CN109180186B - 仿生珍珠层max相碳化物陶瓷基复合材料的制备方法 - Google Patents

仿生珍珠层max相碳化物陶瓷基复合材料的制备方法 Download PDF

Info

Publication number
CN109180186B
CN109180186B CN201811006638.0A CN201811006638A CN109180186B CN 109180186 B CN109180186 B CN 109180186B CN 201811006638 A CN201811006638 A CN 201811006638A CN 109180186 B CN109180186 B CN 109180186B
Authority
CN
China
Prior art keywords
sintering
lamellar
max
composite material
max phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811006638.0A
Other languages
English (en)
Other versions
CN109180186A (zh
Inventor
杨锐
谢曦
崔玉友
贾清
柏春光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201811006638.0A priority Critical patent/CN109180186B/zh
Publication of CN109180186A publication Critical patent/CN109180186A/zh
Application granted granted Critical
Publication of CN109180186B publication Critical patent/CN109180186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及MAX相陶瓷基复合材料,具体为一种制备仿生珍珠层MAX相碳化物陶瓷基复合材料的方法。该方法利用片层状MAX粉体作为构筑堆砌复合材料的砖块,利用液体介质晶体生长在温度梯度的取向性,通过低温冷冻液体介质来获得类似天然珍珠外壳中的层状凝固晶体陶瓷复合结构,然后去除掉介质晶体,获得连续片层孔洞及片层结构的陶瓷高分子的胚体。加压烧结过程中,利用高分子聚合物作为碳源原位反应生成片层状的碳化物。最终获得纳米或微米的MAX相片层构成砖块,在MAX相片层中间原位生长的碳化物层构成灰泥的仿珍珠层材料的长程有序砖块‑灰泥结构。这种结构如同自然界的生物陶瓷一样,对外部载荷和裂纹扩展有很高的抗力。

Description

仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法
技术领域
本发明涉及MAX相陶瓷基复合材料,具体为一种仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法。
背景技术
MAX相陶瓷(如:Ti3SiC2、Ti2AlC、Nb2AlC等)是一类具有纳米三元层状结构和众多独特优异性质的可加工陶瓷,该类材料兼具陶瓷和金属的性质。如:陶瓷材料的高熔点、抗氧化和抗腐蚀能力、金属的导电性、可加工性、损伤容抗、抗热冲击等性能,纳米陶瓷的耐辐射损伤性。由于其独特的三元纳米层状结构,该类陶瓷的断裂韧性远高于普通氧化铝、碳化硅等工程陶瓷。但是相比较于金属而言,该类陶瓷的强度和断裂韧性还远远不够,因此通过生物仿生的方法研发可以提高该陶瓷的强度、断裂韧性、高温力学性能的制备方法和技术显得非常重要。
大自然在亿万年的进化过程中在生物体中形成很多高效合理的材料组分和结构,贝壳类的天然珍珠层材料就是其中之一,该类材料具有独特的砖-灰结构,它由95%体积份数的片状碳酸钙层构成的砖质和5%体积份数构成的灰质组成。虽然组成简单,但是通过复杂结构的精细组合而具有非常好的综合性能。该结构导致材料具有优异的力学性能,贝壳类的天然珍珠层能达到普通碳酸钙的数倍之多。近年来,人们从天然生物研究中得到启示,在材料设计中引入仿生结构设计理念,通过模仿和移植大自然高效进化形成的材料结构,实现材料的高强、高韧特性。
发明内容
本发明的目的在于提供一种仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,解决现有MAX相碳化物陶瓷强度和韧性差不具备生物仿生结构等问题。
本发明的技术方案是:
一种仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,利用片层状MAX粉体作为构筑堆砌复合材料的砖块,利用液体介质晶体生长在温度梯度的取向性,通过低温冷冻液体介质来获得类似天然珍珠外壳中的层状凝固晶体陶瓷复合结构,然后去除掉介质晶体,获得连续片层孔洞及片层结构的陶瓷高分子胚体;对陶瓷高分子胚体进行碳化,利用高分子聚合物作为碳源原位反应生成片层状的碳化物;对碳化完成的胚体进行加压烧结,获得仿生珍珠层MAX相碳化物陶瓷基复合材料。
所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,片层状MAX粉体的规格尺寸为厚度0.02~10微米,宽度0.1~50微米,液体介质晶体为水、叔丁醇或莰烯,连续片层孔洞及片层结构的陶瓷高分子胚体的结构是:由高分子聚合物胶连的MAX粉体构成的定向片层状骨架,MAX粉体片层间由液体介质晶体升华后留下的连续片层孔洞。
所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,陶瓷基复合材料具有仿珍珠层材料的长程有序砖块-灰泥结构,该结构中纳米级或微米级的MAX相片层构成砖块,在MAX相片层中间原位生长的碳化物层构成灰泥;其中,MAX相片层的规格尺寸为厚度0.02~10微米,宽度0.1~50微米;碳化物层的规格尺寸为厚度0.02~1微米,MAX相片层与碳化物层的重量比例为5~50:1。
所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,包括如下步骤:
(1)将纳米或者微米片层状的MAX相粉体、有机胶、分散剂添加进溶剂中,混合均匀形成料浆,混合方法为超声波分散、机械搅拌或球磨混合;
(2)将混合后的料浆装入模具中,将模具放入可造成梯度低温的冷冻设备中进行定向凝固,冷冻温度和温度梯度由复合料浆的物理化学凝固特性决定;
(3)凝固完成后,将定向生长完的陶瓷高分子胚体放入干燥机进行干燥,干燥参数由溶剂的物理化学特性决定;
(4)将干燥完成后的胚体取出进行碳化工艺,碳化在真空炉内进行,碳化温度400~600℃,气氛10-4Pa~10-2Pa真空环境,碳化时间0.5~4小时;
(5)对碳化完成的胚体进行加压烧结,烧结温度由采用的原料粉体的粒度和MAX相的种类决定。
所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,溶剂是水或者其他具有液体型态,降低温度会呈固态,并能实现固气态物理升华转变的溶剂;有机胶为聚乙烯醇、聚乙二醇或羧甲基纤维素,分散剂为烷基芳基磺酸钠、烷基酚聚乙烯醚或聚丙烯酸铵。
所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,按重量百分比计,原料中的MAX相粉体含量为30~60%、有机胶含量为2~10%、分散剂含量为0.5~5%、溶剂为余量。
所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,加压烧结为热压烧结法、热等静压烧结法或放电等离子烧结法。
所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,热压烧结法是直接将胚体装入石墨模具,在石墨模具中热压烧结,烧结温度500~2000℃,烧结压力1~200MPa,保温时间10~3600分钟,升温速率1~100℃/分钟,烧结在真空或氩气气氛下进行。
所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,热等静压烧结法是直接将胚体装入热等静压包套中,然后将包套抽真空并密封;在包套中热等静压烧结,烧结温度500~2000℃,烧结压力1~800MPa,保温时间10~3600分钟,升温速率1~100℃/分钟,烧结在真空或氩气气氛下进行。
所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,放电等离子烧结法是直接将胚体装入烧结模具中,在施加大的脉冲电流烧结,烧结温度300~1800℃,烧结压力1~400MPa,保温时间5~600分钟,升温速率1~500℃/分钟,烧结在真空或氩气气氛下进行。
本发明的设计思想是:
本发明通过简单环保的方法制备仿生珍珠层MAX相碳化物陶瓷基复合材料,利用片层状MAX粉体作为构筑堆砌材料的砖块,通过低温冷冻液体介质,利用液体介质晶体生长在温度梯度的取向性,来获得类似天然珍珠外壳中的层状凝固晶体陶瓷复合结构,然后去除掉介质晶体,获得连续片层孔洞及片层结构的陶瓷高分子的胚体。加压烧结过程中,利用高分子聚合物(即有机胶,包聚乙烯醇、聚乙二醇或羧甲基纤维素等)作为碳源原位反应生成片层状的碳化物,最终获得该结构中纳米级或微米级的MAX相片层构成砖块,在MAX相片层中间原位生长的纳米碳化物层构成灰泥的仿珍珠层材料的砖块-灰泥结构。这种结构如同自然界的生物陶瓷一样,对外部载荷和裂纹扩展有很高的抗力。
本发明的优点及有益效果是:
(1)本发明工艺路线及制备方法简单,使用原料和制备方法绿色环保无污染,易于大面积推广。
(2)本发明方法对所有MAX相体系均适应,能制备所有MAX相种类该类仿生陶瓷基复合材料。
(3)本发明制备的陶瓷采用仿生学原理进行设计,力学性能大幅提高,这种仿生结构导致陶瓷的性优异。
附图说明
图1为冷冻干燥后获得的试样微观组织形貌。
图2为烧结完成后珍珠层Ti3AlC2/TiC纳米复合材料垂直片层方向断口图片。
具体实施方式
由于本发明涵盖技术方法和路线广泛,为有助于进一步理解本发现的目的、方案、和优点先结合具体实例进行进一步清晰完整的描述。同时需要指出的是下面所描述的实例仅仅是作为列举的部分工作和实施方案,并非全部的可以实施方案。凡是使用本发明权利要求范围内的技术方法,均应属于本发明的保护范围。
实施例1
本实施例中,仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法如下:
将粒度200纳米的片层状Ti3AlC2粉100克,分子量4000的聚乙烯醇5克,分散剂聚丙烯酸铵2克,添加进去200克去离子水中,机械搅拌混合均匀。将简单混合后的料浆放入500mL的聚氨酯球磨罐中,加入200克聚氨酯包覆的铁球。将球磨罐安装在行星式球磨机上进行球磨,球磨转速380转/分钟,球磨10小时后将球磨后的料浆取出,分拣出球磨珠待用。将获得的料浆装入聚四氟乙烯模具中,模具底部放置铜板,并从铜板底部通入液氮,液氮流速5L/小时,最终将料浆完全冷冻成型后取出。将冷冻成型的固态混合物放入冷冻干燥机中,设定冷冻干燥温度在-50℃,真空度10Pa,冷冻干燥50小时后取出。
如图1所示,冷冻干燥后获得的试样微观组织形貌,该固态混合物由纳米Ti3AlC2粉,以及用于固化成型的有机物组成,其中纳米Ti3AlC2粉团聚形成片层和取向组织,片层中间由连续片层孔洞构成,连续贯穿胚体的孔洞尺寸在10~30微米。将该固态混合物放入真空热压烧结炉内烧结,烧结温度1250℃,压力40MPa,烧结气氛10-3Pa真空条件。烧结完成后,获得致密的珍珠层Ti3AlC2/TiC纳米复合材料。
如图2所示,烧结完成后珍珠层Ti3AlC2/TiC纳米复合材料垂直片层方向断口图片,由图片可知,Ti3AlC2具有良好的取向并呈砖块堆砌,纳米颗粒状的TiC分布在Ti3AlC2砖块间呈泥灰状,Ti3AlC2相片层的规格尺寸为厚度100~300纳米、宽度1~3微米,TiC层的规格尺寸为100~300纳米,Ti3AlC2和TiC的重量比例为6:1。
该材料室温材料压缩强度达2500MPa,断裂韧性18~21MPa.m1/2,远高于普通Ti3AlC2的7~8MPa.m1/2断裂韧性值,其高温性能1100℃压缩强度达200MPa,远高于普通Ti3AlC2的100MPa的强度。
实施例2
本实施例中,仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法如下:
将粒度220纳米的片层状Nb2AlC粉200克,分子量4000的聚乙烯醇6克,分散剂聚丙烯酸铵3克,添加进去250克莰烯中,机械搅拌混合均匀。将简单混合后的料浆放入500mL的聚氨酯球磨罐中,加入250克聚氨酯包覆的铁球。将球磨罐安装在行星式球磨机上进行球磨,球磨转速400转/分钟,球磨10小时后将球磨后的料浆取出,分拣出球磨珠待用。将获得的料浆装入聚四氟乙烯模具中,模具底部放置铜板,并从铜板底部通入液氮,液氮流速1L/小时,最终将料浆完全冷冻成型后取出。将冷冻成型的固态混合物放入烘干燥机中,设定燥温度在25℃,环境一个大气压,干燥10小时后取出固态混合物,纳米Nb2AlC粉团聚形成片层和取向组织,片层中间由连续片层孔洞构成,片层孔洞的孔洞尺寸在20~50微米。将该固态混合物放入真空热压烧结炉内烧结,烧结温度1350℃,压力40MPa,烧结气氛10-3Pa真空条件。烧结完成后,获得致密的珍珠层Nb2AlC/NbC纳米复合材料。Nb2AlC具有良好的取向并呈砖块堆砌,纳米颗粒状的NbC分布在Nb2AlC砖块间呈泥灰状,Nb2AlC相片层的规格尺寸为厚度150~320纳米、宽度1~3微米,NbC层的规格尺寸为100~300纳米,Nb2AlC和NbC的重量比例为8:1。
该材料室温材料压缩强度达260MPa,断裂韧性18~21MPa.m1/2,远高于普通Nb2AlC的7~8MPa.m1/2断裂韧性值,其高温性能1400℃弯曲强度达450MPa,远高于普通Nb2AlC的300MPa的强度。

Claims (8)

1.一种仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,其特征在于,利用片层状MAX粉体作为构筑堆砌复合材料的砖块,利用液体介质晶体生长在温度梯度的取向性,通过低温冷冻液体介质来获得类似天然珍珠外壳中的层状凝固晶体陶瓷复合结构,然后去除掉介质晶体,获得连续片层孔洞及片层结构的陶瓷高分子胚体;对陶瓷高分子胚体进行碳化,利用高分子聚合物作为碳源原位反应生成片层状的碳化物;对碳化完成的胚体进行加压烧结,获得仿生珍珠层MAX相碳化物陶瓷基复合材料,该复合材料为Ti3AlC2/TiC纳米复合材料或Nb2AlC/NbC纳米复合材料;
该方法包括如下步骤:
(1)将纳米或者微米片层状的MAX相粉体、有机胶、分散剂添加进液体介质中,混合均匀形成料浆,混合方法为超声波分散、机械搅拌或球磨混合;
(2)将混合后的料浆装入模具中,将模具放入可造成梯度低温的冷冻设备中进行定向凝固,冷冻温度和温度梯度由复合料浆的物理化学凝固特性决定;
(3)凝固完成后,将定向生长完的陶瓷高分子胚体放入干燥机进行干燥,干燥参数由液体介质的物理化学特性决定;
(4)将干燥完成后的胚体取出进行碳化工艺,碳化在真空炉内进行,碳化温度400~600℃,气氛10-4Pa~10-2Pa真空环境,碳化时间0.5~4小时;
(5)对碳化完成的胚体进行加压烧结,烧结温度由采用的原料粉体的粒度和MAX相的种类决定;
液体介质为水、叔丁醇或莰烯,有机胶为聚乙烯醇、聚乙二醇或羧甲基纤维素,分散剂为烷基芳基磺酸钠、烷基酚聚乙烯醚或聚丙烯酸铵。
2.按照权利要求1所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,其特征在于,片层状MAX粉体的规格尺寸为厚度0.02~10微米,宽度0.1~50微米,连续片层孔洞及片层结构的陶瓷高分子胚体的结构是:由高分子聚合物胶连的MAX粉体构成的定向片层状骨架,MAX粉体片层间由液体介质晶体升华后留下的连续片层孔洞。
3.按照权利要求1所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,其特征在于,陶瓷基复合材料具有仿珍珠层材料的长程有序砖块-灰泥结构,该结构中纳米级或微米级的MAX相片层构成砖块,在MAX相片层中间原位生长的碳化物层构成灰泥;其中,MAX相片层的规格尺寸为厚度0.02~10微米,宽度0.1~50微米;碳化物层的规格尺寸为厚度0.02~1微米,MAX相片层与碳化物层的重量比例为5~50:1。
4.按照权利要求1所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,其特征在于,按重量百分比计,原料中的MAX相粉体含量为30~60%、有机胶含量为2~10%、分散剂含量为0.5~5%、液体介质为余量。
5.按照权利要求1所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,其特征在于,加压烧结为热压烧结法、热等静压烧结法或放电等离子烧结法。
6.按照权利要求5所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,其特征在于,热压烧结法是直接将胚体装入石墨模具,在石墨模具中热压烧结,烧结温度500~2000℃,烧结压力1~200MPa,保温时间10~3600分钟,升温速率1~100℃/分钟,烧结在真空或氩气气氛下进行。
7.按照权利要求5所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,其特征在于,热等静压烧结法是直接将胚体装入热等静压包套中,然后将包套抽真空并密封;在包套中热等静压烧结,烧结温度500~2000℃,烧结压力1~800MPa,保温时间10~3600分钟,升温速率1~100℃/分钟,烧结在真空或氩气气氛下进行。
8.按照权利要求5所述的仿生珍珠层MAX相碳化物陶瓷基复合材料的制备方法,其特征在于,放电等离子烧结法是直接将胚体装入烧结模具中,在施加大的脉冲电流烧结,烧结温度300~1800℃,烧结压力1~400MPa,保温时间5~600分钟,升温速率1~500℃/分钟,烧结在真空或氩气气氛下进行。
CN201811006638.0A 2018-08-31 2018-08-31 仿生珍珠层max相碳化物陶瓷基复合材料的制备方法 Active CN109180186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811006638.0A CN109180186B (zh) 2018-08-31 2018-08-31 仿生珍珠层max相碳化物陶瓷基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811006638.0A CN109180186B (zh) 2018-08-31 2018-08-31 仿生珍珠层max相碳化物陶瓷基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN109180186A CN109180186A (zh) 2019-01-11
CN109180186B true CN109180186B (zh) 2021-03-26

Family

ID=64916978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811006638.0A Active CN109180186B (zh) 2018-08-31 2018-08-31 仿生珍珠层max相碳化物陶瓷基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109180186B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113182521B (zh) * 2021-01-22 2023-08-15 河南科技大学 一种Ti2AlC/TiAl仿生微纳叠层复合材料及其制备方法
CN113277851B (zh) * 2021-06-29 2022-05-24 中国科学院金属研究所 一种陶瓷-金属仿生纳米复合材料及其制备方法
CN116239368B (zh) * 2023-03-03 2024-02-23 中国科学技术大学 陶瓷-金属复合材料的制备方法及陶瓷-金属复合材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817084A (zh) * 2010-04-29 2010-09-01 上海交通大学 微纳米叠层金属基复合材料的制备方法
CN103922289A (zh) * 2014-04-08 2014-07-16 河南理工大学 一种二维晶体化合物复合金属氧化物纳米粉体及其制备、应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817084A (zh) * 2010-04-29 2010-09-01 上海交通大学 微纳米叠层金属基复合材料的制备方法
CN103922289A (zh) * 2014-04-08 2014-07-16 河南理工大学 一种二维晶体化合物复合金属氧化物纳米粉体及其制备、应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties;Yue Jiang et al.;《Journal of Materials Chemistry C》;20180719(第6期);第8679-8687页 *

Also Published As

Publication number Publication date
CN109180186A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109180186B (zh) 仿生珍珠层max相碳化物陶瓷基复合材料的制备方法
CN107522475B (zh) 一种仿贝壳陶瓷基复合材料及其制备方法
CN108484171B (zh) 一种碳化硼-硼化钛复相陶瓷材料及其无压烧结制备方法
CN102703742B (zh) 一种基体为纳米叠层结构的金属基复合材料及其制备方法
CN103895285B (zh) 高强度层状Al基金属陶瓷复合材料及其制备方法
CN108994301B (zh) 以纳米碳材料增强的金属基仿生复合材料及其制备方法
CN109928756B (zh) 一种碳化硅增强碳基复合材料及制备方法
WO2020135404A1 (zh) 一种Ti(C,N)基超硬金属复合材料及其制备方法
CN102644000B (zh) 一种高强韧金属基纳米复合材料的制备方法
CN109180187B (zh) 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法
CN110434343B (zh) 一种W-Cu连续梯度复合材料的制备方法
CN105506341B (zh) Mg合金/Al2O3复合材料及制备方法
CN105272229A (zh) 含烧绿石相锆酸钆粉体的陶瓷及其制备方法
CN110282977B (zh) 一种B4C/TiB2层状复合陶瓷材料的制备方法
CN108218467B (zh) 一种高孔隙率及低热导率多孔纳米碳化硅陶瓷的制备方法
CN115677364A (zh) 一种多层次碳化锆增强碳基复合材料及其制备方法和应用
CN112592188A (zh) 一种石墨烯复合碳化硅陶瓷材料的制备方法
Wang et al. MXene reconciles concurrent enhancement of thermal conductivity and mechanical robustness of SiC-based thermal energy storage composites
CN111995413A (zh) 以碳化硅晶须增韧的防弹装甲用氧化铝复合陶瓷材料及其制备方法
Zhao et al. An overview of ultra-high temperature ceramic for thermal insulation: structure and composition design with thermal conductivity regulation
CN108178636B (zh) 一种Si3N4/SiC复合吸波陶瓷及其制备方法
CN116396089B (zh) 一种三维碳化硅/碳化钼陶瓷骨架增强碳基复合材料及其制备方法和应用
CN113698215A (zh) 一种致密的层状碳化硅陶瓷及其制备方法
CN116161960B (zh) 一种超细碳化硼流延浆料及其陶瓷的制备方法
CN115259859B (zh) 一种碳化硼防弹陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant