,当前进化代数W=1;
(2)利用遗传算法随机生成100个初始的父代规划方案;
(3)根据所设置的交叉概率和变异概率,100个父代种群通过复制、交叉和变异过程,生成100个新的子代规划方案,每个规划方案包括一组充电站的站址和配置的充电桩数目;
(4)利用的步骤3)所述充电等待时间模型和步骤2)得到的车流量的分布,计算所有200个父代和子代规划方案中所有车辆的充电等待时间,然后利用步骤1)建立的考虑服务区的充电站规划的数学模型计算每个父代和子代规划方案的收益。
(5)对所有父代和子代规划方案的收益进行比较,从中选取100个收益高的规划方案作为新的父代规划方案;
(7)判断当前进化代数W是否已达到最大进化代数100代,如达到最大进化代数100代则输出收益最高的一个规划方案;否则当前进化代数W=W+1,返回第(4)步,直至当前进化代数W≥100,即达到最大进化代数,输出最优的一个充电站规划方案。
本发明的一种考虑服务区和车辆事故的高速公路充电站规划方法,充分考虑了已有服务区、车辆事故和等待时间等因素的影响。首先,通过所建立的考虑服务区的充电站规划数学模型,可以充分满足车主的停车、充电、休息和购物的需求,使得规划方案更加合理,模型中还考虑了高速公路服务区的影响,通过利用服务区的停车场等设施,节省了规划方案的投资,从而增加了总体收益;其次,通过考虑车辆事故的动态交通仿真,得到了车流量的分布情况,使得车流模拟更加精确,从而进一步保证了规划方案的精确性和合理性;再次,通过充电等待时间模型计算了电动汽车的等待时间,从而有效的衡量充电站的服务水平,保证了所规划的充电站可以提供高效的充电服务;最后,采用改进遗传算法方法对所提出的规划模型进行了求解,给出了最优的规划方案。考虑到该高速公路充电站规划方案良好的实用性,随着电动汽车的普及和充电站规划研究的深入,该方法可以为高速公路充电站建设提供有效的指导。
附图说明
图1是事故发生时间抽样示意图;
图2是车辆事故影响分析过程;
图3是高速路网示意图;
图4是充电站位置规划结果示意图。
具体实施方式
下面结合实施例和附图对本发明的一种考虑服务区和车辆事故的高速公路充电站规划方法做出详细说明。
本发明的一种考虑服务区和车辆事故的高速公路充电站规划方法,包括如下步骤:
1)建立考虑服务区的充电站规划的数学模型,包括:分别建立目标函数和约束条件;
其中:
所述的目标函数为:
max(P1+P2-C1-C2-C3-C4) (1)
式中:P1为车辆充电收入;P2为乘客消费净收入;C1为充电桩建设成本;C2为停车场建设成本;C3为为乘客休息设施建设成本;C4为运行维护费用及其他配套设施建设成本;其中,
(1)车辆充电收入P1的计算公式为:
Figure BDA0001766710080000061
式中:n为新建充电站和服务区内规划的充电站数目之和;mi为第i个充电站在模拟周期内服务的车辆总数,Bj、SOCj分别为第i个充电站服务的第j辆车的电池容量和荷电状态;pc为充电电价。
(2)乘客消费净收入P2的计算公式如下:
Figure BDA0001766710080000062
式中:由于在服务区内的乘客消费不纳入规划收益中,故s为新建的充电站数目;mp为第p个新建充电站在模拟周期内服务的电动汽车总数;wq为第p个新建充电站服务的第q辆电动汽车的载客数;λ和bav分别为人均消费概率和金额;考虑到超市和餐厅需要一定成本购进商品,此处设置利润系数α,0<α<1,将乘客消费金额直接折算为净利润;
(3)充电桩建设成本C1的计算公式如下:
Figure BDA0001766710080000063
式中:n为新建充电站和服务区内规划的充电站数目之和;ri为第i个充电站建设的充电桩数目;pcha为单个充电桩价格;z为运行年限;
(4)停车场建设成本C2的计算公式如下:
Figure BDA0001766710080000064
式中:由于服务区的充电站可以利用该服务区内已有的停车场,故s为新建的充电站数目;qque,p为第p个充电站最大充电等待队列长度;ppark为单个停车位建设成本;z为运行年限;
(5)乘客休息设施建设成本C3的计算公式如下:
Figure BDA0001766710080000071
式中:s为新建的充电站数目;qque,p为第p个充电站最大充电等待队列长度;wav为电动汽车平均载客人数;β为乘客使用休息设施的概率;sav和pres分别为人均所需休息设施面积和单位面积休息设施建设成本;
(6)运行维护费用及其他配套设施建设成本,包括配电变压器、线路建设费用以及充电设施维修费用,是由固定投资成本折算得到,C4的计算公式为:
C4=(C1+C2+C3)×σ (7)
式中:σ为折算比例,取值为3%。
所述的约束条件为:
(1)考虑到服务区的配电变压器和线路的接纳能力,为保证其配电网安全运行,对服务区内建设的充电站设置充电桩数量上限:
ry≤rmax,y=1,2,...,V (8)
式中:V为规划区域内的服务区总数;ry为第y个服务区建设的充电桩数目;rmax为服务区内允许建设的最大充电桩数目;
(2)充电等待时间约束,任一车辆的等待时间tw均满足:
tw≤tw,max (9)
式中:tw,max为最大充电等待时间。
2)通过考虑车辆事故的动态交通仿真方法得到车流量的分布,所述考虑车辆事故的动态交通仿真方法包括:基于蒙特卡洛的车辆事故抽样方法和高速公路车辆事故影响分析方法,是先通过事故频次和时空位置抽样,确定一天中发生事故的时间和路段,若当天未发生事故则采用路段传输模型进行分析;若出现车辆事故时即进行事故影响分析;具体包括:
(1)基于蒙特卡洛方法确定车辆事故发生的时间和地点
高速公路车辆事故发生的频次、时空位置等都存在不确定性。本发明结合车辆事故统计数据,通过蒙特卡洛抽样确定事故发生的时空位置,再利用路段传播模型进行分析,得到考虑车辆事故的车流分布;
(1.1)事故频次抽样
在进行事故分析时,通常认为该路段下次发生事故和前次事故无关,即事故发生具有无记忆性。因此,可认为无事故时长服从指数分布,无事故时长在设定路段的概率分布函数为:
Figure BDA0001766710080000072
式中:f(ta)表示事故发生时刻小于ta的概率;A为所述路段每年发生的车辆事故总数;e为自然底数,ta为事故发生时刻;
由于1-F(t)为区间[0,1]内的数,即无事故时长tna通过抽样方法确定:
Figure BDA0001766710080000081
式中:A为设定路段每年发生的车辆事故总数;R为[0,1]之间均匀分布的随机数;
抽样时,若tna>24,认为事故不属于当天;若tna≤24,再次进行抽样并将每次抽样得到的无事故时长tna进行相加,直至相加结果tna>24,并对当天发生的事故总数ad进行统计;
(1.2)事故时空位置抽样
如图1所示,将总长度1分为24个长度不等的区间,每个区间代表1个小时,不同长度表示事故发生在该小时内的概率,生成[0,1]之间的随机数Rt,当所生成的随机数落在相应的区间时,即认为事故发生在该区间所在的时间段;
车辆事故的位置受到车流量和道路状况等多种因素的影响,本发明主要考虑车流量对事故位置的影响。对于不同车流量的路段设置了事故概率,所有路段事故概率之和为1。仿照事故时间的抽样方法,通过生成[0,1]区间随机数的方法确定事故位置。
(2)高速公路车辆事故影响分析
建立高速公路车辆事故影响分析模型,如图2所示,假设xa处在t1时刻发生车辆事故,在事故处理完成之前,道路通行能力持续受阻,将道路最大通行能力和正常通行状况分别记为qmax辆/小时和qnor辆/小时,则发生事故后通行能力为ηqmax辆/小时,其中η为事故影响系数,0≤η≤1。此时,如果道路仍能满足当前通行需求,即qnor≤ηqmax,则正常通行;如qnor>ηqmax,则分两阶段建立高速公路车辆事故影响分析模型;
(2.1)事故处理时段影响分析
由于qnor>ηqmax,则从道路上游到达事故处的车辆不断积累,逐渐产生阻塞,在t2时刻,最大阻塞车辆数目T为:
T=(qnor-ηqmax)(t2-t1) (12)
此时,由于车辆事故导致该路段最大通行能力发生变化,对路段传输模型在事故路段xa处进行改进,将F(xa,t1)、F(xa,t2)分别记为t1和t2时刻事故发生处xa到达和通过的车辆总数,则在事故处理时段经由事故发生处xa驶出的车辆数目为:
ΔFa(t2-t1)=min{F(xa,t2)-F(xa,t1),ηqmax(t2-t1)} (13)
车辆事故不但会导致上游车辆在事故处累积,也会对事故下游车流量产生影响,将事故发生处xa的下游处记为事故下游处xb,lab为xa和xb的距离,va和ρav分别为自由流速度和平均车流密度,则从t1+lab/va时刻开始,xb处开始受到事故车流量的影响,假设车流在路段上的传播满足先进先出原则,则自由流状态下时,对于t1<t<t2,由路段传输模型:
Figure BDA0001766710080000082
式中:F(xb,t1+lab/va)为事故下游处xb开始受到事故车流影响时的累计通过车辆数目;η为事故影响系数,0≤η≤1,即受到事故影响的下游道路车流密度暂时减小,该影响逐渐向下游传播;
(2.2)交通恢复时段影响分析
在t2时刻,事故处理完成,由于ηqmax<qnor,则事故发生处xa仍然堆积了大量的车辆,且上游路段不断有新的车辆到达事故处,故累计的车辆仍然需要一段时间离开,拥堵完全消散的t3时刻计算公式如下:
Figure BDA0001766710080000091
由于路段恢复最大通行能力,将F(xa,t2)、F(xa,t3)分别记为t2和t3时刻事故发生处xa处到达和通过的车辆总数,则该交通恢复时段离开事故发生处xa的车辆总数为:
ΔFa(t3-t2)=min{F(xa,t3)-F(xa,t2),qmax(t3-t2)} (16)
该交通恢复时段也会对下游路段产生影响,由路段传输模型,对于t2<t<t3,有:
Figure BDA0001766710080000092
式中:F(xb,t2+lab/va)为事故下游处xb开始受到事故车流影响时的累计通过车辆;η为事故影响系数,0≤η≤1;
从而得到事故发生处xa的车流变化及对下游的影响,即得到下游各地点在受事故影响时的车流量。
3)根据车流量的分布建立充电等待时间模型,从而得到充电等待时间;所述的充电等待时间模型为:
Figure BDA0001766710080000093
式中,tw为任一电动汽车的等待时间;r为任一电动汽车到达的充电站配置的充电桩个数;在所述任一电动汽车到达充电站时,mw为已经在等待充电的电动汽车数目;Bav为电动汽车电池的平均容量;SOCav为电动汽车的平均荷电状态;P为充电桩的功率;
通过所述充电等待时间模型即可得到任一车辆的充电等待时间tw
4)根据车流量的分布和充电等待时间,采用改进遗传算法求解考虑服务区的充电站规划的数学模型。包括:
(1)输入路网、出行矩阵和车辆信息参数,设置改进遗传算法参数:种群数目为100个,最大进化代数为100代,交叉概率为0.8,变异概率为0.2,当前进化代数W=1;
(2)利用遗传算法随机生成100个初始的父代规划方案;
(3)根据所设置的交叉概率和变异概率,100个父代种群通过复制、交叉和变异过程,生成100个新的子代规划方案,每个规划方案包括一组充电站的站址和配置的充电桩数目;
(4)利用的步骤3)所述充电等待时间模型和步骤2)得到的车流量的分布,计算所有200个父代和子代规划方案中所有车辆的充电等待时间,然后利用步骤1)建立的考虑服务区的充电站规划的数学模型计算每个父代和子代规划方案的收益。
(5)对所有父代和子代规划方案的收益进行比较,从中选取100个收益高的规划方案作为新的父代规划方案;
(7)判断当前进化代数W是否已达到最大进化代数100代,如达到最大进化代数100代则输出收益最高的一个规划方案;否则当前进化代数W=W+1,返回第(4)步,直至当前进化代数W≥100,即达到最大进化代数,输出最优的一个充电站规划方案。
下面给出最佳实施例:
(1)典型场景和参数设置
本发明实施例设置的高速路网如图3所示,道路共有五个出入口,全长为465km。高速路网各路段的长度、自由流速度、最大容量和阻塞容量如表2。高速路网上各对服务区的位置坐标如表3。预估每50km需要建设一个充电站,共需要建设20个充电站。电动汽车型号为Nissan Leaf,其电池容量为30kWh,续航里程为172km。区域电动汽车渗透率为10%,最大充电等待时间为0.5小时,电动汽车进入充电站之前的荷电状态在0.5-1之间均匀分布。
表1的参数取值包括:充电机功率P取为60kW;每个充电桩价格pcha为20万元;充电电价pc为每kW·h1.6元;单个充电位建设成本ppark为10万元;人均所需休息设施面积sav为3平方米;单位休息设施建设成本pres为5万元;运行年限z为20年;服务区内充电桩建设最大数目rmax为20个。
电动汽车乘客人均消费金额为20元,利润系数取15%,车辆平均载客数为4人,消费概率为10%。该高速路网的公里事故率设置为每年1.4起/公里,以此计算路网全年事故总数。假定车辆事故处理时长均为1小时,事故后道路通行能力折算系数取0.58,车辆事故的蒙特卡洛抽样模拟时间设置为1万年。
表1典型参数取值
参数 P/kW p<sub>cha</sub>/万元 p<sub>c</sub>/元 p<sub>park</sub>/万元
取值 60 20 1.6 10
参数 s<sub>av</sub>/m<sup>2</sup> p<sub>res</sub>/万元 z/年 r<sub>max</sub>/个
取值 3 5 20 20
表2高速路网参数
Figure BDA0001766710080000101
Figure BDA0001766710080000111
表3服务区位置坐标
服务区编号(对) 站址坐标(km)
1 (54,110.5)
2 (100,100)
3 (156,84)
4 (137,54.8)
5 (96,28)
6 (78,73)
7 (32,100)
(2)规划结果和分析
表4规划方案各项收益对比
Figure BDA0001766710080000112
分析表4可知,由于加入服务区不会改变规划区域总体的充电需求,因此在两种情景下的充电收入和充电桩建设成本较为接近。
考虑服务区后,由于部分充电车辆的乘客选择在服务区中进行购物休息,该部分收入不纳入规划收益,因此考虑服务区的规划方案乘客消费年收入减少了80.4万元。同时,该部分乘客可以借助服务区的停车场和休息设施,故停车场和休息设施建设年成本分别减少了159万元和95.4万元。综合考虑以上两方面影响,虽然考虑服务区后乘客消费收入减少,但是该方案也明显减少了停车场和休息设施的建设成本,考虑服务区后,其总年收入增加了158.3万元。
表5充电站位置规划结果
Figure BDA0001766710080000113
Figure BDA0001766710080000121
分析表5可知,各对服务区配置的充电桩数目并未达到所设置的配置数目上限。当各服务区配置的充电桩数目增加或减少时,规划方案总收益均会减少。因此,进行高速公路充电站规划时,只需适当考虑在服务区内配置充电桩,以减少建设成本,增加规划方案收益。
如图4所示,在服务区内建设充电站也会对新建充电站的位置产生影响。在服务区附近的充电站均向远离服务区方向移动,即通过增大充电站之间的距离,避免了浪费充电桩资源。6号、8号、9号充电站,距离服务区相对较远,其位置变化也相对较小。

Claims (5)

1.一种考虑服务区和车辆事故的高速公路充电站规划方法,其特征在于,包括如下步骤:
1)建立考虑服务区的充电站规划的数学模型,包括:分别建立目标函数和约束条件;
2)通过考虑车辆事故的动态交通仿真方法得到车流量的分布,所述考虑车辆事故的动态交通仿真方法包括:基于蒙特卡洛的车辆事故抽样方法和高速公路车辆事故影响分析方法,是先通过事故频次和时空位置抽样,确定一天中发生事故的时间和路段,若当天未发生事故则采用路段传输模型进行分析;若出现车辆事故时即进行事故影响分析;包括:
(1)基于蒙特卡洛方法确定车辆事故发生的时间和地点
结合车辆事故统计数据,通过蒙特卡洛抽样确定事故发生的时空位置,再利用路段传输模型进行分析,得到考虑车辆事故的车流分布;
(1.1)事故频次抽样
无事故时长在设定路段的概率分布函数为:
Figure FDA0003112922620000011
式中:f(ta)表示事故发生时刻小于ta的概率;A为所述路段每年发生的车辆事故总数;e为自然底数,ta为事故发生时刻;
由于1-F(t)为区间[0,1]内的数,即无事故时长tna通过抽样方法确定:
Figure FDA0003112922620000012
式中:A为设定路段每年发生的车辆事故总数;R为[0,1]之间均匀分布的随机数;
抽样时,若tna>24,认为事故不属于当天;若tna≤24,再次进行抽样并将每次抽样得到的无事故时长tna进行相加,直至相加结果tna>24,并对当天发生的事故总数ad进行统计;
(1.2)事故时空位置抽样
将总长度1分为24个长度不等的区间,每个区间代表1个小时,不同长度表示事故发生在该小时内的概率,生成[0,1]之间的随机数Rt,当所生成的随机数落在相应的区间时,即认为事故发生在该区间所在的时间段;
(2)高速公路车辆事故影响分析
建立高速公路车辆事故影响分析模型,假设xa处在t1时刻发生车辆事故,在事故处理完成之前,道路通行能力持续受阻,将道路最大通行能力和正常通行状况分别记为qmax辆/小时和qnor辆/小时,则发生事故后通行能力为ηqmax辆/小时,其中η为事故影响系数,0≤η≤1;此时,如果道路仍能满足当前通行需求,即qnor≤ηqmax,则正常通行;如qnor>ηqmax,则分两阶段建立高速公路车辆事故影响分析模型;
(2.1)事故处理时段影响分析
由于qnor>ηqmax,则从道路上游到达事故处的车辆不断积累,逐渐产生阻塞,在t2时刻,最大阻塞车辆数目T为:
T=(qnor-ηqmax)(t2-t1) (12)
此时,由于车辆事故导致该路段最大通行能力发生变化,对路段传输模型在事故路段xa处进行改进,将F(xa,t1)、F(xa,t2)分别记为t1和t2时刻事故发生处xa到达和通过的车辆总数,则在事故处理时段经由事故发生处xa驶出的车辆数目为:
ΔFa(t2-t1)=min{F(xa,t2)-F(xa,t1),ηqmax(t2-t1)} (13)
车辆事故不但会导致上游车辆在事故处累积,也会对事故下游车流量产生影响,将事故发生处xa的下游处记为事故下游处xb,lab为xa和xb的距离,va和ρav分别为自由流速度和平均车流密度,则从t1+lab/va时刻开始,xb处开始受到事故车流量的影响,假设车流在路段上的传播满足先进先出原则,则自由流状态下时,对于t1<t<t2,由路段传输模型:
Figure FDA0003112922620000021
式中:F(xb,t1+lab/va)为事故下游处xb开始受到事故车流影响时的累计通过车辆数目;η为事故影响系数,0≤η≤1,即受到事故影响的下游道路车流密度暂时减小,该影响逐渐向下游传播;
(2.2)交通恢复时段影响分析
在t2时刻,事故处理完成,由于ηqmax<qnor,则事故发生处xa仍然堆积了大量的车辆,且上游路段不断有新的车辆到达事故处,故累计的车辆仍然需要一段时间离开,拥堵完全消散的t3时刻计算公式如下:
Figure FDA0003112922620000022
由于路段恢复最大通行能力,将F(xa,t2)、F(xa,t3)分别记为t2和t3时刻事故发生处xa处到达和通过的车辆总数,则该交通恢复时段离开事故发生处xa的车辆总数为:
ΔFa(t3-t2)=min{F(xa,t3)-F(xa,t2),qmax(t3-t2)} (16)
该交通恢复时段也会对下游路段产生影响,由路段传输模型,对于t2<t<t3,有:
Figure FDA0003112922620000023
式中:F(xb,t2+lab/va)为事故下游处xb开始受到事故车流影响时的累计通过车辆;η为事故影响系数,0≤η≤1;
从而得到事故发生处xa的车流变化及对下游的影响,即得到下游各地点在受事故影响时的车流量;
3)根据车流量的分布建立充电等待时间模型,从而得到充电等待时间;
4)根据车流量的分布和充电等待时间,采用改进遗传算法求解考虑服务区的充电站规划的数学模型。
2.根据权利要求1所述的一种考虑服务区和车辆事故的高速公路充电站规划方法,其特征在于,步骤1)所述的目标函数为:
max(P1+P2-C1-C2-C3-C4) (1)
式中:P1为车辆充电收入;P2为乘客消费净收入;C1为充电桩建设成本;C2为停车场建设成本;C3为为乘客休息设施建设成本;C4为运行维护费用及其他配套设施建设成本;其中,
(1)车辆充电收入P1的计算公式为:
Figure FDA0003112922620000031
式中:n为新建充电站和服务区内规划的充电站数目之和;mi为第i个充电站在模拟周期内服务的车辆总数,Bj、SOCj分别为第i个充电站服务的第j辆车的电池容量和荷电状态;pc为充电电价;
(2)乘客消费净收入P2的计算公式如下:
Figure FDA0003112922620000032
式中:s为新建的充电站数目;mp为第p个新建充电站在模拟周期内服务的电动汽车总数;wq为第p个新建充电站服务的第q辆电动汽车的载客数;λ和bav分别为人均消费概率和金额;考虑到超市和餐厅需要一定成本购进商品,此处设置利润系数α,0<α<1,将乘客消费金额直接折算为净利润;
(3)充电桩建设成本C1的计算公式如下:
Figure FDA0003112922620000033
式中:n为新建充电站和服务区内规划的充电站数目之和;ri为第i个充电站建设的充电桩数目;pcha为单个充电桩价格;z为运行年限;
(4)停车场建设成本C2的计算公式如下:
Figure FDA0003112922620000034
式中:s为新建的充电站数目;qque,p为第p个充电站最大充电等待队列长度;ppark为单个停车位建设成本;z为运行年限;
(5)乘客休息设施建设成本C3的计算公式如下:
Figure FDA0003112922620000035
式中:s为新建的充电站数目;qque,p为第p个充电站最大充电等待队列长度;wav为电动汽车平均载客人数;β为乘客使用休息设施的概率;sav和pres分别为人均所需休息设施面积和单位面积休息设施建设成本;
(6)运行维护费用及其他配套设施建设成本,包括配电变压器、线路建设费用以及充电设施维修费用,是由固定投资成本折算得到,C4的计算公式为:
C4=(C1+C2+C3)×σ (7)
式中:σ为折算比例,取值为3%。
3.根据权利要求1所述的一种考虑服务区和车辆事故的高速公路充电站规划方法,其特征在于,步骤1)所述的约束条件为:
(1)对服务区内建设的充电站设置充电桩数量上限:
ry≤rmax,y=1,2,...,V (8)
式中:V为规划区域内的服务区总数;ry为第y个服务区建设的充电桩数目;rmax为服务区内允许建设的最大充电桩数目;
(2)充电等待时间约束,任一车辆的等待时间tw均满足:
tw≤tw,max (9)
式中:tw,max为最大充电等待时间。
4.根据权利要求1所述的一种考虑服务区和车辆事故的高速公路充电站规划方法,其特征在于,步骤3)所述的充电等待时间模型为:
Figure FDA0003112922620000041
式中,tw为任一电动汽车的等待时间;r为任一电动汽车到达的充电站配置的充电桩个数;在所述任一电动汽车到达充电站时,mw为已经在等待充电的电动汽车数目;Bav为电动汽车电池的平均容量;SOCav为电动汽车的平均荷电状态;P为充电桩的功率;
通过所述充电等待时间模型即可得到任一车辆的充电等待时间tw
5.根据权利要求1所述的一种考虑服务区和车辆事故的高速公路充电站规划方法,其特征在于,步骤4)包括:
(1)输入路网、出行矩阵和车辆信息参数,设置改进遗传算法参数:种群数目为100个,最大进化代数为100代,交叉概率为0.8,变异概率为0.2,当前进化代数W=1;
(2)利用遗传算法随机生成100个初始的父代规划方案;
(3)根据所设置的交叉概率和变异概率,100个父代种群通过复制、交叉和变异过程,生成100个新的子代规划方案,每个规划方案包括一组充电站的站址和配置的充电桩数目;
(4)利用的步骤3)所述充电等待时间模型和步骤2)得到的车流量的分布,计算所有200个父代和子代规划方案中所有车辆的充电等待时间,然后利用步骤1)建立的考虑服务区的充电站规划的数学模型计算每个父代和子代规划方案的收益;
(5)对所有父代和子代规划方案的收益进行比较,从中选取100个收益高的规划方案作为新的父代规划方案;
(7)判断当前进化代数W是否已达到最大进化代数100代,如达到最大进化代数100代则输出收益最高的一个规划方案;否则当前进化代数W=W+1,返回第(4)步,直至当前进化代数W≥100,即达到最大进化代数,输出最优的一个充电站规划方案。
CN201810931390.2A 2018-08-15 2018-08-15 一种考虑服务区和车辆事故的高速公路充电站规划方法 Active CN109190935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810931390.2A CN109190935B (zh) 2018-08-15 2018-08-15 一种考虑服务区和车辆事故的高速公路充电站规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810931390.2A CN109190935B (zh) 2018-08-15 2018-08-15 一种考虑服务区和车辆事故的高速公路充电站规划方法

Publications (2)

Publication Number Publication Date
CN109190935A CN109190935A (zh) 2019-01-11
CN109190935B true CN109190935B (zh) 2021-08-17

Family

ID=64918049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810931390.2A Active CN109190935B (zh) 2018-08-15 2018-08-15 一种考虑服务区和车辆事故的高速公路充电站规划方法

Country Status (1)

Country Link
CN (1) CN109190935B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109800916B (zh) * 2019-01-23 2021-04-23 山东省交通规划设计院有限公司 一种高速公路服务区驶入车流量的建模方法
CN109949098B (zh) * 2019-03-22 2020-12-08 山西省交通规划勘察设计院有限公司 一种高速公路收费站车道数的计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160428A (zh) * 2015-08-19 2015-12-16 天津大学 高速公路电动汽车快速充电站的规划方法
CN106599390A (zh) * 2016-11-23 2017-04-26 国网浙江省电力公司电动汽车服务分公司 一种计及电动出租车时空随机特性的充电负荷的计算方法
CN107025518A (zh) * 2017-03-20 2017-08-08 中国电力科学研究院 一种电动汽车充电站规划方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160428A (zh) * 2015-08-19 2015-12-16 天津大学 高速公路电动汽车快速充电站的规划方法
CN106599390A (zh) * 2016-11-23 2017-04-26 国网浙江省电力公司电动汽车服务分公司 一种计及电动出租车时空随机特性的充电负荷的计算方法
CN107025518A (zh) * 2017-03-20 2017-08-08 中国电力科学研究院 一种电动汽车充电站规划方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《基于动态交通仿真的高速公路电动汽车充电站规划》;葛少云 等;《电工技术学报》;20180731;第33卷(第13期);第2992-2999页 *
《基于聚类分析法的高速公路服务区电动汽车充电设施布局研究》;万众 等;《交通节能与环保》;20180228;第14卷(第63期);第1-3页 *
《电动汽车充电站规划的多种群混合遗传算法》;冯超 等;《电力***及其自动化学报》;20131231;第25卷(第6期);第124-128页 *
《道路交通流仿真模型构建及其应用研究》;杨柳青;《中国博士学位论文全文数据库工程科技Ⅱ辑》;20150315;第26页,第33-35页 *

Also Published As

Publication number Publication date
CN109190935A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN102819955B (zh) 基于车辆行程数据的道路网运行评价方法
CN109543934B (zh) 城市公交线网的综合指标的评价方法
CN107766969B (zh) 一种基于地铁服务能力瓶颈区段识别的大站快线布设方法
CN107679654B (zh) 一种停车规模预估控制***及实现方法
CN103985247A (zh) 基于城市叫车需求分布密度的出租车运力调度***
CN104778834A (zh) 一种基于车辆gps数据的城市道路交通拥堵判别方法
CN112036757B (zh) 基于手机信令和浮动车数据的停车换乘停车场的选址方法
CN112309119B (zh) 一种城市交通***容量分析优化方法
CN109190935B (zh) 一种考虑服务区和车辆事故的高速公路充电站规划方法
CN112927503A (zh) 一种雨天高速公路主线速度限制和匝道融合协调控制方法
CN109754606B (zh) 一种基于出租车定位预测道路拥堵情况的方法
CN116720997A (zh) 一种基于大数据分析的公交线路评价体系及优化方法
Zhang et al. A data-driven analysis for operational vehicle performance of public transport network
Cui et al. Study on the selection model of staying adjustment bus lines along rail transit
CN114078322B (zh) 一种公交运行状态评价方法、装置、设备及存储介质
CN116129651B (zh) 一种基于居民出行行为选择的交通容量计算方法
CN109447352B (zh) 一种公交出行od矩阵反推的组合方法
Sun et al. A prediction-evaluation method for road network energy consumption: Fusion of vehicle energy flow principle and Two-Fluid theory
CN114819633B (zh) 一种应用于国土空间规划的交通设施布局评价方法
CN116359656A (zh) 一种基于人工智能的充电车道设备测试管理***及方法
CN110674988A (zh) 一种基于电动汽车出行大数据的城区充电站规划方法
CN112070259A (zh) 一种预测城市空载出租车数量的方法
CN112562322B (zh) 一种公交车回授区长度设计方法
CN101866549A (zh) 区域交通服务水平微观指标及评价方法
CN115130868A (zh) 基于手机信令的城市土地利用与交通一体化互动反馈模型

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant