CN109061785A - 用于近红外窄带滤光片的ar膜层及滤光片 - Google Patents

用于近红外窄带滤光片的ar膜层及滤光片 Download PDF

Info

Publication number
CN109061785A
CN109061785A CN201810884742.3A CN201810884742A CN109061785A CN 109061785 A CN109061785 A CN 109061785A CN 201810884742 A CN201810884742 A CN 201810884742A CN 109061785 A CN109061785 A CN 109061785A
Authority
CN
China
Prior art keywords
refractive index
index material
layer
film layer
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810884742.3A
Other languages
English (en)
Inventor
陈策
丁维红
肖念恭
陈吉利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyang Sunny Optics Co Ltd
Original Assignee
Xinyang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyang Sunny Optics Co Ltd filed Critical Xinyang Sunny Optics Co Ltd
Priority to CN201810884742.3A priority Critical patent/CN109061785A/zh
Publication of CN109061785A publication Critical patent/CN109061785A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种用于近红外窄带滤光片的AR膜层及滤光片,其中所述AR膜层(1)镀制所述滤光片的玻璃基板(2)上,所述AR膜层(1)包括第一折射率材料层和第二折射率材料层或者包括第一折射率材料层、第二折射率材料层和第三折射率材料;所述第三折射率材料层的折射率大于所述第一折射率材料层折射率,所述第二折射率材料层的折射率大于所述第三折射率材料层的折射率。采用本发明的AR膜层制作滤光片,能够在保证近红外光透过率的情况下,降低膜层厚度,有效改善滤光片的膜层附着力。

Description

用于近红外窄带滤光片的AR膜层及滤光片
技术领域
本发明属于光学传感技术领域,尤其涉及一种用于近红外窄带滤光片 的AR膜层。
背景技术
随着科技的发展,在智能手机、车载激光雷达、安防门禁、智能家居、 虚拟现实/增强现实/混合现实、3D体感游戏、3D摄像与显示等终端中逐步 嵌入了人脸设备、手势识别等功能。
在人脸识别、手势识别时需要用到近红外窄带滤光片,其能起到增透 通带中近红外光线,截止环境中可见光的作用。通常近红外窄带滤光片包 括两个膜系,分别为IR带通膜系和长波通AR膜系。然而现有技术中滤光 片AR膜层对近红外光线的增透效果以及截止可见光的效果较差,同时存在 膜系膜层厚度较厚并且膜层附着力较差的问题,从而导致将滤光片组装到 人脸识别、手势识别等装置后,成像效果较差、识别精度不高。
发明内容
本发明的目的在于提供一种用于近红外窄带滤光片的AR膜层及滤光 片,解决现有滤光片的AR膜层结构近红外光增透效果差、膜层附着力差的 问题。
为实现上述目的,本发明提供一种用于近红外窄带滤光片的AR膜层, 所述AR膜层镀制所述滤光片的玻璃基板上,所述AR膜层包括第一折射率 材料层和第二折射率材料层或者包括第一折射率材料层、第二折射率材料 层和第三折射率材料层;
所述第三折射率材料层的折射率大于所述第一折射率材料层折射率, 所述第二折射率材料层的折射率大于所述第三折射率材料层的折射率。
根据本发明的一个方面,沿远离所述玻璃基板的方向,所述AR膜层的 最外层为第一折射率材料层。
根据本发明的一个方面,沿着远离所述玻璃基板的方向,所述AR膜层 的结构依次为(LH)*q、L,其中,L表示第一折射率材料层、H表示第二 折射率材料层,(LH)*q表示第一折射率材料层和第二折射率材料层交替 设置q次,q为大于等于1的整数。
根据本发明的一个方面,沿着远离所述玻璃基板的方向,所述AR膜层 的结构依次为M、(LH)*k、L,其中M表示第三折射率材料层、L表示第一 折射率材料层、H表示第二折射率材料层,(LH)*k表示第一折射率材料 层和第二折射率材料层交替设置k次,k为大于等于1的整数。
根据本发明的一个方面,沿着远离所述玻璃基板的方向,所述AR膜层 的结构依次为(LH)*n、L、M、(LH)*p、L,其中,L表示第一折射率材 料层、H表示第二折射率材料层,(LH)*n表示第一折射率材料层和第二 折射率材料层交替设置n次,n为大于等于0的整数,(LH)*p表示第一折 射率材料层和第二折射率材料层交替设置p次,p为大于等于1的整数。
根据本发明的一个方面,所述第二折射率材料层物理厚度与所述第一 折射率材料层物理厚度满足关系式:0.05≤DL/DH≤20,所述第三折射率材 料层物理厚度与所述第二折射率材料层物理厚度满足关系式:0.02≤DM/DH≤50。
根据本发明的一个方面,所述第二折射率材料层为氢化硅层,在 800-1200nm波长范围内的折射率大于3,消光系数小于0.002;
所述第二折射率材料层在850nm处折射率大于3.6,在940nm处折射 率大于3.55。
根据本发明的一个方面,所述氢化硅层为溅射反应镀制材料层,溅射 温度范围为80-300摄氏度、氢气流量为10-50sccm、溅射速率为 0.1nm/s-1nm/s。
根据本发明的一个方面,在800-1200nm波长范围内,所述第三折射率 材料层的折射率小于4,所述第一折射率材料层的折射率小于3。
根据本发明的一个方面,所述AR膜层在350-1200nm波长范围内具有 一个通带波段、一个截止波段和一个过渡波段,沿着从350nm至1200nm的 方向,所述截止波段、所述过渡波段和所述通带波段顺序排布;
所述通带波段的透过率大于90%;
所述过渡波段的透过率为0.1%-90%;
所述截止波段的透过率小于0.1%.。
本发明提供一种滤光片,包括玻璃基板和镀制在所述玻璃基板上的AR 膜层。
根据本发明的一个方案,本发明的AR膜层按照上述方式进行设置,在有 效保证近红外光高透过率的同时,由于AR膜层中设置了第三折射率材料层M, 相比于现有技术中滤光片的AR膜层,有效降低了总膜层厚度,同时能够改善 膜层的附着力。
附图说明
图1是示意性表示根据发明一种实施方式的AR膜层的结构示图;
图2是示意性表示根据发明第二种实施方式的AR膜层的结构示图。
图3是示意性表示根据发明第三种实施方式的AR膜层的结构示图。
图4是示意性表示实施例1中AR膜层的光线波长透过率曲线图;
图5是示意性表示实施例2中AR膜层的光线波长透过率曲线图;
图6是示意性表示实施例3中AR膜层的光线波长透过率曲线图;
图7是示意性表示实施例4中AR膜层的光线波长透过率曲线图。
具体实施方式
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实 施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅 仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性 劳动的前提下,还可以根据这些附图获得其他的附图。
在针对本发明的实施方式进行描述时,术语“纵向”、“横向”、“上”、“下”、 “前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”所 表达的方位或位置关系是基于相关附图所示的方位或位置关系,其仅是为了便 于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定 的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此 一一赘述,但本发明的实施方式并不因此限定于以下实施方式。
图1是示意性表示根据发明一种实施方式的AR膜层的结构示图。如图1 所示,本发明的AR膜层1用于镀制近红外窄带滤光片,AR膜层1镀制在玻璃 基板2上,玻璃基板1可以采用D263T或者AF32。在本实施方式中,AR膜层 1为减反膜层,即增透膜层,可以对特定范围内的波长起到增透作用。AR膜层 1镀制在玻璃基板2的下表面上,在玻璃基板2的上表面镀有IR膜层。
如图1所示,在本实施方式中,本发明的用于近红外窄带滤光片的AR膜 层1包括第一折射率材料层L和第二折射率材料层H,具体来说,沿着远离玻 璃基板2的方向,AR膜层1依次包括第一折射率材料层L、第二折射率材料层 H和第一折射率材料层L。即在本实施方式中,AR膜层1结构可以表示为(LH)、 L,即沿着远离玻璃基板2的方向,AR膜层1共包括两层结构,依次为由第一 折射率材料层L和第二折射率材料层H交替镀制而成的第一结构层和最外 层的第一折射率材料层L。此外,本发明AR膜层1中的第一结构层中第一 折射率材料层L和第二折射率材料层H交替也可以为多次,即AR膜层1结 构可以表示为(LH)*q、L,(LH)*q表示第一折射率材料层L和第二折 射率材料层H交替设置q次,q可取大于等于1的整数。
图2是示意性表示根据发明第二种实施方式的AR膜层的结构示图。如图 2所示,在本实施方式中,沿这远离玻璃基板2的方向,本发明的AR膜层1 包括第三折射率材料层M、第一折射率材料层L、第二折射率材料层H和最外 层第一折射率材料层L,即在本实施方式中,AR膜层1共包括三层结构,依次 最内层的第三折射率材料层M、由第一折射率材料层L和第二折射率材料层H 交替镀制而成的中间结构层和最外层第一折射率材料层L,此外,本发明AR 层1的中间材料层中的第一折射率材料层L和第二折射率材料层H也可以多次 交替设置,即根据本发明AR膜层1的第二种实施方式,AR膜层1的结构可以 为M、(LH)*k、L,即沿着远离玻璃基板2的方向,AR膜层1依次包括第三折 射率材料层M、中间材料层和第一折射率材料层L,中间材料层为第一折射率 材料层L和第二折射率材料层H交替设置k次构成,k为大于等于1的整 数。
图3是示意性表示根据发明第三种实施方式的AR膜层的结构示图。如图 3所示,在本实施方式中,沿着远离玻璃基板2的方向,AR膜层1依次包括第 一折射率材料层L、第二折射率材料层H、第一折射率材料层L、第三折射率 材料层M,第一折射率材料层L、第二折射率材料层H和第一折射率材料层L, 在本实施方式中,AR膜层1的共包括五层膜结构,依次外由第一折射率材料 层L和第二折射率材料层H交替镀制而成的第一结构、由第一折射率材料层L 构成的第二结构、由第三折射率材料层构成的第三结构、由第一折射率材料层 L和第二折射率材料层H交替镀制而成的第四结构和最外层的第一折射率材料 层L。此外,第一结构的第一折射率材料层L和第二折射率材料层H可以交替 设置多次,第四结构的第一折射率材料层L和第二折射率材料层H可以交替设 置多次,即根据本发明的第三种实施方式,AR膜层1的结构可以为(LH)*n、 L、M、(LH)*p、L,n可以为大于等于0的整数。p为大于等于1的整数。
本发明的AR膜层1可以选自上述实施方式中的任一种,应该注意的是, 为保证膜层结构性能的优越性,无论采用何种实施方式,AR膜层1的最外 层均设置为第一折射率材料层L。
本发明的AR膜层1,膜层结构中所涉及的第二折射率材料层H可以为氢 化硅层,氢化硅层在镀制时采用溅射反应的方式镀制,镀制时控制温度在80℃ -300℃范围内,控制氢气流量为10-50sccm,控制溅射速度为0.1nm/s-1nm/s, 从而使得本发明第二折射率材料层H在800-1200nm范围内的折射率大于3, 消光系数小于0.002,在850nm处折射率大于3.6,在960nm处的折射率大于 3.55,进而有利于调节本发明滤光片通带中心波长的偏移量。当然,本发明中 涉及的第二折射率材料层H也可以使用其他材料来实现,只要能够保证第二折射率材料层H的折射率大于第一折射率材料层L和第三折射率材料层M的折射 率即可。
AR膜层1中所涉及的第三折射率材料层M所用的材料可以选自Sb2S3、Nb2O5、 Ta2O5、TiO2、Al2O3、ZrO2、Pr6O11、La2O3、Si2N、SiN、Si2N3、Si3N4中的一种 或多种,AR膜层1中所涉及的第一折射率材料层L所用的材料可以选自SiO2、Nb2O5、Ta2O5、TiO2、Al2O3、ZrO2、Pr6O11、La2O3、Si2N、SiN、Si2N3、Si3N4中 的一种或多种。在800-1200nm波长范围内,第三折射率材料层M的折射率 小于4,第一折射率材料层L的折射率小于3。需要保证第三折射率材料层 M的折射率大于第一折射率材料层L的折射率,即当第一折射率材料层L 选用上述材料中的一种后,第三折射率材料层M的材料选用,应满足第三 折射率材料层M选用的材料的折射率大于第一折射率材料层L选用的材料 的折射率。第三折射率材料层M和第一折射率材料层L在镀制时可以采用 溅射反应设备进行镀制,也可以利用真空蒸发设备镀制。
以下通过具体的实施例对本发明的AR膜层进行详细说明。
实施例1:
在本实施方式中,沿着远离玻璃基板2的方向,AR膜层1的结构为(LH) *q、L,q=12。第二折射率材料层H的物理厚度与第一折射率材料层L的物理 厚度之间满足关系式:0.05≤DL/DH≤20,第三折射率材料层M物理厚度与第 二折射率材料层H物理厚度满足关系式:0.02≤DM/DH≤50。
也就是说,在本实施方式中,AR膜层1共包括25层材料层。在本实施方 式中,选用氢化硅作为第二折射率材料H,选用二氧化硅作为第一折射率材料 L。利用公式OTi=OT(1+Acos(2×pi×f×i)sin(2×pi×f×i)),代入方程 获得膜层参数如下表:
其中,OTi表示第i层膜层的光学厚度,OT0表示四分之一设计波长大小 的光学厚度,pi表示圆周率,f表示调制因子,大小介于0到1之间。
表1示出了AR膜层1的各材料层的参数:
表1
如图4所示,参照实施例1中各条件参数设置本发明的AR膜层1,在 350-1200nm波长范围,AR膜层1具有一个通带波段、一个截止波段和一个 过渡波段,即沿着从350nm到1200nm的方向,AR膜层1依次具有截止波 段、过渡波段、通带波段。如图4所示,通带波段的光线透过率大于90%, 过渡波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。此外,如图 4所示,按照实施例1的各参数设置本发明的AR,在入射角度从0°改变 至30°时,近红外光透过率曲线在透过率10%-90%的陡度小于30nm,即光 线透过率10%到光线透过率90%的波段宽度小于30nm。
实施例2:
在本实施方式中,沿着远离玻璃基板2的方向,AR膜层1的结构为(LH) *q、L,q=12。第二折射率材料层H的物理厚度与第一折射率材料层L的物理 厚度之间满足关系式:0.05≤DL/DH≤20,第三折射率材料层M物理厚度与第 二折射率材料层H物理厚度满足关系式:0.02≤DM/DH≤50。
也就是说,在本实施方式中,AR膜层1共包括25层材料层。在本实施方 式中,在AR膜层1中,选用Nb2O5作为第二折射率材料层H,选用二氧化硅作 为第一折射率材料层L。利用公式OTi=OT(1+Acos(2×pi×f×i)sin(2× pi×f×i)),代入方程获得膜层参数如下表:
其中,OTi表示第i层膜层的光学厚度,OT0Ti表示四分之一设计波长大 小的光学厚度,pi表示圆周率,f表示调制因子,大小介于0到1之间。
表2表示AR膜层1的各材料层的参数:
1 2 3 4 5
材料 SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub>
厚度(nm) 177.36 29.01 86.24 34.26 137.61
6 7 8 9 10
材料 Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub>
厚度(nm) 42.57 105.57 32.63 124.57 39.38
11 12 13 14 15
材料 SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub>
厚度(nm) 127.56 36.38 121.12 36.38 123.16
16 17 18 19 20
材料 Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub>
厚度(nm) 31.7 132.74 44.2 128.03 27.69
21 22 23 24 25
材料 SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub>
厚度(nm) 110.12 44.01 131.96 36.76 76.98
表2
如图5所示,参照实施例2中各条件参数设置本发明的AR膜层1,在 350-1200nm波长范围,AR膜层1具有一个通带波段、一个截止波段和一个 过渡波段,即沿着从350nm到1200nm的方向,AR膜层1依次具有截止波 段、过渡波段、通带波段。如图5所示,通带波段的光线透过率大于90%, 过渡波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。此外,如图 5所示,按照实施例2的各参数设置本发明的AR,在入射角度从0°改变 至30°时,近红外光透过率曲线在透过率10%-90%的陡度小于30nm。
实施例3:
在本实施方式中,沿着远离玻璃基板2的方向,AR膜层1的结构为M、 (LH)*k、L,k=11。第二折射率材料层H的物理厚度与第一折射率材料层L 的物理厚度之间满足关系式:0.05≤DL/DH≤20,第三折射率材料层M的物理 厚度与第二折射率材料层H的物理厚度之间满足关系式:0.02≤DM/DH≤50。
也就是说,在本实施方式中,AR膜层3共包括24层材料层。在本实施方 式中,AR膜层1中选用氢化硅作为第二折射率材料层H,选用五氧化二铌作为 第三折射率材料层M、选用二氧化硅作为第一折射率材料层L。利用公式 OTi=OT(1+Acos(2×pi×f×i)sin(2×pi×f×i)),代入方程 获得膜层参数如下表:
其中,OTi表示第i层膜层的光学厚度,OT0Ti表示四分之一设计波长大 小的光学厚度,pi表示圆周率,f表示调制因子,大小介于0到1之间。
表3示出了AR膜层1的各材料层的参数:
1 2 3 4 5
材料 Nb<sub>2</sub>O<sub>5</sub> SiO<sub>2</sub> Si:H SiO<sub>2</sub> Si:H
厚度(nm) 91.91 46.65 171.57 84.57 60
6 7 8 9 10
材料 SiO<sub>2</sub> Si:H SiO<sub>2</sub> Si:H SiO<sub>2</sub>
厚度(nm) 41.2 71.23 77.52 56.51 82.7
11 12 13 14 15
材料 Si:H SiO<sub>2</sub> Si:H SiO<sub>2</sub> Si:H
厚度(nm) 22 20 59.2 87.39 204.08
16 17 18 19 20
材料 SiO<sub>2</sub> Si:H SiO<sub>2</sub> Si:H SiO<sub>2</sub>
厚度(nm) 72.16 22.45 20 20 71.46
21 22 23 24
材料 Si:H SiO<sub>2</sub> Si:H SiO<sub>2</sub>
厚度(nm) 60.69 121.32 48.2 28.68
表3
如图6所示,参照实施例3中各条件参数设置本发明的AR膜层1,在 350-1200nm波长范围,AR膜层1具有一个通带波段、一个截止波段和一个 过渡波段,即沿着从350nm到1200nm的方向,AR膜层1依次具有截止波 段、过渡波段、通带波段。如图6所示,通带波段的光线透过率大于90%, 过渡波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。此外,如图 6所示,按照实施例3的各参数设置本发明的AR,在入射角度从0°改变 至30°时,近红外光透过率曲线在透过率10%-90%的陡度小于30nm。
实施例4:
在本实施方式中,沿着远离玻璃基板2的方向,AR膜层1的结构为(LH) *n、L、M、(LH)*p、L,第二折射率材料层H的物理厚度与第一折射率材料 层L的物理厚度之间满足关系式:0.05≤DL/DH≤20,第三折射率材料层M的 物理厚度与第二折射率材料层H的物理厚度之间满足关系式:0.02≤DM/DH≤ 50,n=5,p=6。
也就是说,在本实施方式中,AR膜层3共包括25层材料层。在本实施方 式中,AR膜层1中选用氢化硅作为第二折射率材料层H,选用三氧化二铝作为 第三折射率材料层M、选用二氧化硅作为第一折射率材料层L。利用公式 OTi=OT(1+Acos(2×pi×f×i)sin(2×pi×f×i)),代入方程 获得膜层参数如下表:
其中,OTi表示第i层膜层的光学厚度,OT0Ti表示四分之一设计波长大 小的光学厚度,pi表示圆周率,f表示调制因子,大小介于0到1之间。
表4示出了AR膜层1的各材料层的参数:
表4
如图7所示,参照实施例4中各条件参数设置本发明的AR膜层1,在 350-1200nm波长范围,AR膜层1具有一个通带波段、一个截止波段和一个 过渡波段,即沿着从350nm到1200nm的方向,AR膜层1依次具有截止波 段、过渡波段、通带波段。如图7所示,通带波段的光线透过率大于90%, 过渡波段的透过率为0.1%-90%,截止波段的透过率小于0.1%。此外,如图 7所示,按照实施例4的各参数设置本发明的AR,在入射角度从0°改变 至30°时,近红外光透过率曲线在透过率10%-90%的陡度小于30nm。
本发明的AR膜层1按照上述实施方式进行设置,在有效保证近红外光高 透过率的同时,由于AR膜层1中设置了第三折射率材料层M,相比于现有技 术中滤光片的AR膜层,有效降低了总膜层厚度,同时能够改善膜层的附着力。
本发明还提供一种包含上述AR膜层1的滤光片,滤光片包括上述AR膜层 1和玻璃基板2,AR膜层1镀制在玻璃基板2的表面上。
以上所述仅为本发明的一个方案而已,并不用于限制本发明,对于本 领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神 和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的 保护范围之内。

Claims (11)

1.一种用于近红外窄带滤光片的AR膜层,所述AR膜层(1)镀制所述滤光片的玻璃基板(2)上,其特征在于,所述AR膜层(1)包括第一折射率材料层和第二折射率材料层或者包括第一折射率材料层、第二折射率材料层和第三折射率材料层;
所述第三折射率材料层的折射率大于所述第一折射率材料层折射率,所述第二折射率材料层的折射率大于所述第三折射率材料层的折射率。
2.根据权利要求1所述的AR膜层,其特征在于,沿远离所述玻璃基板(2)的方向,所述AR膜层(1)的最外层为第一折射率材料层。
3.根据权利要求2所述的AR膜层,其特征在于,沿着远离所述玻璃基板(2)的方向,所述AR膜层(1)的结构依次为(LH)*q、L,其中,L表示第一折射率材料层、H表示第二折射率材料层,(LH)*q表示第一折射率材料层和第二折射率材料层交替设置q次,q为大于等于1的整数。
4.根据权利要求2所述的AR膜层,其特征在于,沿着远离所述玻璃基板(2)的方向,所述AR膜层(1)的结构依次为M、(LH)*k、L,其中M表示第三折射率材料层、L表示第一折射率材料层、H表示第二折射率材料层,(LH)*k表示第一折射率材料层和第二折射率材料层交替设置k次,k为大于等于1的整数。
5.根据权利要求2所述的AR膜层,其特征在于,沿着远离所述玻璃基板(2)的方向,所述AR膜层(1)的结构依次为(LH)*n、L、M、(LH)*p、L,其中,L表示第一折射率材料层、H表示第二折射率材料层,(LH)*n表示第一折射率材料层和第二折射率材料层交替设置n次,n为大于等于0的整数,(LH)*p表示第一折射率材料层和第二折射率材料层交替设置p次,p为大于等于1的整数。
6.根据权利要求3-5任一项所述的AR膜层,其特征在于,所述第二折射率材料层物理厚度与所述第一折射率材料层物理厚度满足关系式:0.05≤DL/DH≤20,所述第三折射率材料层物理厚度与所述第二折射率材料层物理厚度满足关系式:0.02≤DM/DH≤50。
7.根据权利要求1所述的AR膜层,其特征在于,所述第二折射率材料层为氢化硅层,在800-1200nm波长范围内的折射率大于3,消光系数小于0.002;
所述第二折射率材料层在850nm处折射率大于3.6,在940nm处折射率大于3.55。
8.根据权利要求7所述的AR膜层,其特征在于,所述氢化硅层为溅射反应镀制材料层,溅射温度范围为80-300摄氏度、氢气流量为10-50sccm、溅射速率为0.1nm/s-1nm/s。
9.根据权利要求1所述的AR膜层,其特征在于,在800-1200nm波长范围内,所述第三折射率材料层的折射率小于4,所述第一折射率材料层的折射率小于3。
10.根据权利要求1所述的AR膜层,其特征在于,所述AR膜层(1)在350-1200nm波长范围内具有一个通带波段、一个截止波段和一个过渡波段,沿着从350nm至1200nm的方向,所述截止波段、所述过渡波段和所述通带波段顺序排布;
所述通带波段的透过率大于90%;
所述过渡波段的透过率为0.1%-90%;
所述截止波段的透过率小于0.1%。
11.一种包含权利要求1-10任一项所述的AR膜层的滤光片,其特征在于,包括玻璃基板(2)和镀制在所述玻璃基板(2)上的AR膜层(1)。
CN201810884742.3A 2018-08-06 2018-08-06 用于近红外窄带滤光片的ar膜层及滤光片 Pending CN109061785A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810884742.3A CN109061785A (zh) 2018-08-06 2018-08-06 用于近红外窄带滤光片的ar膜层及滤光片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810884742.3A CN109061785A (zh) 2018-08-06 2018-08-06 用于近红外窄带滤光片的ar膜层及滤光片

Publications (1)

Publication Number Publication Date
CN109061785A true CN109061785A (zh) 2018-12-21

Family

ID=64833228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810884742.3A Pending CN109061785A (zh) 2018-08-06 2018-08-06 用于近红外窄带滤光片的ar膜层及滤光片

Country Status (1)

Country Link
CN (1) CN109061785A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147733A (zh) * 2019-06-27 2020-12-29 奥托仑达株式会社 光学滤波器
CN112285817A (zh) * 2015-02-18 2021-01-29 美题隆公司 具有改进的透射率的近红外光学干涉滤波器
CN113075758A (zh) * 2021-04-19 2021-07-06 广州市佳禾光电科技有限公司 一种红外带通滤光片及传感器***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113501A (ja) * 1986-10-31 1988-05-18 Canon Inc 反射防止膜
CN202453522U (zh) * 2011-12-22 2012-09-26 凤凰光学(上海)有限公司 一种新型减反膜系结构
WO2018043500A1 (ja) * 2016-08-31 2018-03-08 株式会社大真空 光学フィルタ
CN208421290U (zh) * 2018-08-06 2019-01-22 信阳舜宇光学有限公司 用于近红外窄带滤光片的ar膜层及滤光片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113501A (ja) * 1986-10-31 1988-05-18 Canon Inc 反射防止膜
CN202453522U (zh) * 2011-12-22 2012-09-26 凤凰光学(上海)有限公司 一种新型减反膜系结构
WO2018043500A1 (ja) * 2016-08-31 2018-03-08 株式会社大真空 光学フィルタ
CN208421290U (zh) * 2018-08-06 2019-01-22 信阳舜宇光学有限公司 用于近红外窄带滤光片的ar膜层及滤光片

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285817A (zh) * 2015-02-18 2021-01-29 美题隆公司 具有改进的透射率的近红外光学干涉滤波器
CN112147733A (zh) * 2019-06-27 2020-12-29 奥托仑达株式会社 光学滤波器
US11402559B2 (en) 2019-06-27 2022-08-02 Optrontec Co., Ltd. Optical filter with layers having refractive index greater than 3
CN113075758A (zh) * 2021-04-19 2021-07-06 广州市佳禾光电科技有限公司 一种红外带通滤光片及传感器***
CN113075758B (zh) * 2021-04-19 2022-09-23 广州市佳禾光电科技有限公司 一种红外带通滤光片及传感器***

Similar Documents

Publication Publication Date Title
CN108897085A (zh) 滤光片及包含该滤光片的红外图像传感***
CN108873135A (zh) 一种近红外窄带滤光片及红外成像***
CN108761614A (zh) 滤光片及包含该滤光片的红外图像传感***
CN109061785A (zh) 用于近红外窄带滤光片的ar膜层及滤光片
CN208596240U (zh) 一种近红外窄带滤光片及红外成像***
Lee et al. Omnidirectional Flexible Transmissive Structural Colors with High‐Color‐Purity and High‐Efficiency Exploiting Multicavity Resonances
JP5881096B2 (ja) 反射防止膜及び光学素子
CN102909918B (zh) 双面镀膜玻璃及其制备方法
CN101393276B (zh) 宽频带抗反射膜及具有该宽频带抗反射膜的光学元件
JP7299346B2 (ja) 近赤外帯域通過光フィルター及び光センシングシステム
EP2514724A2 (en) Thermochromic substrate and pair-glass with thermochromic thin film
CN101750641A (zh) 宽频带抗反射膜及具有该宽频带抗反射膜的光学元件
CN208421290U (zh) 用于近红外窄带滤光片的ar膜层及滤光片
CN109298477A (zh) 光学滤波器
CN104730794A (zh) 一种多层膜结构电致变色显示器
CN101681069B (zh) 透明电极
CN208421291U (zh) 滤光片及包含该滤光片的红外图像传感***
CN204028389U (zh) 一种自清洁超宽带增透膜镜片
CN111290066B (zh) 红外波段截止滤波器及其应用
CN210199718U (zh) 一种Oncell触摸显示模组
CN104834424A (zh) 消影增透透明导电薄膜
CN105398120A (zh) 消影增透透明薄膜、导电薄膜、导电玻璃及触摸屏
WO2020103206A1 (zh) 一种偏振无关的滤光片
KR102130995B1 (ko) 광학 필터용 글라스 기판의 강도 개선 방법 및 이에 의한 강화 글라스 기반 광학 필터
CN215678831U (zh) 一种红外玻璃

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination