CN109091490A - 腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用 - Google Patents

腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用 Download PDF

Info

Publication number
CN109091490A
CN109091490A CN201810863362.1A CN201810863362A CN109091490A CN 109091490 A CN109091490 A CN 109091490A CN 201810863362 A CN201810863362 A CN 201810863362A CN 109091490 A CN109091490 A CN 109091490A
Authority
CN
China
Prior art keywords
adenosine
autophagy
colon cancer
cell
apoptosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810863362.1A
Other languages
English (en)
Inventor
杨冬琴
余顺吉
候代森
张文丽
吴梦梦
汤子慧
吴利俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huashan Hospital of Fudan University
Original Assignee
Huashan Hospital of Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huashan Hospital of Fudan University filed Critical Huashan Hospital of Fudan University
Priority to CN201810863362.1A priority Critical patent/CN109091490A/zh
Publication of CN109091490A publication Critical patent/CN109091490A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47064-Aminoquinolines; 8-Aminoquinolines, e.g. chloroquine, primaquine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • A61K31/585Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin containing lactone rings, e.g. oxandrolone, bufalin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及药物技术领域,具体是腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用。本发明优点在于:本发明首次发现腺苷在结肠癌细胞中通过抑制PI3K/Akt/mTOR信号通路诱导自噬发生;从表型发生的顺序上看,腺苷诱导的凋亡在先,自噬发生在后。下调自噬相关基因的表达能促进腺苷诱导的结肠癌细胞凋亡的比例,因此腺苷联合自噬抑制剂(如氯喹或3‑甲基腺嘌呤)可以更加彻底地杀伤结肠癌细胞,获得更好的临床治疗效果。

Description

腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用
技术领域
本发明涉及药物技术领域,具体地说,是一种生物代谢ATP衍生物:腺苷,以及自噬抑制剂联用在制备结肠癌治疗药物中的应用。
背景技术
结肠癌是常见的发生于结肠部位的消化道恶性肿瘤。发病率占胃肠道肿瘤的第3位。每年全世界新生病例超过一百万例,死亡病例约五十万。发病主要原因是高脂肪食谱和纤维摄入不足。结肠慢性炎症使肠癌的发生率比一般正常人群高。有结肠息肉者,结肠癌发病率是无结肠息肉者的5倍。家族性多发性肠息肉瘤,癌变的发生率更高。遗传因素可能也参与结肠癌的发病。尽管手术切除是有效的治疗方案,但是术后复发和转移风险性仍相当地高。术后复发是由于体内残余癌细胞作怪,或者未将病灶完全切除。在剖腹手术前,常常先进行肿瘤肠腔内化疗或直肠癌术前灌肠给药,可阻止癌细胞扩散,杀伤和消灭癌细胞。术后继续化疗治疗,有可能提高结肠癌手术后的5年生存率。对于手术处理不了的或术后为防止转移的患者,只有再继续进行化疗,其实效果一般不太理想。这就迫切需要我们探寻切实可行的新药来治疗这种顽疾。
腺苷,嘌呤核苷,是生命动力ATP的代谢物之一,参与许多的基本生物学过程,包括了核苷的生物合成和细胞的能量代谢。它广泛存在于组织、器官以及各个细胞中。腺苷,因ATP的降解而产生,并被释放到细胞外。在胞内,腺苷也可以进一步被代谢成肌苷和次黄嘌呤。近年来,有越来越多的报道称腺苷对细胞生长和分化有重要影响。胞外腺苷大体通过两种不同机制来影响细胞。一个是外援机制。腺苷与细胞膜表面的腺苷受体相互结合,这些受体再募集胞内的各类G蛋白,从而激活各自的信号通路,影响靶细胞。另一个是依靠内在通路发挥生物学活性。细胞膜表面的腺苷转运体与腺苷直接发生作用,将腺苷摄入细胞内。腺苷在细胞内最终被腺苷激酶转化成AMP,再影响AMP激活蛋白激酶AMPK的活性。
到目前为止,有多篇文献文献报道腺苷能够在多种肿瘤细胞中诱发凋亡([1]D.Yang,T.Yaguchi,C.-R.Lim,Y.Ishizawa,T.Nakano,T.Nishizaki,Tuning ofapoptosis-mediator gene transcription in HepG2 human hepatoma cells throughan adenosine signal,Cancer Letters 291(2010)225-229.[2]S.G.Kim,G.Ravi,C.Hoffmann,Y.J.Jung,M.Kim,A.S.Chen,K.A.Jacobson,p53-independent induction ofFas and apoptosis in leukemic cells by an adenosine derivative,Cl-IB-MECA,Biochemical Pharmacology 63(2002)871-880.[3]P.Mlejnek,P.Dolezel,P.Kosztyu,P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N-6-(3-iodobenzyl)-adenosine-5'-n-methyluronamide in human leukemia cells,Journal of Cellular Physiology 227(2012)676-685.[4]S.Cohen,S.M.Stemmer,G.Zozulya,A.Ochaion,R.Patoka,F.Barer,S.Bar-Yehuda,L.Rath-Wolfson,K.A.Jacobson,P.Fishman,CF102 an A(3)Adenosine Receptor Agonist Mediates Anti-Tumor and Anti-Inflammatory Effects in the Liver,Journal of CellularPhysiology 226(2011)2438-2447.[5]S.Morello,R.Sorrentino,A.Porta,G.Forte,A.Popolo,A.Petrella,A.Pinto,CI-IB-MECA Enhances TRAIL-Induced Apoptosis viathe Modulation of NF-kappa B Signalling Pathway in Thyroid Cancer Cells,Journal of Cellular Physiology 221(2009)378-386.[6]Y.Yasuda,M.Saito,T.Yamamura,T.Yaguchi,T.Nishizaki,Extracellular adenosine induces apoptosis inCaco-2 human colonic cancer cells by activating caspase-9/-3via A(2a)adenosine receptors,Journal of Gastroenterology 44(2009)56-65.[7]K.Tamura,T.Kanno,Y.Fujita,A.Gotoh,T.Nakano,T.Nishizaki,A2a adenosine receptor mediatesHepG2 cell apoptosis by downregulating Bcl-XL expression and upregulating bidexpression,Journal of Cellular Biochemistry 113(2012)1766-1775.[8]J.S.Long,D.Crighton,J.O'Prey,G.MacKay,L.Zheng,T.M.Palmer,E.Gottlieb,K.M.Ryan,Extracellular Adenosine Sensing-A Metabolic Cell Death Priming MechanismDownstream of p53,Molecular Cell 50(2013)394-406.[9]T.-i.Otsuki,T.Kanno,Y.Fujita,C.Tabata,K.Fukuoka,T.Nakano,A.Gotoh,T.Nishizaki,A(3)AdenosineReceptor-Mediated p53-Dependent Apoptosis in Lu-65Human Lung Cancer Cells,Cellular Physiology and Biochemistry 30(2012)210-220.[10]M.Aghaei,F.Karami-Tehrani,M.Panjehpour,S.Salami,F.Fallahian,Adenosine induces cell-cycle arrestand apoptosis in androgen-dependent and-independent prostate cancer celllines,LNcap-FGC-10,DU-145,and PC3,Prostate72(2012)361-375.[11]M.Aghaei,M.Panjehpour,F.Karami-Tehrani,S.Salami,Molecular mechanisms of A3 adenosinereceptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent andindependent prostate cancer cell lines:involvement of intrinsic pathway,Journal of Cancer Research and Clinical Oncology 137(2011)1511-1523.[12]L.Madi,S.Bar-Yehuda,F.Barer,E.Ardon,A.Ochaion,P.Fishman,A3 adenosine receptoractivation in melanoma cells-Association between receptor fate and tumorgrowth inhibition,Journal of Biological Chemistry 278(2003)42121-42130.[13]P.Fishman,S.Bar-Yehuda,G.Ohana,F.Barer,A.Ochaion,A.Erlanger,L.Madi,An agonistto the A(3)adenosine receptor inhibits colon carcinoma growth in mice viamodulation of GSK-3 beta and NF-kappa B,Oncogene 23(2004)2465-2471.[14]P.Fishman,L.Madi,S.Bar-Yehuda,F.Barer,L.Del Valle,K.Khalili,Evidence forinvolvement of Wnt signaling pathway in IB-MECA mediated suppression ofmelanoma cells,Oncogene 21(2002)4060-4064.[15]J.Lu,A.Pierron,K.Ravid,Anadenosine analogue,IB-MECA,down-regulates estrogen receptor a and suppresseshuman breast cancer cell proliferation,Cancer Research 63(2003)6413-6423.[16]H.Chung,J.Y.Jung,S.D.Cho,K.A.Hong,H.J.Kim,D.H.Shin,H.Kim,H.O.Kim,D.H.Shin,H.W.Lee,L.S.Jeong,G.Kong,The antitumor effect of LJ-529,a novel agonist to A3adenosine receptor,in both estrogen receptor-positive and estrogen receptor-negative human breast cancers,Molecular Cancer Therapeutics 5(2006)685-692.[17]S.Morello,A.Petrella,M.Festa,A.Popolo,M.Monaco,E.Vuttariello,G.Chiappetta,L.Parente,A.Pinto,Cl-IB-MECA inhibits human thyroid cancer cellproliferation independently of A3 adenosine receptor activation,CancerBiology&Therapy 7(2008)278-284.[18]D.Yang,T.Yaguchi,H.Yamamoto,T.Nishizaki,Intracellularly transported adenosine induces apoptosis in HuH-7 humanhepatoma cells by downregulating c-FLIP expression causing caspase-3/-8activation,Biochemical Pharmacology 73(2007)1665-1675.[19]D.Yang,T.Yaguchi,T.Nakano,T.Nishizaki,Adenosine-induced caspase-3 activation by tuning Bcl-X-L/DIABLO/IAP expression in HuH-7 human hepatoma cells,Cell Biology andToxicology 26(2010)319-330.[20]Y.Nogi,T.Kanno,T.Nakano,Y.Fujita,C.Tabata,K.Fukuoka,A.Gotoh,T.Nishizaki,AMP Converted from Intracellularly TransportedAdenosine Upregulates p53 Expression to Induce Malignant Pleural MesotheliomaCell Apoptosis,Cellular Physiology and Biochemistry 30(2012)61-74.[21]D.Yang,T.Yaguchi,T.Nakano,T.Nishizaki,Adenosine Activates AMPK to Phosphorylate Bcl-X-L Responsible for Mitochondrial Damage and DIABLO Release in HuH-7 Cells,Cellular Physiology and Biochemistry 27(2011)71-78.[22]K.Sai,D.Yang,H.Yamamoto,H.Fujikawa,S.Yamamoto,T.Nagata,M.Saito,T.Yamamura,T.Nishizaki,A(1)adenosine receptor signal and AMPK involving caspase-9/-3activation areresponsible for adenosine-induced RCR-1astrocytoma cell death,Neurotoxicology27(2006)458-467.[23]C.Cande,F.Cecconi,P.Dessen,G.Kroemer,Apoptosis-inducing factor(AIF):key to the conserved caspase-independentpathways of cell death?,Journal of Cell Science 115(2002)4727-4734.[24]T.Kanno,A.Gotoh,Y.Fujita,T.Nakano,T.Nishizaki,A(3)Adenosine Receptor MediatesApoptosis in 5637Human Bladder Cancer Cells by G(q)Protein/PKC-Dependent AIFUpregulation,Cellular Physiology and Biochemistry30(2012)1159-1168.),然而,至于腺苷在人结肠癌细胞中诱发自噬尚无文献报道。自噬是一个非常复杂的信号调控通路,是真核细胞持续快速地对千变万幻的外界环境做出实时的应激应对。自噬在腺苷诱导的结肠癌细胞凋亡中发挥作用及相应的分子机制仍不明确。
发明内容
本发明的目的在于针对结肠癌药物疗效不佳,术后复发和转移风险性仍相当地高这一现状,提供一种用于结肠癌临床治疗的高效方案。本发明的另一目的是,提供一种结肠癌治疗的潜在靶标,用以抑制残余结肠癌细胞的增殖。
为实现上述目的,本发明采取的技术方案是:
本发明的第一方面,提供腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用
进一步的,所述的自噬抑制剂促进腺苷引起的结肠癌细胞凋亡。
进一步的,所述的自噬抑制剂为抑制/下调自噬相关基因表达的物质。
进一步的,所述的自噬相关基因为Beclin1或ATG5。
进一步的,所述的自噬抑制剂为抑制自噬相关基因Beclin1或ATG5的蛋白表达的物质。
优选的,所述的自噬抑制剂为氯喹(CQ)或3-甲基腺嘌呤(3-MA)。
优选的,所述的自噬抑制剂还可以是BafilomycinA1(巴佛洛霉素A1)、Hydroxychloroquine(羟氯喹)、Wortmannin(渥曼青霉素)。
本发明的第二方面,提供一种治疗结肠癌的药物组合物,所述的药物组合物包括腺苷和自噬抑制剂,以及其他药学上可以接受的辅料或载体。
本发明的第三方面,提供自噬抑制剂在制备腺苷引起的结肠癌细胞凋亡促进剂中的应用。
进一步的,所述的自噬抑制剂为抑制/下调自噬相关基因表达的物质。
进一步的,所述的自噬相关基因为Beclin1或ATG5。
进一步的,所述的自噬抑制剂为抑制自噬相关基因Beclin1或ATG5的蛋白表达的物质。
优选的,所述的自噬抑制剂为氯喹(CQ)、3-甲基腺嘌呤(3-MA)、BafilomycinA1(巴佛洛霉素A1)、Hydroxychloroquine(羟氯喹)、或Wortmannin(渥曼青霉素)。
本发明优点在于:
本发明首次发现腺苷在结肠癌细胞中通过抑制PI3K/Akt/mTOR信号通路诱导自噬发生;从表型发生的顺序上看,腺苷诱导的凋亡在先,自噬发生在后。下调自噬相关基因的表达能促进腺苷诱导的结肠癌细胞凋亡的比例,因此腺苷联合自噬抑制剂(如氯喹或3-甲基腺嘌呤)可以更加彻底地杀伤结肠癌细胞,获得更好的临床治疗效果。
附图说明
图1:腺苷诱导结肠癌细胞发生自噬图;a-b:腺苷处理后,LC3-II异构体与自噬相关的基因Beclin1和ATG5的表达量对腺苷药物呈现浓度梯度以及时间梯度的增加。(a:SW620和b:SW480)。c-d:GFP点状阳性细胞的比例在两株稳转EGFP-LC3的结肠癌细胞中成显著增加(c:SW620-EGFP-LC3和d:SW480-EGFP-LC3)。e-f:吖啶橙染色实验也证实腺苷在结肠癌细胞中诱发自噬。(e:SW620和f:SW480)。
图2:腺苷通过抑制PI3K/Akt/mTOR信号通路图。
图3:活性氧ROS是诱发结肠癌细胞发生自噬的主要原因;a:腺苷诱导活性氧ROS的产生是依赖于体外腺苷浓度。b-c:利用活性氧抑制剂氮乙酰半胱氨酸NAC或谷胱甘肽GSH预处理后再加腺苷药物,自噬标志物LC3-II的表达量被抑制的同时发现凋亡标志物c-PARP显著增加(b:SW620,c:SW480),d-e:流式进一步检测发现ROS抑制剂抑制细胞自噬的发生同时引起凋亡细胞比例显著上升(d:SW620,e:SW480)。
图4:自噬活性程度下降,细胞凋亡水平显著上升。a-d:p62或ATG5被内源性抑制后,LC3-II的表达量显著减少,凋亡标志物c-PARP的表达量显著增加(a,c:SW620;b,d:SW480)。e-h:流式检测p62或ATG5下调过后与腺苷共处理对细胞凋亡水平的影响(e-f:sip62,g-h:siATG5,e,g:SW620,f,h:SW480)。
图5:验证自噬与凋亡的发生顺序。a-b:Hoechst33258与吖啶橙AO共染证实自噬在细胞凋亡之前发生(a:SW620,b:SW480)。c-d:Western blot检测细胞内凋亡相关蛋白(c-PARP、c-caspase3)与自噬相关蛋白(p-mTOR、LC3)(c:SW620,d:SW480)。
图6:自噬抑制剂氯喹(CQ)或3-甲基腺嘌呤(3-MA)和腺苷联合用药处理结肠癌细胞效果。a-b:Western blot检测了腺苷与自噬抑制剂共处理对细胞凋亡相关蛋白(c-PARP)与自噬相关蛋白(LC3-I/II)表达的影响。c-f:腺苷和自噬抑制剂药物后,与单加有腺苷的细胞相比,细胞存活率显著下降。(c-e:SW620,d,f:SW480)。
图7:自噬抑制剂显著增加腺苷诱导凋亡细胞的比例。a,b:自噬抑制剂CQ(氯奎),c,d:自噬抑制剂3-MA(3-甲基嘌呤)。
具体实施方式
下面结合实施例对本发明提供的具体实施方式作详细说明。
实施例1
一、实验方法
(一)细胞培养和试剂
人结肠癌细胞SW620和SW480购自中科院细胞库。细胞培养于DMEM+10%FBS。CQ、3-MA、Hoechst33258和吖啶橙AO购于Sigma公司。2000购于Invitrogen公司。主要抗体ATG5、Beclin1、p-Akt、mTOR、p-mTOR、p-70S6K、p-EBP1、p62购于CellSignaling Inc,Danvers,USA,LC3购于Abclonal,USA,Actin购于康维生物公司。
(二)结肠癌细胞系的复苏和传代培养
细胞复苏:将SW620细胞和SW80细胞从-80℃超低温冰箱中取出,放入37℃水浴锅中,待其完全融化,转移至带有5ml培养基的15ml离心管中,1200rpm离心5min。丢弃上清液,加入1ml新鲜的含有10%FBS的DMEM培养基,混匀后,转移至带有8ml培养基的10cm培养皿中,混匀后放置于37℃细胞培养箱中进行传代培养;
细胞换液:将细胞培养基吸出,加入1×PBS清洗2遍吸出,按照培养皿/细胞板的大小加入相应体积的新鲜培养基即可;
细胞传代:待培养皿中的细胞密度达到90%以上时即可进行传代,吸出培养基,加1×PBS清洗2遍吸出,加500μl Trypsin-EDTA(10cm培养皿)。待细胞消化成游离的单个细胞时,加入培养基终止消化,吹打混匀,按照一传三比例,传入新的培养皿中,加入培养基即可;
细胞冻存:配置含有10%DMSO的DMEM培养基,放置在4℃冰箱预冷;将细胞消化成游离细胞后,加入培养基终止消化,并将液体转移至15ml离心管。
(三)细胞转染和过表达
RNAiMax转染siRNA,Lipofectamine 2000转染质粒。sip62和siATG5干扰序列购于美吉生物有限公司;pcDNA3和pcDNA3-GFP-LC3。
(四)CCK8实验
细胞下种至96孔板中。SW620细胞下种2500个/孔,SW80细胞下种1600个/孔。过夜培养箱孵育,待细胞贴壁。第二天对细胞进行加药处理。在需要检测前,弃去培液,将CCK8溶液按1:10比例用完全培养基稀释,每孔100μl,置于细胞培养箱中3-4小时。利用酶标仪SPECTRAmax PLUS38检测溶液在50nm处的吸收峰值。
(五)凋亡检测(Annexin V,PI)
1.收集细胞:1×PBS漂洗过后的细胞用0.25%的胰酶在37℃恒温箱消化。待细胞消化成游离的单个细胞时,加入培养基终止消化,吹打混匀。1500rpm,5min,4℃离心,弃去上清。再一次1500rpm,5min,4℃离心,弃去上清;
2.重悬:加入预先配好的1×Annexin V Binding Solution,制成终浓度为1×106个细胞/ml的细胞悬液;
3.染色:向细胞悬液中加入3μl Annexin V,FITC结合物,再加入3μl的PI溶液,室温避光孵育15min后上机检测。
全程置于冰上操作。
(六)提取细胞总蛋白
1.收集细胞:1×PBS漂洗过后的细胞用0.25%的胰酶在37℃恒温箱消化。待细胞消化成游离的单个细胞时,加入培养基终止消化,吹打混匀。1500rpm,5min,4℃离心,弃去上清。再一次1500rpm,5min,4℃离心,弃去上清;
2.裂解:加入中效裂解液,吹匀。裂解30min,每隔10min涡旋震荡;
3.离心:12500rpm,10min,4℃离心,收集上清。
全程置于冰上操作。
(七)BCA蛋白定量
1.标准蛋白浓度曲线的制定:取5个1.5ml的EP管,分别加入25、5、30μl BSA(2mg/ml)标准蛋白,然后再各加入0、15、30μl的去离子水,充分颠倒混匀,构成A、B和C三管;再从B、C管取出20μl液体依次加入至D和E管,D和E管中再加入20μl去离子水,充分颠倒混匀。分别从五管中各取25μl加入96孔板,每孔加入200μl BCA工作液,混匀;37℃恒温箱孵育30min后,用酶标仪在562nm处检测吸光值。
2.实验样品浓度的测定:取5μl样品加入96孔板中,在样品孔中加入20μl去离子水,混匀。每孔加入200μl BCA工作液,混匀;37℃恒温箱孵育30min后,用酶标仪在562nm处检测吸光值。最后根据测定的标准蛋白样品的OD值并参照白蛋白的浓度曲线进行样品浓度的计算;
(八)Western Blot
1.蛋白样品的制备:按照测定的蛋白质浓度并根据所需蛋白上样量计算所需蛋白样品体积;制备总体积为20μl的蛋白样品;95℃变性5min后,-20℃保存或直接进行SDS-PAGE凝胶电泳。
2.SDS-PAGE电泳:将蛋白样品加入至SDS-PAGE凝胶后进行电泳;首先80V,30min;待溴酌蓝全部进入分离胶后,恒压120V,直至溴酌蓝跑至凝胶的边缘;
3.转膜:甲醇活化PVDF膜,1min后进行转膜,恒流170mA,2hr;
4.封闭:含5%脱脂奶粉封闭2hr;
5.一抗孵育:封闭完成后,1×TBST漂洗3遍,每遍5min;加入一抗,4℃孵育过夜;
6.二抗孵育:一抗孵育完成后用1×TBST漂洗3遍,每遍5min;加入二抗,室温孵育2hr;
7.显影:二抗孵育完成后用1×TBST漂洗3遍,每遍5min;清洗完成后加入ECL超敏发光底物,待PVDF膜与底物充分反应后进行显影。
(九)细胞对G418的耐受
1.用完全培养基将G418稀释为200μg/ml,400μg/ml,600μg/ml,800μg/ml和1000μg/ml;
2.6孔板铺细胞,每孔10-20万个细胞;12小时后换液,换成G418浓度梯度的筛选培养基;隔天换筛选培养基。以培养5-7天90%细胞死亡的G418浓度为基准,作为初筛浓度。
(十)稳转细胞株的建立
1.质粒转染2小时后,分盘至6孔板中,每孔10-15万个细胞;
2.分盘后第二天,弃培液,1×PBS漂洗一遍,换成G418浓度梯度的筛选培养基,每隔三天换液;
3.筛选1天后可见抗性克隆。
(十一)流式分选
1.收集细胞:1×PBS漂洗过后的细胞用0.25%的胰酶在37℃恒温箱消化。待细胞消化成游离的单个细胞时,加入培养基终止消化,吹打混匀。1500rpm,5min,4℃离心,弃去上清;
2.将细胞转入15ml离心管中,并在其中加入50%的双抗青链霉素混合液;
3.上机筛选纯化,筛选比例:选取前5%;
4.纯化后的细胞,加入6cm培养皿,加入50%的双抗和相应的G418溶液,于细胞培养箱培养。
(十二)吖啶橙AO染色
1.配制染料:AO按1:2000比例加入完全培养基
2.弃去培养基,1×PBS漂洗过后的细胞加入适量体积的染料,于细胞培养箱孵育15min;
3.荧光显微镜下观察;
(十三)Hoechst33258与吖啶橙AO共染
1.配制染料:AO按1:2000比例加入完全培养基
2.弃去培养基,1×PBS漂洗过后的细胞加入适量体积的染料,于细胞培养箱孵育15min;
3.弃去含有AO染料的培养基,换成1×PBS,并加入Hoechst33258使其终浓度是10ug/ml,于细胞培养箱孵育15min;
4.荧光显微镜下观察;
(十四)统计学分析
每个实验数据取三次独立实验的结果进行two-sided unpaired Student's t检验。结果以平均值±SEM的形式表示,*代表P<0.05;**代表P<0.01;***代表P<0.001;ns,代表无显著差异。
二、实验结果:
(一)腺苷诱导结肠癌细胞发生自噬;
腺苷处理结肠癌细胞株之后,LC3-II异构体的表达量在SW620和SW80两株细胞中对腺苷药物呈现浓度梯度以及时间梯度的增加。与自噬相关的基因Beclin1和ATG5的蛋白表达量也随腺苷处理浓度和处理时间的增加而增加。这提示自噬的发生对腺苷呈现浓度梯度以及时间梯度的依赖性(见图1a和b)。
构建成功的稳转GFP-LC3结肠癌细胞株在加入腺苷处理72小时之后,结肠癌细胞SW620-GFP-LC3和SW480-GFP-LC3中,由正常的弥漫在整个胞质池里呈漫散的绿色荧光LC3-I转化成大量的自噬性LC3-II异构体点状结构。GFP点状阳性细胞的比例在SW620-EGFP-LC3细胞中从2.1±1.9%随着腺苷浓度的增加而增加到60.7±2.2%;这一比例在SW480-EGFP-LC3细胞中从4.3±2.9%突增到54.6±4.8%(***P<0.001)(见图1c和d)。
吖啶橙染色实验也证实腺苷在结肠癌细胞中诱发自噬。细胞胞内出现大量的红色荧光小泡,而未加药组则较少有红色荧光小泡。统计发现,在3mM腺苷处理72小时的SW620中,红色荧光点数量从1.5±0.%增加到76.2±2.5%;在1mM腺苷处理的SW480中,这一比例则从2.1±0.8%猛增至89±2.1%。数据结果具有统计学意义(***P<0.001)(见图1e和f)。
(二)腺苷通过抑制PI3K/Akt/mTOR信号通路诱导自噬发生;
为明确腺苷诱导的与自噬相关的信号通路,Western blot证实在SW620和SW480细胞中,腺苷的处理引发AKT的去磷酸化以及mTOR的失活。mTOR在整个蛋白水平和磷酸化水平都显著下降。mTOR的失活显著地减少了其底物4EBP1和70S6K的磷酸化水平。这证实mTOR信号通路与在结肠癌细胞中腺苷处理所诱导的自噬密切相关(见图2)。
(三)自噬诱发原因;
前期实验证实腺苷可以诱导活性氧ROS的产生(见图3a)。利用活性氧抑制剂氮乙酰半胱氨酸NAC或谷胱甘肽GSH预处理结肠癌细胞之后再加腺苷药物,自噬标志物LC3-II的表达量被抑制,c-PARP表达量增加(见图3b和c),细胞的形态也呈现圆形皱缩等凋亡的特征,凋亡细胞比例显著上升(见图3d和e)。这提示活性氧ROS是诱发结肠癌细胞发生自噬的主要原因。
(四)腺苷诱导的自噬与凋亡之间关系;
利用RNA干扰技术下调自噬相关基因p62或ATG5的表达以此来观察腺苷处理细胞的变化。Western Blot验证p62或ATG5干扰效果,并用相应抗体检测自噬相关蛋白(LC3-I/II)和凋亡相关蛋白(c-PARP)的表达情况。p62或ATG5被内源性抑制后,LC3-II的表达量显著减少,而caspase3底物c-PARP的表达量显著增加。这说明,自噬活性程度下降,细胞凋亡水平显著上升(见图4a b c和d)。
利用凋亡检测的方法来检测p62或ATG5下调过后与腺苷共处理对细胞凋亡水平的影响。结果显示,3mM腺苷单一处理72小时,SW620细胞凋亡比例是21.9±1.%;而p62或ATG5siRNA与腺苷共处理后,这一比例上升至38.0±0.5%和31.7±0.5%。在SW480中也得到相似情况。p62或ATG5siRNA与1mM腺苷共处理72小时后,凋亡比例从腺苷单一处理的51.0±0.%上升至66.0±0.3%或60.0±0.2%。证实了腺苷诱导的自噬是具有保护性的,保护结肠癌免于进一步凋亡(见图4e f g和h)。
为了探明自噬与凋亡的发生顺序,Hoechst33258与吖啶橙AO共染证实自噬是从48小时开始,在腺苷处理72小时候到达高峰;而凋亡则在48小时已是明显发生(见图5a和b)。Western blot检测细胞内凋亡相关蛋白(c-PARP、c-caspase3)与自噬相关蛋白(p-mTOR、LC3)在时间上的表达情况也证实,在SW620细胞中c-PARP在48小时得以表达,LC3-II也在48小时可被检测到;而在SW480细胞中,c-PARP在24小时就以表达,LC3-II仍然在48小时可被检测到(见图5c和d)。结合上述的Hoechst33258和AO共染结果,提示我们,腺苷诱导的凋亡在先,自噬发生在后。
(五)腺苷与自噬抑制剂联用效果;
CCK8实验探寻自噬抑制剂氯喹(CQ)或3-甲基腺嘌呤(3-MA)和腺苷联合用药处理结肠癌细胞效果。结果显示,加有腺苷和自噬抑制剂药物后,与单加有腺苷的细胞相比,细胞存活率显著下降。数据结果具有统计学意义。(*P<0.05,**P<0.01,***P<0.001)(见图6)
Western blot检测了腺苷与自噬抑制剂共处理对细胞凋亡相关蛋白(c-PARP)与自噬相关蛋白(LC3-I/II)表达的影响。结果显示,氯喹抑制溶酶体与自噬体结合形成自噬溶酶体,导致自噬体的储积增加,因此LC3-II表达增强。3-甲基腺嘌呤抑制PI3K III活性,抑制早期自噬过程,LC3-II的表达减弱。这都说明自噬过程在自噬抑制剂作用下显著被抑制。此外,腺苷与自噬抑制剂联合作用后,细胞凋亡蛋白c-PARP明显增加,说明细胞凋亡增强(见图6)。
凋亡检测实验证实自噬抑制剂与腺苷共同处理细胞,增加了凋亡细胞的比例。氯喹与腺苷的共同处理使SW620凋亡比例从15.6±1.7%增加到29.3±0.8%,SW480细胞凋亡比例从9.2±0.3%增加到70.2±0.6%。数据结果具有统计学意义。(**P<0.01)类似地,3-甲基腺嘌呤与腺苷的共同处理使得SW620凋亡比例从15.6±1.7%上升至37.2±0.3%,SW480细胞凋亡比例从9.2±0.3%增加到72.3±0.9%。数据结果具有统计学意义(**P<0.01)(见图7)。
总之,腺苷以及自噬抑制剂联用,在临床上可以作为一种潜在治疗结肠癌、减少复发及转移的高效药物。
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可做出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用。
2.根据权利要求1所述的腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用,其特征在于,所述的自噬抑制剂为抑制/下调自噬相关基因表达的物质。
3.根据权利要求2所述的腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用,其特征在于,所述的自噬相关基因为Beclin1或ATG5。
4.根据权利要求1所述的腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用,其特征在于,所述的自噬抑制剂为抑制自噬相关基因Beclin1或ATG5的蛋白表达的物质。
5.根据权利要求1所述的腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用,其特征在于,所述的自噬抑制剂为氯喹、3-甲基腺嘌呤、巴佛洛霉素A1、羟氯喹或渥曼青霉素。
6.根据权利要求1所述的腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用,其特征在于,所述的自噬抑制剂促进腺苷引起的结肠癌细胞凋亡。
7.一种治疗结肠癌的药物组合物,其特征在于,所述的药物组合物包括腺苷和自噬抑制剂,以及其他药学上可以接受的辅料或载体。
8.自噬抑制剂在制备腺苷引起的结肠癌细胞凋亡促进剂中的应用。
9.根据权利要求8所述的自噬抑制剂在制备腺苷引起的结肠癌细胞凋亡促进剂中的应用,其特征在于,所述的自噬抑制剂为抑制/下调自噬相关基因表达的物质。
10.根据权利要求8所述的自噬抑制剂在制备腺苷引起的结肠癌细胞凋亡促进剂中的应用,其特征在于,所述的自噬相关基因为Beclin1或ATG5。
CN201810863362.1A 2018-08-01 2018-08-01 腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用 Pending CN109091490A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810863362.1A CN109091490A (zh) 2018-08-01 2018-08-01 腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810863362.1A CN109091490A (zh) 2018-08-01 2018-08-01 腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用

Publications (1)

Publication Number Publication Date
CN109091490A true CN109091490A (zh) 2018-12-28

Family

ID=64848129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810863362.1A Pending CN109091490A (zh) 2018-08-01 2018-08-01 腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用

Country Status (1)

Country Link
CN (1) CN109091490A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014901A (zh) * 2021-12-07 2022-02-08 天津科技大学 一种新型卤代腺苷类似物5`-溴脱氧腺苷及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078774A2 (en) * 2005-01-19 2006-07-27 The Trustees Of The University Of Pennsylvania Regulation of autophagy and cell survival
WO2012125486A1 (en) * 2011-03-11 2012-09-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Combination chemotherapy for treating cancer
CN105641698A (zh) * 2014-09-30 2016-06-08 复旦大学 含自噬抑制剂和薯蓣皂素的组合药物及其用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078774A2 (en) * 2005-01-19 2006-07-27 The Trustees Of The University Of Pennsylvania Regulation of autophagy and cell survival
WO2012125486A1 (en) * 2011-03-11 2012-09-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Combination chemotherapy for treating cancer
CN105641698A (zh) * 2014-09-30 2016-06-08 复旦大学 含自噬抑制剂和薯蓣皂素的组合药物及其用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHUNJI YU等: "Adenosine induces apoptosis through TNFR1/RIPK1/P38 axis in colon cancer cells", 《BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS》 *
潘半舟等: "自噬在调控抗肿瘤药物耐药中的研究进展", 《医学研究生学报》 *
蒲泽锦等: "腺苷对肝癌细胞自噬和增殖的作用", 《中国药理学通报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014901A (zh) * 2021-12-07 2022-02-08 天津科技大学 一种新型卤代腺苷类似物5`-溴脱氧腺苷及其制备方法与应用

Similar Documents

Publication Publication Date Title
TWI652060B (zh) 阿折地平藥物應用於癌症治療
Jaramillo et al. Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells
Zhao et al. The prevention and inhibition effect of anthocyanins on colorectal cancer
Wang et al. Pterostilbene, an active constituent of blueberries, suppresses proliferation potential of human cholangiocarcinoma via enhancing the autophagic flux
Lan et al. Aidi injection induces apoptosis of hepatocellular carcinoma cells through the mitochondrial pathway
Lohberger et al. Periplocin, the most anti-proliferative constituent of Periploca sepium, specifically kills liposarcoma cells by death receptor mediated apoptosis
Paul et al. In vitro and in vivo studies demonstrate anticancer property of root extract of Polygala senega
Fan et al. Integrating network pharmacology deciphers the action mechanism of Zuojin capsule in suppressing colorectal cancer
Zhang et al. Cyclovirobuxine D exerts anticancer effects by suppressing the EGFR-FAK-AKT/ERK1/2-Slug signaling pathway in human hepatocellular carcinoma
Zhang et al. Atractylenolide III induces apoptosis by regulating the Bax/Bcl-2 signaling pathway in human colorectal cancer HCT-116 Cells in vitro and in vivo
Chen et al. Apoptosis of a human non-small cell lung cancer (NSCLC) cell line, PLA-801, induced by acutiaporberine, a novel bisalkaloid derived from Thalictrum acutifolium (Hand.-Mazz.) Boivin
Xie et al. Sonodynamic therapy combined to 2-deoxyglucose potentiate cell metastasis inhibition of breast cancer
Wang et al. Active constituents from Liriope platyphylla root against cancer growth in vitro
CN109091490A (zh) 腺苷和自噬抑制剂联用在制备结肠癌治疗药物中的应用
CN106491595A (zh) 鸦胆子苦素D在制备Wnt/Notch信号通路抑制剂药物中的应用
Zhang et al. Evodiamine inhibits ESCC by inducing M-phase cell-cycle arrest via CUL4A/p53/p21 axis and activating noxa-dependent intrinsic and DR4-dependent extrinsic apoptosis
Huang et al. Marsdenia tenacissima extract sensitizes MG63 cells to doxorubicin-induced apoptosis
Tseng et al. Identification of two novel small compounds that inhibit liver cancer formation in zebrafish and analysis of their conjugation to nanodiamonds to further reduce toxicity
CN105616409B (zh) 小檗碱在制备克服慢性粒细胞白血病耐药性药物或抗慢性粒细胞白血病药物增敏剂中的应用
Zhu et al. Picropodophyllin inhibits the proliferation of human prostate cancer du145 and lncap cells via ros production and pi3k/akt pathway inhibition
Pan et al. Extract of Marsdenia tenacissima (roxb.) moon [apocynaceae] suppresses hepatocellular carcinoma by inhibiting angiogenesis
Yuan et al. Daurisoline inhibits ESCC by inducing G1 cell cycle arrest and activating ER stress to trigger Noxa‐dependent intrinsic and CHOP‐DR5‐dependent extrinsic apoptosis via p‐eIF2α‐ATF4 axis
Balabhaskar et al. Evaluation of anticancer activity of ethanol extract of Bauhinia tomentosa linn. on A549, human lung carcinoma cell lines
CN107334763A (zh) 黄芩素在制备预防和/或治疗鼻咽癌的药物中的应用
Feng et al. Effect of solanum lyratum polysaccharide on malignant behaviors of lung cancer cells by regulating the circ_UHRF1/miR-513b-5p axis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181228

RJ01 Rejection of invention patent application after publication