CN109182150B - 一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用 - Google Patents

一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用 Download PDF

Info

Publication number
CN109182150B
CN109182150B CN201811273756.8A CN201811273756A CN109182150B CN 109182150 B CN109182150 B CN 109182150B CN 201811273756 A CN201811273756 A CN 201811273756A CN 109182150 B CN109182150 B CN 109182150B
Authority
CN
China
Prior art keywords
cellulase
culture medium
fermentation
aspergillus
aspergillus melleus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811273756.8A
Other languages
English (en)
Other versions
CN109182150A (zh
Inventor
刘洋
邱忠平
孟涛
龚正君
王冬梅
樊超
李明星
汤国雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Publication of CN109182150A publication Critical patent/CN109182150A/zh
Application granted granted Critical
Publication of CN109182150B publication Critical patent/CN109182150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种高产纤维素酶的密丝明孢曲霉Sartorya Vuill W‑10,保存编号为CGMCC No.11991。本发明通过密丝明孢曲霉(Sartorya Vuill W‑10)发酵可以获得高产的纤维素粗酶液,其中纤维素酶的滤纸酶活力可达到1.26U/ml;将发酵得到的纤维素酶应用于生物乙醇制备中,可以有效提高秸秆残渣酶解率和乙醇产量,具有一定的应用价值。本发明不仅生产成本低,乙醇得率高,有利于生物乙醇的商业化应用与实施,同时也为废弃生物的综合利用提供了一条途径。

Description

一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用
技术领域
本发明属于微生物发酵工程技术领域,涉及一种能够实现纤维素酶高产的密丝明孢曲霉以及采用该密丝明孢曲霉进行发酵生产纤维素酶的方法。
背景技术
秸秆等木质纤维素废弃物的资源化利用不仅能够降低其对环境的负面影响,还能成为可再生、可持续能源的有效来源。对于第二代生物乙醇生产,木质纤维素已成为最可行的技术选择(Belal,E.B.Bioethanol production from rice straw residues.Braz JMicrobiol.2013,44(1):225-234)。木质纤维素乙醇化过程中,利用纤维素酶对木质纤维素进行水解,并将水解产物发酵制备生物乙醇;其中,纤维素酶的生产直接影响到木质纤维素的水解以及后续发酵过程,是乙醇化技术大规模应用的主要限制环节(Novy V,Longus K,Nidetzky B.2015)。
纤维素由一千个左右的葡萄糖分子聚合而成,而纤维素酶能水解纤维素生成小分子的葡萄糖(周俊强邱忠平韩云平等,纤维素降解菌的筛选及其产酶特性.环境工程学报,2010,(03):705-708)。目前,生产纤维素酶的菌种主要有真菌和细菌两大类,其中真菌所产纤维素酶具有较高的催化效率(谢占玲,吴润,纤维素酶的研究进展.草业科学,2004,21(4):72-76),和细菌不同的是,绝大多数真菌所产纤维素酶都是胞外酶,这又使得低成本分离活性液态酶变为可能(韩学易陈惠吴琦,等.产纤维素酶枯草芽孢杆菌C-36的产酶条件研究.四川农业大学学报,2006,(02):178-181)。利用真菌产纤维素酶正被广泛地应用于发酵产糖和生物乙醇的工业生产中(F.Talebnia,D.Karakashev,I.Angelidaki,Production ofbioethanol from wheat straw:an overview on pretreatment,hydrolysis andfermentation.Bioresour Technol,2010,101:4744-4753)。已分离筛选的多种产纤维素酶的真菌菌种包括孢霉属、毛壳霉属、绿色木霉、康氏木霉、青霉、白腐菌、镰刀菌和根霉等(Murashima K,Nishimura T,Nakamura Y,et al.,2002Purification andcharacterization of new endo-1,4-β-d-glucanases from Rhizopus oryzae.EnzymeMicrob Tech 30:319–326;兰时乐陈娴李慧,2003产纤维素酶菌种TP1202的选育及产酶条件研究,《生物技术》2003,13(2):12-13;Kovacs K,Marcelli S,Szakacs G et al.,2009Enzymatic hydrolysis of steam-pretreated lignocellulosic materials withTrichoderma atroviride enzymes produced in-house,《Biotechnology forBiofuels》,2009,2(1):14)。
然而现有生产纤维素酶的真菌多以复合菌剂为主,其生产过程中有时仍需增添纤维素酶以提升对木质纤维素的酶解率,从而提高最终的乙醇得率,这必将增加生产成本,影响企业经济效益。
因此,研究一种可以实现纤维素酶高产的单一真菌菌株是很有意义的。
发明内容
本发明的目的旨在,针对目前缺少制备纤维素酶单一菌株的技术现状,提供一种可以实现高纤维素酶高产的密丝明孢曲霉Sartorya sp.Vuill W-10。
上述密丝明孢曲霉,已于2016年1月7日提交保藏,保藏单位为中国微生物菌种保藏管理委员会普通微生物中心(Chnia General Microbiological Culture CollectionCenter,CGMCC),保藏地址为北京市朝阳区北辰西路1号院3号中国科学院微生物研究所,保存编号为CGMCC No.11991,分类命名为密丝明孢曲霉Sartorya sp.Vuill W-10。
上述密丝明孢曲霉,可以本领域常规手段确定其种属。
经研究发现,上述密丝明孢曲霉在种子(PDA,Potato Dextrose Agar)培养基上生长较快,在30℃条件下恒温培养2-3天,菌落直径达3-4cm。菌丝层较薄,初生菌丝为白色,后期菌落呈灰褐色,菌落背面无色;密丝明孢曲霉具有双层小梗的分生孢子头,分生孢子呈长链状,子囊果呈菌核状,子囊孢子呈扁球形或球形,子囊孢子无色。
本发明采用的种子培养基的制备过程为:蛋白胨20g、葡萄糖20g、酵母膏10g、氯化钠0.5g,七水硫酸亚铁0.005g、氯化钙0.3g、硫酸镁0.5g、磷酸氢二钾2g的比例配制得到种子培养基预混物,用去离子水定容到1000mL,并利用1mol/L的盐酸和1mol/L的氢氧化钠溶液调节种子培养基预混物的pH值为7,然后于121℃灭菌20min,冷却后即得种子培养基;获得的种子培养基可以放置于4℃进行贮存备用。
本发明的另一目的在于提供一种采用上述密丝明孢曲霉发酵产纤维素酶的方法,具体步骤如下:
(1)配制培养基:按照硝酸钾4g、乳糖或葡萄糖4g、尿素0.2g、磷酸氢二钾1.5g、Mandel’s营养液2~6ml、麸皮4~12g、硫酸镁0.5g、氯化钙0.3g、氢氧化钠预处理后的秸秆粉30g的比例配制得到培养基,用去离子水定容至1000mL,并利用无机酸调节培养基的pH值为2.5~3.5;
(2)接种密丝明孢曲霉种子液:按照培养基体积的8~15%,将密丝明孢曲霉种子液接种于步骤(1)制备的培养基中;
(3)制备纤维素酶:将接种密丝明孢曲霉的培养基于45~55℃、180r/m条件下发酵6~8天即得含有纤维素酶的粗酶液。
上述采用密丝明孢曲霉发酵产纤维素酶的方法,以硝酸钾、尿素为氮源,以乳糖或葡萄糖、麸皮、秸秆粉为碳源,以磷酸二氢钾为磷源,以磷酸二氢钾、硫酸镁、氯化钙作为无机盐来源。
上述采用密丝明孢曲霉发酵产纤维素酶的方法,可以采用本领域已经披露的常规手段获得Mandel’s营养液(参考文献糖蜜酒精废液诱导康氏木霉产纤维素酶的研究,林元山,广西大学,硕士学位论文,2004)。
上述采用密丝明孢曲霉发酵产纤维素酶的方法,可以采用本领域已经披露的常规手段获得氢氧化钠预处理后的秸秆粉(参考文献Y Liu,Z Qiu,G WangOptimized AlkalinePretreatment Technology of Rice Straw for Ethanol Production[J]Advances inEngineering Research 2015,1169-1173)。
上述采用密丝明孢曲霉发酵产纤维素酶的方法,所述无机酸为盐酸、硝酸或硫酸,其浓度为1mol/L~5mol/L。
上述采用密丝明孢曲霉发酵产纤维素酶的方法,所述步骤(1)中,按照40~60ml/250ml的装瓶量,将配制的培养基分装到发酵容器中。
上述采用密丝明孢曲霉发酵产纤维素酶的方法,所述步骤(2)中,可以采用本领域已经披露的常规手段获得密丝明孢曲霉种子液(参考文献王梅;石璟;谭德水,等,枯草芽孢杆菌MSJ-5产β-甘露聚糖酶的性质研究[J]福建农业学报,2015年第03期)。
上述采用密丝明孢曲霉发酵产纤维素酶的方法,所述步骤(3)中,可以进一步对发酵所得产物进行离心以去除固形物;离心转速3500~4000r/min,离心时间为5~10min。
本发明进一步提供了上述方法制备的纤维素酶在制备生物乙醇中的应用,并进一步说明了采用上述纤维素酶制备生物乙醇的制备过程,分别由密丝明孢曲霉(Sartoryasp.Vuill W-10)和黑曲霉(Aspergillus niger)发酵分别得到含有纤维素酶和纤维二糖酶的粗酶液;再利用纤维素酶和纤维二糖酶共同酶解经2%氢氧化钠预处理后的秸秆;同时利用酿酒酵母对秸秆进行同步糖化发酵,即可制得生物乙醇。具体的生物乙醇的制备过程为:以秸秆残渣作为底物,将底物、含有纤维素酶的粗酶液加入到发酵容器中得到底物浓度为40~100g/L的混合液,并利用无机酸(与前述一样)和氢氧化钠溶液调节混合液的pH值为5~6,于30~50℃、120~180r/min条件下添加吐温-80非离子型表面活性剂、含有纤维素二糖酶的粗酶液和酿酒酵母,同步糖化发酵3~4天,即得生物乙醇;所述吐温-80的终浓度为1~10g/L;每克底物中纤维素酶的纸滤酶活力为5~15FPU、纤维二糖酶酶活力为5~15CBU;所述酿酒酵母浓度为8g/L。
上述生物乙醇的制备过程中,所述氢氧化钠处理后的秸秆粉(也即秸秆残渣)是由秸秆通过本领域已经披露的常规手段处理得到(参考文献Y Liu,Z Qiu,G WangOptimizedAlkaline Pretreatment Technology of Rice Straw for Ethanol Production[J]Advances in Engineering Research 2015,1169-117)。本发明采用的处理方法为:先将秸秆粉碎后过20目筛,过筛后产物于60℃风干至恒重,再用浓度为2%的NaOH溶液于100℃条件下预处理2h后分离出残渣,即可。
上述生物乙醇的制备过程中,所述含有纤维素二糖酶的粗酶液是由黑曲霉发酵得到,其发酵过程可以采用本领域已经披露的常规手段(参考文献孟勇,王忠彦,苗艳芳,胡承关于黑曲霉生产纤维二糖酶发酵条件的研究,《四川大学学报(自然科学版)》,2002,39(5);938~942)。
本发明采用的秸秆为水稻秸秆或/和小麦秸秆。
与现有技术相比,本发明具有以下有益效果:
1、本发明通过提供的密丝明孢曲霉(Sartorya sp.Vuill W-10)单一菌株发酵便可以获得纤维素酶,不需要额外添加用于提升木质纤维素酶得率的纤维素酶,有助于降低生产成本,提升企业经济效益;
2、本发明通过密丝明孢曲霉(Sartorya sp.Vuill W-10)发酵获得的粗酶液中纤维素酶的滤纸酶活力可达到1.26U/ml,具有较高的产酶效率;
3、本发明将通过密丝明孢曲霉(Sartorya sp.Vuill W-10)发酵得到的纤维素酶应用于生物乙醇制备中,促进酶解过程,提升还原糖中葡萄糖的比例,秸秆残渣酶解率可以达到87%,乙醇产量可以高达0.43g/g DW,不仅提高了秸秆残渣的酶解率,而且提高了生物乙醇产量,具有一定的应用价值;
4、本发明不仅生产成本低,乙醇得率高,有利于生物乙醇的商业化应用与实施,同时也为废弃生物的综合利用提供了一条途径。
附图说明
图1为密丝明孢曲霉形貌示意图;其中(a)为密丝明孢曲霉菌落特征,(b)为密丝明孢曲霉培养的镜下形态1,(c)为密丝明孢曲霉培养的镜下形态2,(d)为密丝明孢曲霉孢子。
具体实施方式
以下结合实施例对本发明作进一步解释。
以下实施例1~3中采用的密丝明孢曲霉种子液的制备过程为:将一环密丝明孢曲霉孢子从斜面培养基中接种于50ml种子培养基上,于30℃、180r/min条件下培养36h,即得密丝明孢曲霉种子液,得到的种子液浓度为OD600 2.0(参考文献王梅;石璟;谭德水,等,枯草芽孢杆菌MSJ-5产β-甘露聚糖酶的性质研究[J]福建农业学报,2015年第03期)。采用的种子培养基的制备过程为:将蛋白胨20g、葡萄糖20g、酵母膏10g、氯化钠0.5g,七水硫酸亚铁0.005g、氯化钙0.3g、硫酸镁0.5g、磷酸氢二钾2g的比例配制得到种子培养基预混物,用去离子水定容到1000mL,并利用1mol/L的盐酸和1mol/L的氢氧化钠溶液调节种子培养基预混物的pH值为7,然后于121℃灭菌20min,冷却后即得种子培养基;获得的种子培养基可以放置于4℃进行贮存备用。
以下实施例1~3中采用的Mandel’s营养液是按照《糖蜜酒精废液诱导康氏木霉产纤维素酶的研究》(林元山,广西大学,硕士学位论文,2004)中有关Mandel’s营养液的制备过程制备得到的。
以下实施例1~3中采用的氢氧化钠预处理后的秸秆粉【也即实施例4~18中底物(秸秆残渣】制备过程相同,均是按照《Optimized Alkaline Pretreatment Technology ofRice Straw for Ethanol Production》(Y Liu,Z Qiu,G Wang,[J]Advances inEngineering Research2015,1169-1173)中有关氢氧化钠预处理秸秆粉的过程制备得到的,具体制备过程为:先将水稻秸秆粉碎后过20目筛,过筛后产物于60℃风干至恒重,再用浓度为2%的NaOH溶液于100℃条件下预处理2h后分离出残渣,即可。
以下实施例8~18中采用的含有纤维二糖酶的粗酶液是按照《关于黑曲霉生产纤维二糖酶发酵条件的研究》(孟勇,王忠彦,苗艳芳,胡承,《四川大学学报(自然科学版)》,2002,39(5);938~942)中有关纤维二糖酶的制备过程制备得到的。
以下实施例1~3中纤维素酶活性测试方法为:在试管中加入50mg的新华滤纸条,加入1mL的柠檬酸缓冲液(pH4.8,缓冲液中柠檬酸浓度为0.05mol/L),后加入0.5mL适当稀释的粗酶液,在50℃水浴的条件下反应30min,反应结束后加入2mLDNS试剂,沸水浴5min,加蒸馏水稀释至20mL后混匀,在520nm条件下比色,测得吸光度值经葡萄糖标曲计算出反应结束后还原糖的量,扣除酶液和底物还原糖(可以通过与酶空白及底物空白的对照实验组比对获得)后计算酶活力。
一个滤纸酶活力单位(FPU)定义为:酶促反应中每分钟生成1μmol葡萄糖所需的酶量。
Figure BDA0001846542770000061
式中,稀释倍数是指将实施例1~3中所得粗酶液稀释后体积与稀释前体积之比。
本发明提供了一种可以实现高纤维素酶高产的密丝明孢曲霉Sartorya sp.VuillW-10。上述密丝明孢曲霉,已于2016年1月7日提交保藏,保藏单位为中国微生物菌种保藏管理委员会普通微生物中心(Chnia General Microbiological Culture CollectionCenter,CGMCC),保藏地址为北京市朝阳区北辰西路1号院3号中国科学院微生物研究所,保存编号为CGMCC No.11991,分类命名为密丝明孢曲霉Sartorya sp.Vuill W-10。
如图1所示,上述密丝明孢曲霉具有以下特点:菌丝层较薄,初生菌丝为白色,后期菌落呈灰褐色,菌落背面无色;密丝明孢曲霉具有双层小梗的分生孢子头,分生孢子呈长链状,子囊果呈菌核状,子囊孢子呈扁球形或球形,子囊孢子无色。
实施例1
采用密丝明孢曲霉(Sartorya sp.Vuill W-10)制备纤维素酶的具体制备过程如下:
(1)配制培养基:按照硝酸钾4g、乳糖4g、尿素0.2g、磷酸氢二钾1.5g、Mandel’s营养液3ml、麸皮6g、硫酸镁0.5g、氯化钙0.3g、氢氧化钠预处理后的秸秆粉30g的比例配制得到培养基,用去离子水定容至1000mL,并利用1mol/L的盐酸调节培养基的pH值为3;然后按照43mL/250mL的装瓶量,将配制的培养基分装到发酵容器中;
(2)接种密丝明孢曲霉种子液:按照培养基体积的10%,将密丝明孢曲霉种子液接种于盛有培养基的发酵容器中;
(3)制备纤维素酶:将接种密丝明孢曲霉的培养基于50℃、180r/m条件下发酵6天,然后将发酵产物于4000r/min离心5min,即得含有纤维素酶的粗酶液。
对得到的粗酶液进行纤维素酶活性测试,得到纤维素酶的滤纸酶活力为1.26FPU/ml。
实施例2
采用密丝明孢曲霉(Sartorya sp.Vuill W-10)制备纤维素酶的具体制备过程如下:
(1)配制培养基:按照硝酸钾4g、乳糖4g、尿素0.2g、磷酸氢二钾1.5g、Mandel’s营养液6ml、麸皮12g、硫酸镁0.5g、氯化钙0.3g、氢氧化钠预处理后的秸秆粉30g的比例配制得到培养基,用去离子水定容至1000mL,并利用1mol/L的盐酸调节培养基的pH值为2.5;然后按照60mL/250mL的装瓶量,将配制的培养基分装到发酵容器中;
(2)接种密丝明孢曲霉种子液:按照培养基体积的8%,将密丝明孢曲霉种子液接种于盛有培养基的发酵容器中;
(3)制备纤维素酶:将接种密丝明孢曲霉的培养基于45℃、180r/m条件下发酵7天,然后将发酵产物于3500r/min离心10min,即得含有纤维素酶的粗酶液。
对得到的粗酶液进行纤维素酶活性测试,得到纤维素酶的滤纸酶活力为0.92U/ml。
实施例3
采用密丝明孢曲霉(Sartorya sp.Vuill W-10)制备纤维素酶的具体制备过程如下:
(1)配制培养基:按照硝酸钾4g、乳糖4g、尿素0.2g、磷酸氢二钾1.5g、Mandel’s营养液2ml、麸皮4g、硫酸镁0.5g、氯化钙0.3g、氢氧化钠预处理后的秸秆粉30g的比例配制得到培养基,用去离子水定容至1000mL,并利用3mol/L的盐酸调节培养基的pH值为3.5;然后按照40mL/250mL的装瓶量,将配制的培养基分装到发酵容器中;
(2)接种密丝明孢曲霉种子液:按照培养基体积的15%,将密丝明孢曲霉种子液接种于盛有培养基的发酵容器中;
(3)制备纤维素酶:将接种密丝明孢曲霉的培养基于55℃、180r/m条件下发酵8天,然后将发酵产物于4000r/min离心5min,即得含有纤维素酶的粗酶液。
对得到的粗酶液进行纤维素酶活性测试,得到纤维素酶的滤纸酶活力为1.15U/ml。
实施例4-7
将实施例1制备的粗酶液加入到四个盛有底物的容器中进行不同底物浓度的糖化实验:常温下,在摇床中以120r/min的速率酶解72小时。配制的底物浓度及实验结果如表1所示。
表1实施例4-7不同底物浓度对应的糖化实验结果
Figure BDA0001846542770000071
从表1中可以看出,随着底物浓度的增加,酶解得率在不断下降;为了保证后续发酵所产的乙醇浓度,还要求酶解液具有比较高的还原糖浓度,因此综合考虑酶解得率和还原糖浓度,在制备生物乙醇时,优选选择80g/L底物浓度为宜。
实施例8-12
将实施例1制备的粗酶液加入到五个盛有底物的容器中,配制成底物浓度为80g/L的混合液,再向混合液中加入含有纤维二糖酶的粗酶液(用量以纤维二糖酶的酶活力计)和吐温-80分别对底物进行酶解实验:常温下,在摇床中以120r/min酶解72小时。实验原料配比及实验结果如表2所示。
表2实施例8-12酶解实验原料配比及实验结果
Figure BDA0001846542770000081
注:上述吐温-80浓度是以吐温-80在容器混合液中的浓度计。
从表2中可以看出,底物酶解率随着吐温-80的浓度增加而上升,在吐温-80浓度达到5g/L时稻草秸秆72h的酶解得率达到最大值,为81.8%;但是,当吐温-80浓度增加到10g/L时,酶解得率为81%。因此,在制备生物乙醇时,吐温-80添加量优选以5g/L为宜。
实施例13-15
将实施例1制备的粗酶液加入到三个盛有底物的容器中,配制成底物浓度为80g/L的混合液50ml,再向50ml混合液中加入含有纤维二糖酶的粗酶液(用量以纤维二糖酶的酶活力计)和吐温-80分别对底物进行酶解实验:常温下,在摇床中以120r/min酶解72小时。实验原料配比及实验结果如表3所示。
表3实施例13-15酶解实验原料配比及实验结果
Figure BDA0001846542770000082
Figure BDA0001846542770000091
注:上述吐温-80浓度是以吐温-80在容器混合液中的浓度计。
从表3中可以看出,底物酶解率随着纤维二糖酶活力增加而上升,最大增幅达2.3%,但当纤维二糖酶活力超过10CBU/每克底物时,酶解得率的提升就不再十分明显,因此,在制备生物乙醇时,综合考虑成本和酶解得率,采用酶活力为10CBU/每克底物的纤维二糖酶为宜。
实施例16-18
将实施例1制备的粗酶液加入到三个盛有底物的发酵容器中,配制成底物浓度为80g/L的混合液50ml,并利用1mol/L的盐酸和1mol/L的氢氧化钠溶液调节混合液的pH值为5-6,于30~50℃、120~180r/min条件下添加吐温-80、含有纤维素二糖酶的粗酶液和酿酒酵母,对上述物料进行同步糖化发酵3-4天,即得生物乙醇。乙醇浓度由气相色谱仪测得。试验原料配比及测试结果如表4所示。
表4实施例16-18生物乙醇制备试验原料配比及测试结果
Figure BDA0001846542770000092
注:(1)上述吐温-80浓度是以吐温-80在容器混合液中的浓度计;
(2)乙醇产量%DW是指每1g干秸秆生产酒精的产率。
从表4可以看出,将本发明提供的密丝明孢曲霉发酵得到的纤维素酶应用于生物乙醇制备中,可以促进酶解过程,提升还原糖中葡萄糖的比例,且生产成本低,制备的乙醇得率高,从而有助于生物乙醇的商业化应用和实施。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (4)

1.一种高产纤维素酶的密丝明孢曲霉Sartorya Vuill W-10,保藏 编号为CGMCCNo.11991。
2.一种采用权利要求1所述的密丝明孢曲霉发酵产纤维素酶的方法,其特征在于,步骤如下:
(1)配制培养基:按照硝酸钾4g、乳糖或葡萄糖4g、尿素0.2g、磷酸氢二钾1.5g、Mandel’s营养液2~6ml、麸皮4~12g、硫酸镁0.5g、氯化钙0.3g、氢氧化钠预处理后的秸秆粉30g的比例配制得到培养基,用去离子水定容至1000mL,并利用无机酸调节培养基的pH值为2.5~3.5;
(2)接种密丝明孢曲霉种子液:按照培养基体积的8~15%,将密丝明孢曲霉种子液接种于步骤(1)制备的培养基中;
(3)制备纤维素酶:将接种密丝明孢曲霉的培养基于45~55℃、180r/min条件下发酵6~8天即得含有纤维素酶的粗酶液。
3.根据权利要求2所述采用密丝明孢曲霉发酵产纤维素酶的方法,其特征在于所述步骤(1)中,无机酸为盐酸、硝酸或硫酸。
4.根据权利要求2所述采用密丝明孢曲霉发酵产纤维素酶的方法,其特征在于所述步骤(1)中,按照40~60ml/250ml的装瓶量,将配制的培养基分装到发酵容器中。
CN201811273756.8A 2018-05-03 2018-10-30 一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用 Active CN109182150B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018104155461 2018-05-03
CN201810415546.1A CN108410742A (zh) 2018-05-03 2018-05-03 一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用

Publications (2)

Publication Number Publication Date
CN109182150A CN109182150A (zh) 2019-01-11
CN109182150B true CN109182150B (zh) 2020-10-30

Family

ID=63137681

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810415546.1A Pending CN108410742A (zh) 2018-05-03 2018-05-03 一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用
CN201811273756.8A Active CN109182150B (zh) 2018-05-03 2018-10-30 一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201810415546.1A Pending CN108410742A (zh) 2018-05-03 2018-05-03 一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用

Country Status (1)

Country Link
CN (2) CN108410742A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725194B (zh) * 2021-01-21 2021-10-22 南京林业大学 一株高产纤维素酶的真菌Flavodon sp.x10及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135898A2 (en) * 2008-05-07 2009-11-12 Novozymes A/S Fermentation of a lignocellulose-containing material
CN105647813A (zh) * 2014-12-05 2016-06-08 中国石油化工股份有限公司 一株绿色木霉及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135898A2 (en) * 2008-05-07 2009-11-12 Novozymes A/S Fermentation of a lignocellulose-containing material
CN105647813A (zh) * 2014-12-05 2016-06-08 中国石油化工股份有限公司 一株绿色木霉及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
玉米秸秆发酵制备燃料乙醇生产工艺研究;柏争艳;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20170615;正文第23页第1段、28-33页 *
胡立明 等.黑曲霉产纤维素酶液体发酵条件的研究.《河南工业大学学报(自然科学版)》.2007,第28卷(第1期), *
金属离子及表面活性剂对纤维素酶水解预处理玉米秸秆的影响;王娜娜 等;《科学技术与工程》;20110731;4913-4916页 *
黑曲霉产纤维素酶液体发酵条件的研究;胡立明 等;《河南工业大学学报(自然科学版)》;20070228;第28卷(第1期);第71-72页2.1-2.2部分,第74页左栏第1段 *

Also Published As

Publication number Publication date
CN109182150A (zh) 2019-01-11
CN108410742A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
Verma et al. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21
Deshpande Ethanol production from cellulose by coupled saccharification/fermentation using Saccharomyces cerevisiae and cellulase complex from Sclerotiun rolfsii UV-8 mutant
Soni et al. BIOCONVERSION OF SUGARCANE BAGASSE INTO SECOND GENERATION BIOETHANOL AFTER ENZYMATIC HYDROLYSIS WITH IN-HOUSE PRODUCED CELLULASES FROM Aspergillus sp. S 4 B 2 F.
Navya et al. Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk
EP2369004B1 (en) Method for producing cellulosic ethanol
CN102660519B (zh) 一种利用发酵废液制备生物酶的方法
Singh et al. Fusarium oxysporum: status in bioethanol production
CN113403207B (zh) 高产β-葡萄糖苷酶黑曲霉菌株及应用
CN113046278B (zh) 一种用于发酵降解秸秆中纤维素的复合微生物菌剂
Barron et al. Studies on the use of a thermotolerant strain of Kluyveromyces marxianus in simultaneous saccharification and ethanol formation from cellulose
CN102321671A (zh) 一种生物预处理木质纤维素及同步糖化发酵产氢的方法
CN114164124A (zh) 一种青霉菌群复配协同降解纤维素复合酶制备方法
CN110607246A (zh) 一种酵母高密度增殖酒糟多肽糖蜜培养剂及制备方法
CN102787104A (zh) 一种高活性复合纤维素酶及其制备和在木质纤维酶解糖化中的应用方法
Shokrkar et al. Exploring strategies for the use of mixed microalgae in cellulase production and its application for bioethanol production
Zheng et al. Comparison of bioethanol production by Candida molischiana and Saccharomyces cerevisiae from glucose, cellobiose, and cellulose
CN109182150B (zh) 一种高产纤维素酶的密丝明孢曲霉及其发酵方法与应用
CN108424896B (zh) 一种混菌发酵玉米秸秆糠醛渣生产纤维素酶的方法
CN101878308B (zh) 由淀粉制备乙醇的方法
CN112725386B (zh) 一种同步糖化发酵生产l-乳酸的方法
CN111154747B (zh) 一种混菌发酵提高几丁质脱乙酰基酶产量的方法
CN112852649B (zh) 一株耐高温的生产纤维素乙醇的酿酒酵母菌株及其发酵应用
Gomaa Bioconversion of orange peels for ethanol production using Bacillus subtilis and Pseudomonas aeruginosa
WO2013122549A1 (en) A method for enzymatic hydrolysis of cellulose
CN113528492A (zh) 一种将木质纤维素水解液回用于发酵生产纤维素酶液的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant