CN109174026A - 一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法 - Google Patents

一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法 Download PDF

Info

Publication number
CN109174026A
CN109174026A CN201811088107.0A CN201811088107A CN109174026A CN 109174026 A CN109174026 A CN 109174026A CN 201811088107 A CN201811088107 A CN 201811088107A CN 109174026 A CN109174026 A CN 109174026A
Authority
CN
China
Prior art keywords
microalgae
adsorption agent
biological adsorption
compound
microballoon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811088107.0A
Other languages
English (en)
Other versions
CN109174026B (zh
Inventor
高锋
杨红丽
侯慧巧
阚家薇
寿晔子
张文静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN201811088107.0A priority Critical patent/CN109174026B/zh
Publication of CN109174026A publication Critical patent/CN109174026A/zh
Application granted granted Critical
Publication of CN109174026B publication Critical patent/CN109174026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Inorganic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明涉及废水处理技术领域,公开了一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法。本发明的复合型微藻生物吸附剂微球包括微藻细胞、磁性Fe3O4纳米粒子、玉米芯活性炭和海藻酸钠。微藻细胞与磁性Fe3O4纳米粒子的聚合物,经过玉米芯活性炭吸附,然后再与海藻酸钠进行混合包埋固定制备复合型微藻生物吸附剂微球。该复合型微藻生物吸附剂微球具有吸附容量大、吸附速率快、操作简单方便等优点,且内含磁性Fe3O4纳米粒子,处理完废水后能方便实现吸附剂的快速回收。将该复合型微藻生物吸附剂微球用于废水中重金属离子铬的吸附去除,取得了良好的去除效果。

Description

一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法
技术领域
本发明涉及废水处理技术领域,尤其涉及一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法。
背景技术
重金属铬(Cr)污染主要来源于劣质化妆品原料、皮革制剂、金属部件镀铬部分、工业颜料以及鞣革、橡胶和陶瓷原料等,这些污染源通过工业和生活污水排放进入水环境中,对人类健康和生态环境造成极大的威胁。
常见的重金属铬(Cr)处理方法有化学沉淀法、离子交换法、吸附法等方法。吸附法用于废水中重金属污染物的去除具有操作过程灵活方便、能实现深度处理、通过解吸能回收废水中的重金属离子等优点,已被广泛应用于各类重金属废水的处理中。
微藻的生长速率快,培养成本低,且能有效吸附和富集水中的一些金属离子,是一种高效的活体生物吸附剂。在传统的微藻吸附废水中污染物的处理中,微藻通常处于悬浮生长的状态,容易从反应器中流失,并且处理完成后微藻与废水的分离带来较大的操作成本,而且悬浮生长的微藻对毒性物质的抵抗力较弱,在废水中重金属等污染物的作用下,其活性往往难以维持,导致整体的处理效率较低。
中国专利申请公开号为CN105561922A的专利,公开了一种藻类生物吸附剂的制备方法。通过对藻类先进行物理加工干燥、粉碎,再经过化学处理,去除海藻上吸附的杂质,通过在高温、强酸的条件下使海藻失去活性,再和改性后活性污泥混合,通过炭化包覆在颗粒表面得到可以处理重金属废水的生物吸附剂。该吸附剂吸附后与废水的分离困难,且死亡藻无法将重金属代谢掉,想要回收利用需进行复杂的脱附处理。
发明内容
为了解决上述技术问题,本发明提供了一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法。该复合型微藻生物吸附剂微球具有吸附容量大、吸附速率快、操作简单方便等优点,且内含磁性Fe3O4纳米粒子,处理完废水后能方便实现吸附剂的快速回收。将该复合型微藻生物吸附剂微球用于废水中重金属离子铬的吸附去除,取得了良好的去除效果。
本发明的具体技术方案为:一种复合型微藻生物吸附剂微球,包括微藻细胞、磁性Fe3O4纳米粒子、玉米芯活性炭和海藻酸钠。
本发明将微藻细胞与磁性Fe3O4纳米粒子进行吸附连接,得到微藻细胞与磁性Fe3O4纳米粒子的聚合物,然后用玉米芯活性炭进行负载,最后与海藻酸钠进行混合包埋固定制备复合型微藻生物吸附剂微球。微藻细胞与磁性Fe3O4纳米粒子形成聚合物,使得微藻在吸附废水中的铬后能够快速的从废水中分离出来。将微藻与磁性Fe3O4纳米粒子的聚合物用玉米芯活性炭负载后再与海藻酸钠混合包埋制成微球,由于玉米芯活性炭和海藻酸钠都能一定程度的吸附铬离子,使得复合型微藻生物吸附剂微球适用的铬离子的浓度范围增大,同时,微藻能够吸收玉米芯活性炭和海藻酸钠上的铬离子,使复合型微藻生物吸附剂微球中的铬离子达到动态平衡。本发明的复合型微藻生物吸附剂微球的环境适应性强,对重金属的吸附量大,解决了微藻对毒性物质的抵抗力较弱,在废水中重金属等污染物的作用下,活性难以维持,整体处理效率较低的难题。
作为优选,所述微藻细胞为小球藻、栅藻、葡萄藻中的至少一种。
作为优选,所述玉米芯活性炭的制备方法为:将成熟期的玉米芯研磨后,在惰性气氛下以2~3℃/min的升温速率升温至400~450℃,煅烧1~2h,再以8~10℃/min的升温速率升温至600~640℃,煅烧2~3h,将得到的活性炭与KOH以质量比1∶2~5的比例混合均匀,在600~640℃条件下煅烧1~2h,得到玉米芯活性炭。
玉米芯中有机质含量高达91.3%,将其制备成活性炭时活性炭的收率高。由于在作物的成熟期,秸秆、叶片等中的镁元素会被植物输送到籽粒中,因此,与稻壳、玉米秸秆等生物质相比,玉米芯中含有更多的镁元素,镁元素能够促进微藻细胞中叶绿素的合成,能够在一定程度上提高微藻细胞的活性。同时,玉米芯能够吸收4倍于自身重量的液体,将其制备成活性炭后吸附能力进一步增加。普通的玉米芯活性碳的孔道较为单一,利用普通的玉米芯活性炭负载微藻时,微藻容易从孔道中脱出。利用本发明的方法制备的玉米芯活性炭具有互相连通的孔道结构,微藻不易从玉米芯活性炭的孔道中脱出。因此,本发明的煅烧工艺是专门针对本发明特定的能容纳微藻的孔径尺寸的玉米芯活性炭而设计的,常规的煅烧工艺无法达到本发明的目的。
本发明先在较低的升温速率在较低温度下烧去玉米芯中的燃点较低的碳水化合物,得到大量孔径大小均匀、分布均匀的小孔。然后在较高的升温速率在较高的温度下焙烧2~3h,烧去玉米芯中的粗纤维等大分子物质,在较高的升温速率及较高的温度下,活性炭的孔径不断的扩大,并开始在孔道壁上进一步成孔。最后将得到的活性炭与氢氧化钾混合均匀后焙烧,在将活性炭的孔径扩大的同时,将活性炭中的孔道连通。在本发明的焙烧温度下,玉米芯中的镁元素不会流失出去。当焙烧温度过高时,玉米芯中的镁元素容易流失,镁流失的玉米芯活性炭将无法为微藻提供合成叶绿素的镁元素,也就无法提高微藻的活性。利用本发明的焙烧方法,能够得到孔径大小合适且孔道之间相互连通的玉米芯活性炭,改变本发明的工艺参数,将无法得到本发明所需的特定孔道的玉米芯活性炭。
作为优选,所述复合型微藻生物吸附剂微球的制备方法包括以下步骤:
(1)将微藻细胞在BG11培养基中培养4~6d,然后离心,去除上清液,下层物质即为微藻生物浓缩液;
(2)用无菌水将微藻生物浓缩液调节成OD680为1~1.5的藻液,向藻液中加入磁性Fe3O4纳米粒子,恒温震荡2~4天,得微藻细胞与磁性Fe3O4纳米粒子的聚合物溶液;
(3)向聚合物溶液加入玉米芯活性炭常温搅拌吸附10~12h,过滤、洗净后得玉米芯活性炭固定的微藻细胞与磁性Fe3O4纳米粒子的聚合物,将其加入海藻酸钠溶液中,混合均匀后逐滴滴入CaCl2溶液中,得到复合型微藻生物吸附剂微球。
本发明的复合型微藻生物吸附剂微球的制备方法简单,容易操作,适合大规模生产,且利用本发明的方法制备的复合型微藻生物吸附剂微球的吸附量大,适用条件范围增大,微藻在废水中的活性高且持久。本发明中,用玉米芯活性炭吸附微藻细胞与磁性Fe3O4纳米粒子的聚合物后用海藻酸钠进一步包埋,不仅能够保证微藻细胞不易从玉米芯活性炭的孔道中脱出,同时能够进一步增强复合型微藻生物吸附剂微球的耐毒性。
作为优选,步骤(2)中,所述磁性Fe3O4纳米粒子的加入量为每升藻液中添加0.2~0.4g。磁性Fe3O4纳米粒子的加入量对微藻的生长具有较大的影响,当磁性Fe3O4纳米粒子的加入量过多时,微藻的生长速率缓慢。当磁性Fe3O4纳米粒子的加入量过少时,不利于复合型微藻生物吸附剂微球的分离。
作为优选,所述磁性Fe3O4纳米粒子的制备方法为:用FeCl3、FeSO4和盐酸配制酸性铁盐溶液,使Fe3+、Fe2+和HCl的摩尔比为1.0~2.5:1:1,将铁盐溶液滴加到质量分数为20~30%的氨水中,铁盐溶液和氨水的体积比为1:3~5,搅拌均匀,待产物颜色变棕色后,静置沉淀并进行磁力分离,将多余的液体倒去,用磁铁吸住底部的沉淀并加入蒸馏水清洗3~4次,过滤获得Fe3O4,真空冷冻干燥36~72h,制得磁性Fe3O4纳米粒子。本发明制备磁性Fe3O4纳米粒子的方法简单,且无需加热处理,制备的磁性Fe3O4纳米粒子粒度均匀。
作为优选,步骤(3)中,所述海藻酸钠溶液的浓度为5~7wt%;CaCl2溶液的浓度为3~4wt%。海藻酸钠的量对微藻的生长活性具有很大的影响,当海藻酸钠的量过多时会影响微藻的活性,且制备的微球的孔径过小,使得铬离子的吸附速率缓慢。当海藻酸钠的量过少时,形成的微球中海藻酸钠的孔过大,使得微藻的耐毒性较差。CaCl2作为凝固剂具有使海藻酸钠形成凝胶珠的作用。
作为优选,所述复合型微藻生物吸附剂微球的直径为2~5mm,微球中的生物量为1.0×109~6.0×109cell/g。
一种复合型微藻生物吸附剂微球吸附废水中铬的方法,所述方法为:将复合型微藻生物吸附剂微球加入含铬废水中,震荡,吸附完成后对废水中的微藻生物吸附剂进行快速磁力分离,采用原子吸收分光光度法测定废水中总铬浓度,计算去除率。
作为优选,所述废水中总铬浓度为5~40mg/L,每升废水中加入20~30g复合型微藻生物吸附剂微球,吸附温度为25~35℃、pH为5~9。
废水中总铬浓度在5~40mg/L、吸附温度为25~35℃、pH控制在5~9时,复合型微藻生物吸附剂微球吸附中的微藻表现出最高的吸附活性,震荡有助于废水中的铬不断的扩散到复合型微藻生物吸附剂微球中。
与现有技术对比,本发明的有益效果是:本发明的复合型微藻生物吸附剂微球具有吸附容量大、吸附速率快、操作简单方便等优点,且内含磁性Fe3O4纳米粒子,处理完废水后能方便实现吸附剂的快速回收。将该复合型微藻生物吸附剂微球用于废水中重金属离子铬的吸附去除,取得了良好的去除效果。
具体实施方式
下面结合实施例对本发明作进一步的描述。在本发明中所涉及的装置、连接结构和方法,若无特指,均为本领域公知的装置、连接结构和方法。
实施例1
一种复合型微藻生物吸附剂微球,包括小球藻细胞、磁性Fe3O4纳米粒子、玉米芯活性炭和海藻酸钠。其制备方法包括以下步骤:
(1)将小球藻细胞在BG11培养基中培养5d,然后在4000rpm的转速下离心8min,去除上清液,下层物质即为小球藻生物浓缩液;
(2)用无菌水将小球藻生物浓缩液调节成OD680为1.3的藻液,向藻液中加入磁性Fe3O4纳米粒子,每升藻液中添加0.3g磁性Fe3O4纳米粒子,恒温震荡3d,得小球藻细胞与磁性Fe3O4纳米粒子的聚合物溶液;
(3)向聚合物溶液加入玉米芯活性炭常温搅拌吸附11h,过滤、洗净后得玉米芯活性炭固定的小球藻细胞与磁性Fe3O4纳米粒子的聚合物,将其加入浓度为6wt%海藻酸钠溶液中,混合均匀后逐滴滴入浓度为3.5wt%的CaCl2溶液中,得到直径为4mm、生物量为3.5×109cell/g的复合型微藻生物吸附剂微球。
其中,玉米芯活性炭的制备方法为:将成熟期的玉米芯研磨后,在惰性气氛下以2℃/min的升温速率升温至430℃,煅烧1.5h,再以9℃/min的升温速率升温至620℃,煅烧2.5h,将得到的活性炭与KOH以质量比1∶4的比例混合均匀,在620℃条件下煅烧1.5h,得到玉米芯活性炭。
磁性Fe3O4纳米粒子的制备方法为:用FeCl3、FeSO4和盐酸配制酸性铁盐溶液,使Fe3 +、Fe2+和HCl的摩尔比为1.8:1:1,将铁盐溶液滴加到质量分数为25%的氨水中,铁盐溶液和氨水的体积比为1:4,搅拌均匀,待产物颜色变棕色后,静置沉淀并进行磁力分离,将多余的液体倒去,用磁铁吸住底部的沉淀并加入蒸馏水清洗3次,过滤获得Fe3O4,真空冷冻干燥54h,制得磁性Fe3O4纳米粒子。本发明制备磁性Fe3O4纳米粒子的方法简单,且无需加热处理,制备的磁性Fe3O4纳米粒子粒度均匀。
一种复合型微藻生物吸附剂微球吸附废水中铬的方法,具体为:将复合型微藻生物吸附剂微球加入含铬废水中,废水中总铬浓度为25mg/L,每升废水中加入25g复合型微藻生物吸附剂微球,吸附温度为30℃,pH控制在8,震荡,吸附完成后对废水中的微藻生物吸附剂进行快速磁力分离,采用原子吸收分光光度法测定废水中总铬浓度,计算去除率。
实施例2
一种复合型微藻生物吸附剂微球,包括栅藻细胞、磁性Fe3O4纳米粒子和海藻酸钠。其制备方法包括以下步骤:
(1)将栅藻细胞在BG11培养基中培养6d,然后在5000rpm的转速下离心5min,去除上清液,下层物质即为栅藻生物浓缩液;
(2)用无菌水将栅藻生物浓缩液调节成OD680为1.5的藻液,向藻液中加入磁性Fe3O4纳米粒子,每升藻液中添加0.4g磁性Fe3O4纳米粒子,恒温震荡4d,得栅藻细胞与磁性Fe3O4纳米粒子的聚合物溶液;
(3)向聚合物溶液加入玉米芯活性炭常温搅拌吸附12h,过滤、洗净后得玉米芯活性炭固定的栅藻细胞与磁性Fe3O4纳米粒子的聚合物,将其加入浓度为6wt%海藻酸钠溶液中,混合均匀后逐滴滴入浓度为4wt%的CaCl2溶液中,得到直径为5mm、生物量为6.0×109cell/g的复合型微藻生物吸附剂微球。
其中,玉米芯活性炭的制备方法为:将成熟期的玉米芯研磨后,在惰性气氛下以3℃/min的升温速率升温至450℃,煅烧2h,再以10℃/min的升温速率升温至640℃,煅烧3h,将得到的活性炭与KOH以质量比1∶5的比例混合均匀,在640℃条件下煅烧2h,得到玉米芯活性炭。
磁性Fe3O4纳米粒子的制备方法为:用FeCl3、FeSO4和盐酸配制酸性铁盐溶液,使Fe3 +、Fe2+和HCl的摩尔比为2.5:1:1,将铁盐溶液滴加到质量分数为30%的氨水中,铁盐溶液和氨水的体积比为1:5,搅拌均匀,待产物颜色变棕色后,静置沉淀并进行磁力分离,将多余的液体倒去,用磁铁吸住底部的沉淀并加入蒸馏水清洗4次,过滤获得Fe3O4,真空冷冻干燥72h,制得磁性Fe3O4纳米粒子。本发明制备磁性Fe3O4纳米粒子的方法简单,且无需加热处理,制备的磁性Fe3O4纳米粒子粒度均匀。
一种复合型微藻生物吸附剂微球吸附废水中铬的方法,具体为:将复合型微藻生物吸附剂微球加入含铬废水中,废水中总铬浓度为40mg/L,每升废水中加入30g复合型微藻生物吸附剂微球,吸附温度为35℃,pH控制在9,震荡,吸附完成后对废水中的微藻生物吸附剂进行快速磁力分离,采用原子吸收分光光度法测定废水中总铬浓度,计算去除率。
实施例3
实施例3与实施例1的不同之处在于:吸附pH控制在4,其他均与实施例1相同。
实施例4
实施例4与实施例1的不同之处在于:吸附pH控制在5,其他均与实施例1相同。
实施例5
实施例5与实施例1的不同之处在于:吸附pH控制在6,其他均与实施例1相同。
实施例6
实施例6与实施例1的不同之处在于:吸附pH控制在7,其他均与实施例1相同。
对比例1
对比例1与实施例1的不同之处在于:采用悬浮的小球藻进行废水中铬的吸附,微藻的加入量与复合型微藻生物吸附剂微球的加入量相同。其他均与实施例1相同。
对比例2
对比例2与实施例2的不同之处在于:采用悬浮的栅藻进行废水中铬的吸附,微藻的加入量与复合型微藻生物吸附剂微球的加入量相同。其他均与实施例2相同。
对比例3
对比例3与实施例1的不同之处在于:吸附pH控制在4,且采用悬浮的小球藻进行废水中铬的吸附,微藻的加入量与复合型微藻生物吸附剂微球的加入量相同。其他均与实施例1相同。
对比例4
对比例4与实施例1的不同之处在于:吸附pH控制在5,采用悬浮的小球藻进行废水中铬的吸附,微藻的加入量与复合型微藻生物吸附剂微球的加入量相同。其他均与实施例1相同。
对比例5
对比例5与实施例1的不同之处在于:吸附pH控制在6,采用悬浮的小球藻进行废水中铬的吸附,微藻的加入量与复合型微藻生物吸附剂微球的加入量相同。其他均与实施例1相同。
对比例6
对比例6与实施例1的不同之处在于:吸附pH控制在7,采用悬浮的小球藻进行废水中铬的吸附,微藻的加入量与复合型微藻生物吸附剂微球的加入量相同。其他均与实施例1相同。
实施例1~6和对比例1~6中铬的去除率如表1所示。
表1
组数 铬去除率(%) 组数 铬去除率(%)
实施例1 53.2 对比例1 23.1
实施例2 83.5 对比例2 32.5
实施例3 84.2 对比例3 25.7
实施例4 91.3 对比例4 39.9
实施例5 95.0 对比例5 40.3
实施例6 90.2 对比例6 35.6
由表1中数据可见复合型微藻生物吸附剂微球相比于悬浮微藻取得了明显更高的废水中铬的去除率,且通过复合固定以后明显提高了微藻在重金属去除方面的稳定性,在pH值5~9的范围内均取得了很好的铬吸附去除效果。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变换,均仍属于本发明技术方案的保护范围。

Claims (10)

1.一种复合型微藻生物吸附剂微球,其特征在于:所述复合型微藻生物吸附剂微球包括微藻细胞、磁性Fe3O4纳米粒子、玉米芯活性炭和海藻酸钠。
2.如权利要求1所述的一种复合型微藻生物吸附剂微球,其特征在于:所述玉米芯活性炭的制备方法为:将成熟期的玉米芯研磨后,在惰性气氛下以2~3℃/min的升温速率升温至400~450℃,煅烧1~2h,再以8~10℃/min的升温速率升温至600~640℃,煅烧2~3h,将得到的活性炭与KOH以质量比1∶2~5的比例混合均匀,在600~640℃条件下煅烧1~2h,得到玉米芯活性炭。
3.如权利要求1所述的一种复合型微藻生物吸附剂微球,其特征在于:所述微藻细胞为小球藻、栅藻、葡萄藻中的至少一种。
4.如权利要求1任一所述的一种复合型微藻生物吸附剂微球,其特征在于:所述复合型微藻生物吸附剂微球的制备方法包括以下步骤:
(1)将微藻细胞在BG11培养基中培养4~6d,然后离心,去除上清液,下层物质即为微藻生物浓缩液;
(2)用无菌水将微藻生物浓缩液调节成OD680为1~1.5的藻液,向藻液中加入磁性Fe3O4纳米粒子,恒温震荡2~4天,得微藻细胞与磁性Fe3O4纳米粒子的聚合物溶液;
(3)向聚合物溶液加入玉米芯活性炭常温搅拌吸附10~12h,过滤、洗净后得玉米芯活性炭固定的微藻细胞与磁性Fe3O4纳米粒子的聚合物,将其加入海藻酸钠溶液中,混合均匀后逐滴滴入CaCl2溶液中,得到复合型微藻生物吸附剂微球。
5.如权利要求4所述的一种复合型微藻生物吸附剂微球,其特征在于:步骤(2)中,所述磁性Fe3O4纳米粒子的加入量为每升藻液中添加0.2~0.4g。
6.如权利要求5所述的一种复合型微藻生物吸附剂微球,其特征在于:所述磁性Fe3O4纳米粒子的制备方法为:用FeCl3、FeSO4和盐酸配制酸性铁盐溶液,使Fe3+、Fe2+和HCl的摩尔比为1.0~2.5:1:1,将铁盐溶液滴加到质量分数为20~30%的氨水中,铁盐溶液和氨水的体积比为1:3~5,搅拌均匀,待产物颜色变棕色后,静置沉淀并进行磁力分离,将多余的液体倒去,用磁铁吸住底部的沉淀并加入蒸馏水清洗3~4次,过滤获得Fe3O4,真空冷冻干燥36~72h,制得磁性Fe3O4纳米粒子。
7.如权利要求4所述的一种复合型微藻生物吸附剂微球,其特征在于:步骤(3)中,所述海藻酸钠溶液的浓度为5~7wt%;CaCl2溶液的浓度为3~4wt%。
8.如权利要求4所述的一种复合型微藻生物吸附剂微球,其特征在于:所述复合型微藻生物吸附剂微球的直径为2~5mm;微球中的生物量为1.0×109~6.0×109cell/g。
9.一种如权利要求1~8任一所述的复合型微藻生物吸附剂微球吸附废水中铬的方法,其特征在于所述方法为:将复合型微藻生物吸附剂微球加入含铬废水中,震荡,吸附完成后对废水中的微藻生物吸附剂进行快速磁力分离,采用原子吸收分光光度法测定废水中总铬浓度,计算去除率。
10.如权利要求9所述的一种复合型微藻生物吸附剂微球吸附废水中铬的方法,其特征在于:所述废水中总铬浓度为5~40mg/L,每升废水中加入20~30g复合型微藻生物吸附剂微球,吸附温度为25~35℃、pH为5~9。
CN201811088107.0A 2018-09-18 2018-09-18 一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法 Active CN109174026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811088107.0A CN109174026B (zh) 2018-09-18 2018-09-18 一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811088107.0A CN109174026B (zh) 2018-09-18 2018-09-18 一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法

Publications (2)

Publication Number Publication Date
CN109174026A true CN109174026A (zh) 2019-01-11
CN109174026B CN109174026B (zh) 2022-01-18

Family

ID=64908138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811088107.0A Active CN109174026B (zh) 2018-09-18 2018-09-18 一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法

Country Status (1)

Country Link
CN (1) CN109174026B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241111A (zh) * 2019-06-17 2019-09-17 中南大学 一种改性活性炭固定化细胞增强细菌铬还原能力的方法
CN110947369A (zh) * 2019-11-30 2020-04-03 河南永泽环境科技有限公司 一种微藻基磁性石墨烯和生物炭的制备方法及应用
CN111470720A (zh) * 2020-04-16 2020-07-31 南昌航空大学 一种负载型微藻对稀土矿废水的脱氮方法
CN111729624A (zh) * 2020-07-08 2020-10-02 江苏科技大学 一种用于环境修复的生物凝胶的制备及应用方法
CN111747607A (zh) * 2020-06-10 2020-10-09 苏州华烯环保科技有限公司 一种废水处理装置
CN112599673A (zh) * 2020-12-14 2021-04-02 苏州科技大学 利用氧化铁薄膜构筑的钙钛矿太阳能电池及其制备方法
CN114471479A (zh) * 2022-03-01 2022-05-13 山东省分析测试中心 一种新型负载小球藻的椰壳活性炭吸附剂及其制备方法与应用
CN115869922A (zh) * 2022-12-20 2023-03-31 扬州大学 一种海藻酸钠包埋的竹炭-绿藻活性细胞凝胶小球吸附材料的制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673777A (zh) * 2014-12-31 2015-06-03 浙江至美环境科技有限公司 微生物微球及其制备方法和应用
CN105060493A (zh) * 2015-08-22 2015-11-18 湖南生物机电职业技术学院 一种水藻固定化技术
CN105233792A (zh) * 2015-10-10 2016-01-13 中国科学院上海高等研究院 一种基于微藻的磁性生物碳复合材料制备方法
CN107262039A (zh) * 2017-08-10 2017-10-20 福州大学 一种高分子生物炭球固定化微藻复合吸附剂及其制备与应用
CN107893064A (zh) * 2017-11-16 2018-04-10 信阳师范学院 生物炭‑聚乙烯醇联合固定的微藻小球的制备方法及其应用
CN108085313A (zh) * 2017-12-29 2018-05-29 西安石油大学 一种微藻半固化混养处理压裂返排液的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673777A (zh) * 2014-12-31 2015-06-03 浙江至美环境科技有限公司 微生物微球及其制备方法和应用
CN105060493A (zh) * 2015-08-22 2015-11-18 湖南生物机电职业技术学院 一种水藻固定化技术
CN105233792A (zh) * 2015-10-10 2016-01-13 中国科学院上海高等研究院 一种基于微藻的磁性生物碳复合材料制备方法
CN107262039A (zh) * 2017-08-10 2017-10-20 福州大学 一种高分子生物炭球固定化微藻复合吸附剂及其制备与应用
CN107893064A (zh) * 2017-11-16 2018-04-10 信阳师范学院 生物炭‑聚乙烯醇联合固定的微藻小球的制备方法及其应用
CN108085313A (zh) * 2017-12-29 2018-05-29 西安石油大学 一种微藻半固化混养处理压裂返排液的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
廖鹏飞,等: "钝顶螺旋藻磁性生物吸附剂的制备及对铬(VI)的吸附性能", 《中南大学学报(自然科学版)》 *
郭云海,等: "玉米芯活性炭的制备及性能研究", 《无机盐工业》 *
陈小霞,等: "固定化小球藻去除Cr6+的研究", 《海洋通报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241111A (zh) * 2019-06-17 2019-09-17 中南大学 一种改性活性炭固定化细胞增强细菌铬还原能力的方法
CN110947369A (zh) * 2019-11-30 2020-04-03 河南永泽环境科技有限公司 一种微藻基磁性石墨烯和生物炭的制备方法及应用
CN111470720A (zh) * 2020-04-16 2020-07-31 南昌航空大学 一种负载型微藻对稀土矿废水的脱氮方法
CN111747607A (zh) * 2020-06-10 2020-10-09 苏州华烯环保科技有限公司 一种废水处理装置
CN111747607B (zh) * 2020-06-10 2022-07-05 张家港市金帆环保科技有限公司 一种废水处理装置
CN111729624A (zh) * 2020-07-08 2020-10-02 江苏科技大学 一种用于环境修复的生物凝胶的制备及应用方法
CN112599673A (zh) * 2020-12-14 2021-04-02 苏州科技大学 利用氧化铁薄膜构筑的钙钛矿太阳能电池及其制备方法
CN112599673B (zh) * 2020-12-14 2024-03-01 苏州科技大学 利用氧化铁薄膜构筑的钙钛矿太阳能电池及其制备方法
CN114471479A (zh) * 2022-03-01 2022-05-13 山东省分析测试中心 一种新型负载小球藻的椰壳活性炭吸附剂及其制备方法与应用
CN115869922A (zh) * 2022-12-20 2023-03-31 扬州大学 一种海藻酸钠包埋的竹炭-绿藻活性细胞凝胶小球吸附材料的制备方法与应用

Also Published As

Publication number Publication date
CN109174026B (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
CN109174026A (zh) 一种复合型微藻生物吸附剂微球及其吸附废水中铬的方法
CN102718327B (zh) 一种水产养殖纳米生物水体修复剂及其制备方法
CN105797693A (zh) 一种用于去除水体中铅镉的磁性谷壳生物炭及其制备和应用方法
CN109012589B (zh) 一种选择性吸附Cr(VI)的尿素改性生物炭及其制备方法和应用方法
CN102616912B (zh) 利用复合型磁性生物吸附剂吸附废水中铅的方法
CN105582890B (zh) 一种复合纳米生物质炭材料的制备方法及其应用
CN108970580A (zh) 一种轻稀土磁性复合活化生物炭及其制备方法与应用
CN103910437B (zh) 去除水体中重金属离子的方法
CN102614839B (zh) 复合型磁性生物吸附剂及其制备方法
CN109678626B (zh) 用于汞污染农田修复的土壤调理剂及其制备方法与应用
CN112007609A (zh) Fe-Mg/桑树杆生物炭复合材料的制备方法及应用
CN107512977A (zh) 一种em纳米生物炭基土壤调理剂的制备方法及其应用
CN110449124A (zh) 一种用造纸污泥生物碳加强去除水体磷酸盐的方法
CN104957009A (zh) 采用otc与碳纳米管隔层调控草坪草重金属富集的方法
CN109395700A (zh) 一种复合型微藻生物吸附剂及其吸附剂吸附废水中镉的方法
CN104904574A (zh) 采用环草隆与碳纳米管隔层调控草坪草重金属富集的方法
CN107151665A (zh) 固定化内生菌生物吸附剂处理含铅废水的方法
CN112592855A (zh) 一株枯草芽孢杆菌及其处理铀、镉污染水体的方法
CN107893064A (zh) 生物炭‑聚乙烯醇联合固定的微藻小球的制备方法及其应用
CN109225163A (zh) 一种复合型磁性微藻生物吸附剂及其吸附废水中镉的方法
CN106512933B (zh) 一种同时吸附脱除卡马西平和磺胺甲恶唑的吸附剂的制备方法
CN110241111B (zh) 一种改性活性炭固定化细胞增强细菌铬还原能力的方法
CN107684898A (zh) 一种微量氧气气氛热解制备毛竹生物炭的方法
CN110550709A (zh) 一种负载银颗粒的杀菌生物炭及其制备方法
CN112047490A (zh) 生物炭协同复合菌去除城市河道水体中氨氮的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant