CN109055433B - 一种激活内源性Ngn3和MAFA基因表达的方法 - Google Patents

一种激活内源性Ngn3和MAFA基因表达的方法 Download PDF

Info

Publication number
CN109055433B
CN109055433B CN201810947492.3A CN201810947492A CN109055433B CN 109055433 B CN109055433 B CN 109055433B CN 201810947492 A CN201810947492 A CN 201810947492A CN 109055433 B CN109055433 B CN 109055433B
Authority
CN
China
Prior art keywords
vector
sgrna
gene
mafa
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810947492.3A
Other languages
English (en)
Other versions
CN109055433A (zh
Inventor
王启伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Military Medical Sciences AMMS of PLA
Original Assignee
Academy of Military Medical Sciences AMMS of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Military Medical Sciences AMMS of PLA filed Critical Academy of Military Medical Sciences AMMS of PLA
Priority to CN201810947492.3A priority Critical patent/CN109055433B/zh
Publication of CN109055433A publication Critical patent/CN109055433A/zh
Application granted granted Critical
Publication of CN109055433B publication Critical patent/CN109055433B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0604Whole embryos; Culture medium therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种激活内源性Ngn3和MAFA基因表达的方法。本发明方法基于CRISPRa的SAM***建立激活靶细胞中内源性Ngn3和/或MAFA基因表达。所述SAM***包括靶向Ngn3和/或MAFA基因转录起始点上游‑400至+1bp位置的sgRNA;针对Ngn3的sgRNA的靶序列为SEQ ID No.2和/或SEQ ID No.3;针对MAFA的sgRNA的靶序列为SEQ ID No.6和/或SEQ ID No.10。本发明应用CRISPRa技术,通过染色质重塑,能高效地激活293T细胞的Ngn3和MAFA表达。本发明将对基因诱导PSCs定向分化为β细胞以及胰腺的胚胎发育研究具重要作用。

Description

一种激活内源性Ngn3和MAFA基因表达的方法
技术领域
本发明涉及生物技术领域,具体涉及一种激活内源性Ngn3和MAFA基因表达的方法。
背景技术
糖尿病的发病率正在逐年显著增加,是影响人类健康的主要疾病之一。目前,胰岛β细胞移植被认为是治疗糖尿病最有效的办法之一。然而,大规模胰岛β细胞移植的应用却受到细胞来源短缺和终生使用免疫抑制剂等限制[Atkinson,M.A.&Eisenbarth,G.S.Type1diabetes:new perspectives on disease pathogenesis and treatment.Lancet 358,221-229,doi:10.1016/S0140-6736(01)05415-0(2001).]。因此,寻找β细胞替代资源成为糖尿病细胞治疗迫切需要解决的问题,具有重要的经济价值和广泛的社会意义。
由多能干细胞(pluripotent stem cells,PSCs)定向分化为胰岛β细胞和非胰岛β细胞转分化是体外获得β细胞的一个重要研究领域[Miyazaki,S.,Yamato,E.&Miyazaki,J.Regulated expression of pdx-1promotes in vitro differentiation of insulin-producing cells from embryonic stem cells.Diabetes 53,1030-1037(2004).]。过表达胰腺发育过程的关键性转录因子诱导细胞分化与转分化,是体外获得β细胞的一个重要策略。然而,常规的基因表达方法如各种病毒、脂质体、电转以及mRNA等方法很难有效地激活内源性基因的表达[Miyazaki,S.,Yamato,E.&Miyazaki,J.Regulated expression ofpdx-1promotes in vitro differentiation of insulin-producing cells fromembryonic stem cells.Diabetes 53,1030-1037(2004).],因此,体外获得的β细胞不具有成熟的生理功能。
CRISPR(clustered regularly interspaced short palindromic repeats)技术是一种功能强大的基因组编辑技术。工程化的CRISPR/Cas9是由sgRNA(tracrRNA:crRNA)和Cas9组成。CRISPRa(CRISPR-Cas9-based gene activation)是一种基于CRISPR技术的新型强力的RNA导向的转录激活***,能够特异性激活内源性基因的表达。Cas9具有两个功能结构域HNH和RuvC,具有核酸内切酶活性。同时突变两个结构域(H840A和D10A突变),Cas9失去内切酶活性(deactivated Cas9,dCas9),转变成sgRNA导向的DNA结合蛋白[Doudna,J.A.&Charpentier,E.Genome editing.The new frontier of genome engineering withCRISPR-Cas9.Science 346,1258096,doi:10.1126/science.1258096(2014).]。将dCas9与转录激活因子融合,在sgRNA指导下结合在基因的启动子区域,可强力激活内源性基因的表达,有效地克服了基因诱导表达中内源性基因难以活化的不足[Konermann,S.etal.Genome-scale transcriptional activation by an engineered CRISPR-Cas9complex.Nature 517,583-588,doi:10.1038/nature14136(2015).]。
Ngn3和MAFA是β细胞发育和成熟的关键性转录因子。Ngn3是basic helix-loop-helix转录因子家族成员,在中枢神经***和胚胎胰腺发育中具有重要作用。小鼠胚胎胰腺发育中,Ngn3最早出现在胚胎9天(E9)的背侧胰腺上皮中,在E9.5-15.5表达水平逐渐升高,随后表达水平逐渐降低,在出生时维持较低的表达水平[Apelqvist,A.et al.Notchsignalling controls pancreatic cell differentiation.Nature 400,877-881,doi:10.1038/23716(1999).]。人Ngn3最早表达在孕8周(G8w),G11w达到高峰[Jennings,R.E.etal.Development of the human pancreas from foregut to endocrinecommitment.Diabetes 62,3514-3522,doi:10.2337/db12-1479(2013).]。Ngn3在胚胎胰腺内分泌前体细胞的形成中具有重要作用。小鼠胚胎胰腺前体细胞中过表达Ngn3,胰腺前体细胞向内分泌细胞分化,主要为α细胞,从而抑制细胞向外分泌细胞分化。相反,Ngn3缺陷小鼠,胰腺内不形成四种类型的胰岛细胞(α、β、δ和ε细胞)及内分泌前体细胞,出生后小鼠很快死于糖尿病[Gradwohl,G.,Dierich,A.,LeMeur,M.&Guillemot,F.neurogenin3isrequired for the development of the four endocrine cell lineages of thepancreas.Proceedings of the National Academy of Sciences of the United Statesof America97,1607-1611(2000).]。MAFA是MAF家族成员,可特异性结合insulin增强子,激活insulin基因表达。小鼠MAFA在E13.5表达在insulin分泌细胞,成年后只表达在β细胞[Matsuoka,T.A.et al.The MafA transcription factor appears to be responsiblefor tissue-specific expression of insulin.Proceedings of the National Academyof Sciences of the United States of America 101,2930-2933,doi:10.1073/pnas.0306233101(2004).]。人MAFA最早表达在G21w,出生后MAFA的表达逐渐增加[Jeon,J.,Correa-Medina,M.,Ricordi,C.,Edlund,H.&Diez,J.A.Endocrine cell clusteringduring human pancreas development.The journal of histochemistry andcytochemistry:official journal of the Histochemistry Society 57,811-824,doi:10.1369/jhc.2009.953307(2009).]。MAFA表达与GSIS(glucose-stimulated insulinsecretion)和β细胞的成熟具有重要关系。MAFA缺陷小鼠表现出GSIS功能障碍,胰岛结构异常,并且会引发糖尿病[Zhang,C.et al.MafA is a key regulator of glucose-stimulated insulin secretion.Molecular and cellular biology 25,4969-4976,doi:10.1128/MCB.25.12.4969-4976.2005(2005).]。MAFA表达对于PSCs分化的β细胞功能成熟具有重要作用,有助于提高细胞的GSIS[Rezania,A.et al.Reversal of diabetes withinsulin-producing cells derived in vitro from human pluripotent stemcells.Nat Biotechnol 32,1121-1133,doi:10.1038/nbt.3033(2014).]。综上所述,Ngn3和MAFA在胚胎胰腺发育和体外诱导细胞定向分化为β细胞中具有重要作用。因此,建立体外高效的内源性Ngn3和MAFA激活方法,对基因诱导PSCs定向分化为β细胞以及胰腺的胚胎发育研究具有重要作用。
发明内容
为了有效的解决上述技术问题,本发明的目的是提供一种激活内源性Ngn3和MAFA基因表达的方法。本发明应用基于CRISPRa的SAM(synergistic activation mediator)***建立高效的内源性Ngn3和MAFA基因激活方法。SAM***由三个部分组成,sgRNA、NLS-dCas9-VP64和MS2-P65-HSF1。当SAM***在细胞内表达时,三个组份形成转录激活复合体,结合在sgRNA靶向的特定启动子区域,激活基因的表达。
第一方面,本发明要求保护一种激活靶细胞中内源性Ngn3基因和/或MAFA基因表达的方法。
本发明所提供的激活靶细胞中内源性Ngn3基因和/或MAFA基因表达的方法,是基于CRISPRa(CRISPR激活)的SAM***建立激活靶细胞中内源性Ngn3基因和/或MAFA基因表达的方法。
进一步地,所述SAM***包括靶向Ngn3基因和/或MAFA基因转录起始点(transcription start site,TSS)上游-400至+1bp位置的sgRNA;针对Ngn3基因的所述sgRNA的靶序列为SEQ ID No.2(对应本发明实施例中针对Ngn3基因的sgRNA 2)和/或SEQID No.3(对应本发明实施例中针对Ngn3基因的sgRNA 3);针对MAFA基因的所述sgRNA的靶序列为SEQ ID No.6(对应本发明实施例中针对MAFA基因的sgRNA 1)和/或SEQ ID No.10(对应本发明实施例中针对MAFA基因的sgRNA 5)。
更进一步地,所述方法可包括如下步骤:使所述靶细胞表达dCAS-VP64融合蛋白、MS2-P65-HSF1融合蛋白和所述sgRNA(dCAS-VP64融合蛋白、MS2-P65-HSF1融合蛋白和所述sgRNA形成SAM复合体),从而激活所述靶细胞中内源性Ngn3基因和/或MAFA基因表达。
更加具体的,所述方法可包括如下步骤:
(1)包装能够表达所述dCAS-VP64融合蛋白的重组慢病毒A;包装能够表达所述MS2-P65-HSF1融合蛋白的重组慢病毒B;然后将所述重组慢病毒A和所述重组慢病毒B一起感染所述靶细胞,得到阳性细胞系;
(2)向步骤(1)所得阳性细胞系中导入能够表达所述sgRNA的载体,进而实现激活所述靶细胞中内源性Ngn3基因和/或MAFA基因表达。
步骤(1)中,包装所述重组慢病毒A时,采用的目的质粒可为lenti dCAS-VP64_Blast载体;包装所述重组慢病毒B时,采用的目的质粒可为MS2-P65-HSF1_Hygro载体。包装所述重组慢病毒A和所述重组慢病毒B时,采用的辅助质粒均可为PMD2.G质粒和PsPax2质粒;采用的包装细胞均可为293T细胞。
步骤(2)中,针对Ngn3基因的能够表达所述sgRNA的载体为载体A和/或载体B。所述载体A具体为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQ IDNo.2所示DNA片段后得到的重组载体。所述载体B具体为将通过BsmB I酶切位点向lentisgRNA(MS2)_zeo backbone中***SEQ ID No.3所示DNA片段后得到的重组载体。
步骤(2)中,针对MAFA基因的能够表达所述sgRNA的载体为载体C和/或载体D。所述载体C具体为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQ IDNo.6所示DNA片段后得到的重组载体。所述载体D具体为将通过BsmB I酶切位点向lentisgRNA(MS2)_zeo backbone中***SEQ ID No.10所示DNA片段后得到的重组载体。
在本发明的具体实施例方式中,针对Ngn3基因的能够表达所述sgRNA的载体为所述载体A和所述载体B,所述载体A和所述载体B的质量配比为1:1(如两种载体各向所述靶细胞中导入0.8μg,所述靶细胞于前一天接种,接种量为3×105)。针对MAFA基因的能够表达所述sgRNA的载体为所述载体C和所述载体D,所述载体C和所述载体D的质量配比为1:1(如两种载体各向所述靶细胞中导入1.0μg,所述靶细胞于前一天接种,接种量为3×105)。
在本发明的一个具体实施例方式中,所述方法包括如下步骤:(1)将lenti dCAS-VP64_Blast载体、PMD2.G质粒和PsPax2质粒(三者的质量配比具体可为1:0.25:0.75)导入293T细胞,包装得到所述重组慢病毒A;将MS2-P65-HSF1_Hygro载体、PMD2.G质粒和PsPax2质粒(三者的质量配比具体可为1:0.25:0.75)导入293T细胞,包装得到所述重组慢病毒B;然后将所述重组慢病毒A和所述重组慢病毒B一起感染所述靶细胞,得到阳性细胞系。(2)向步骤(1)所得阳性细胞系中导入所述载体A和所述载体B(质量配比为1:1,进一步,如两种载体各导入0.8μg,所述靶细胞于前一天接种,接种量为3×105),进而实现激活所述靶细胞中内源性Ngn3基因表达。
在本发明的另一个具体实施例方式中,所述方法包括如下步骤:(1)将lentidCAS-VP64_Blast载体、PMD2.G质粒和PsPax2质粒(三者的质量配比具体可为1:0.25:0.75)导入293T细胞,包装得到所述重组慢病毒A;将MS2-P65-HSF1_Hygro载体、PMD2.G质粒和PsPax2质粒(三者的质量配比具体可为1:0.25:0.75)导入293T细胞,包装得到所述重组慢病毒B;然后将所述重组慢病毒A和所述重组慢病毒B一起感染所述靶细胞,得到阳性细胞系。(2)向步骤(1)所得阳性细胞系中导入所述载体C和所述载体D(质量配比为1:1,进一步,如两种载体各导入1.0μg,所述靶细胞于前一天接种,接种量为3×105),进而实现激活所述靶细胞中内源性MAFA基因表达。
在本发明的具体实施例方式中,所述靶细胞具体为293T细胞。当然根据需要,所述靶细胞也可为多能干细胞(pluripotent stem cells,PSCs),如胚胎干细胞(embryonicstem cells,ESCs)或诱导多能干细胞(induced pluripotent stem cells,iPSCs)。
第二方面,本发明要求保护一种制备内源性Ngn3基因和/或MAFA基因表达被激活的细胞的方法。
本发明所提供的制备内源性Ngn3基因和/或MAFA基因表达被激活的细胞的方法,可包括如下步骤:利用前文第一方面中所述的方法制备得到内源性Ngn3基因和/或MAFA基因表达被激活的细胞。
第三方面,本发明要求保护下述生物材料中的任一种:
(I)利用前文第二方面中所述方法制备得到的内源性Ngn3基因和/或MAFA基因表达被激活的细胞。
(II)sgRNA或成套sgRNA;
所述sgRNA为前文第一方面中针对Ngn3基因的所述sgRNA或前文第一方面中针对MAFA基因的所述sgRNA;
所述成套sgRNA由前文第一方面中针对Ngn3基因的所述sgRNA和前文第一方面中针对MAFA基因的所述sgRNA组成。
(III)载体或成套载体;
所述载体为前文第一方面中所述的“能够表达所述sgRNA的载体”(所述载体A和/或所述载体B;或者所述载体C和/或所述载体D)。
所述成套载体由前文第一方面中所述的“能够表达所述sgRNA的载体”、lentidCAS-VP64_Blast载体、MS2-P65-HSF1_Hygro载体组成。当然也可包括PMD2.G质粒和PsPax2质粒。
在前文第二方面和第三方面中,所述细胞可为293T细胞,也可为多能干细胞(如胚胎干细胞或者诱导多能干细胞)。
第四方面,本发明还要求保护如下任一中的应用:
(A1)前文第一方面中所述的方法在诱导多能干细胞定向分化为胰岛β细胞中的应用;
(A2)前文第一方面中所述的方法或前文第二方面中所述的细胞在促进胰腺胚胎发育中的应用。
其中,所述多能干细胞可为胚胎干细胞或者诱导多能干细胞。
本发明应用CRISPRa技术,通过染色质重塑,能够高效地激活293T细胞的Ngn3和MAFA表达。本发明将对基因诱导PSCs定向分化为β细胞以及胰腺的胚胎发育研究具有重要作用。
附图说明
图1为Ngn3和MAFA启动子及sgRNA设计。TSS为转录起始点。黑色箭头为sgRNA在启动子区域的相对位置,数字代表sgRNA相对于TSS的位置。sgRNA 1、2、3和5靶向Ngn3基因的正义链,sgRNA 4靶向Ngn3基因的反义链。sgRNA 1、2和5靶向MAFA基因的正义链,sgRNA 3和4靶向MAFA基因的反义链。
图2为Ngn3表达分析。A为RT-PCR检测Ngn3基因表达。sgRNA转染293T细胞后3天,提取总RNA,并进行分析。B为qPCR检测Ngn3基因表达。分析sgRNA转染293T细胞后3天Ngn3表达水平变化。基因表达数据以GAPDH转录水平为基准进行标准化。实验结果经三次独立生物学重复确认,*p<0.05;**p<0.01;***P<0.001。
图3为MAFA表达分析。A为RT-PCR检测MAFA基因表达。sgRNA转染293T细胞后3天,提取总RNA,并进行分析。B为qPCR检测MAFA基因表达。分析sgRNA转染293T细胞后3天MAFA表达水平变化。基因表达数据以GAPDH转录水平为基准进行标准化。实验结果经三次独立生物学重复确认,*p<0.05;**p<0.01;***P<0.001。
图4为sgRNA协同作用分析。A为qPCR检测Ngn3基因表达。sgRNA转染293T细胞后3天,分析Ngn3表达水平变化。B为qPCR检测MAFA基因表达。分析sgRNA转染293T细胞后3天MAFA表达水平变化。基因表达数据以GAPDH转录水平为基准进行标准化。实验结果经三次独立生物学重复确认,*p<0.05;**p<0.01;***P<0.001。
图5为免疫荧光分析。收集sgRNA M转染后3天的细胞,制备细胞甩片,进行anti-Ngn3(1:50)和anti-MAFA(1:100)染色,INS-1细胞作为阳性对照组。细胞核以DAPI复染。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、基于CRISPRa激活内源性Ngn3和MAFA基因表达
一、材料与方法
(一)CRISPR载体
从Addgene购买lenti dCAS-VP64_Blast(下文简称dCAS-VP64)、lenti MS2-P65-HSF1_Hygro(下文简称MPH)和lenti sgRNA(MS2)_zeo backbone。三个载体的Addgene ID分别为61425、61426和61427。
(二)慢病毒包装质粒PMD2.G和PsPax2(Addgene)以及293T细胞(Invitrogen)、大鼠胰岛素瘤细胞INS-1细胞(AddexBio)。
(三)启动子特异性结合的sgRNA的设计及载体构建
1、sgRNA设计
在Ngn3和MAFA基因转录起始点(transcription start site,TSS)上游-400至+1bp位置,采用Lei Qi实验室提供的在线软件CRISPR-ERA(crispr-era.stanford.edu)分别设计5条sgRNA(图1)。sgRNA的靶序列见表1和表2。sgRNA的靶序列寡核苷酸由华大基因合成。
表1sgRNA在Ngn3启动子上的靶向序列及位置
sgRNA 靶序列(5’-3’) PAM 所在链 距离TSS的位置
1 CAGCCGGGCAGGCACGCTCC(SEQ ID No.1) TGG + -36/-17
2 AGGAGCGGGCTCGCGTGGCG(SEQ ID No.2) CGG + -99/-80
3 AATCCAGCTGTGCCCTGCGG(SEQ ID No.3) GGG + -122/-103
4 CCGCTCTGTTTGCTCTCTCG(SEQ ID No.4) AGG - -157/-176
5 AGGGCGTCCTTTAGAATTCC(SEQ ID No.5) TGG + -487/-468
表2sgRNA在MAFA启动子上的靶向序列及位置
sgRNA 靶序列(5’-3’) PAM 所在链 距离TSS的位置
1 CGCCGCCCGCGGGGAGCAGG(SEQ ID No.6) GGG + -69/-50
2 AAACTTTTCCCTGCGCCCCT(SEQ ID No.7) CGG + -134/-115
3 CAACTCCGGGGCGGCGCGCT(SEQ ID No.8) AGG - -143/-162
4 GCACCGCTGGCCAGGTGTCT(SEQ ID No.9) CGG - -167/-186
5 TCGCGTTTAGCCGTGGGAGG(SEQ ID No.10) CGG + -308/-289
2、sgRNA载体构建
(1)sgRNA寡核苷酸链退火处理
将合成的两条互补sgRNA寡核苷酸单链用ddH2O稀释到100μM。然后,按如下反应条件进行退火处理以合成双链sgRNA(双链部分的序列即为表1或表2中的靶序列,另外,两端为与BsmB I切口相符的粘性末端)。
反应体系:sgRNA-Forward(100μM)1μl;sgRNA-Reverse(100μM)1μl;10×T4DNAligase buffer(NEB)1μl;ddH2O 7μl。
反应条件:37℃,30min;95℃,5min;90℃,1min;此后,梯度退火5℃/min,直至4℃。
反应结束后,将产物用ddH2O稀释200倍,用于随后的载体连接反应。
(2)载体连接反应
lenti sgRNA(MS2)_zeo backbone载体经酶切、胶回收纯化后,进行连接反应。
酶切反应体系:lenti sgRNA(MS2)_zeo backbone载体2μl;10×Buffer 3.1(NEB)5μl;BsmB I(NEB)2μl;ddH2O 41μl。反应条件:55℃,2hrs。
连接反应:双链sgRNA 1μl;lenti sgRNA(MS2)_zeo backbone载体酶切产物1μl;ddH2O 3μl;2×solution I(Takara)5μl。反应条件:22℃,2hrs。
(3)转化
连接产物经转化、涂板,挑取阳性克隆,进行测序鉴定。
(四)dCAS-VP64/MPH细胞系构建及筛选
1、慢病毒制备
dCAS-VP64和MPH慢病毒包装过程简述如下:病毒制备的前一天,按照4-5×106/10cm培养皿的密度接种293T细胞。制备病毒当日,将目的基因载体dCAS-VP64或MPH和慢病毒包装质粒PMD2.G和PsPax2按照1:0.25:0.75的比例(质量比),用脂质体Lipofectamine2000(Invitrogen)共转染293T细胞。转染后48-72hrs收集含有病毒颗粒的培养基上清,1500rpm离心去除上清中悬浮的细胞及碎片。然后再以20000rpm,4℃离心2hrs浓缩病毒。离心后弃掉上清,用4ml培养基重悬病毒颗粒备用。经此步骤得到两种重组慢病毒。
2、构建表达dCAS-VP64/MPH的293T细胞系
293T细胞生长到60-70%融合时,以表达dCAS-VP64/MPH载体的两种慢病毒(即步骤1得到的两种重组慢病毒)同时感染293T细胞。病毒感染后2天,细胞首先在含有10μg/mlBlasticidin S(Selleck)的培养基中加压筛选7天。而后,细胞在含有300μg/mlHygromycin B(Selleck)的培养基中继续加压筛选7天。所获阳性细胞克隆在含有5μg/mlBlasticidin S和150μg/ml Hygromycin B的培养基中培养,以维持转基因的表达。
(五)sgRNA激活内源性Ngn3和MAFA基因表达
表达dCAS-VP64/MPH的293T细胞以3×105/ml的密度接种于12孔板中,每孔接种1ml细胞。第二天,用脂质体将步骤(三)构建并测序验证正确的针对Ngn3和MAFA的sgRNA载体分别转入细胞。细胞转染共分6组,分别为sgRNA 1-5以及sgRNA M(5条sgRNA等质量比混合组)。筛选sgRNA对Ngn3基因激活作用时,每组载体的用量为0.8μg(sgRNA M组中5种sgRNA载体等质量,分别为0.16μg;筛选sgRNA对MAFA基因激活作用时,每组载体的用量为1μg(sgRNA M组中5种sgRNA载体等质量,分别为0.2μg);以293T细胞为转染对照组。
检测sgRNA激活Ngn3基因表达协同作用时,细胞转染共分5组,分别为sgRNA 2 0.8μg和1.6μg、sgRNA 3 0.8μg和1.6μg以及sgRNA M 1.6μg(sgRNA 2 0.8μg+sgRNA 3 0.8μg)组。检测sgRNA激活MAFA基因表达协同作用时,细胞转染共分5组,分别为sgRNA 1 1μg和2μg、sgRNA 5 1μg和2μg以及sgRNA M 2μg(sgRNA 11μg+sgRNA 5 1μg)组。细胞转染后3天,采用RT-PCR和qRCR检测Ngn3和MAFA基因表达水平的变化,并经免疫荧光分析确认Ngn3和MAFA蛋白的表达。
(六)RT-PCR和qPCR
采用TRIzol试剂由细胞中分离总RNA,DNase处理总RNA以去除基因组DNA污染。采用Superscript IV first-strand synthesis system(Invitrogen)以1μg总RNA为模板进行反转录。采用Taq DNA polymerase(Invitrogen)进行PCR扩增,反应条件如下:预变性94℃,3min;变性94℃,30s,退火56℃,30s,延伸72℃,1min,共30个循环;终延伸72℃,10min。qPCR反应采用SYBR Green PCR Master Mix(AB)进行,每个反应重复三次。基因表达数据以GAPDH转录水平为基准进行标准化。基因表达变化采用2-ΔΔCt计算方法。实验结果经三次独立生物学重复确认。qPCR反应条件如下:预变性95℃,1min;变性95℃,5s,退火60℃,10s,延伸72℃,15s,共40个循环。
Ngn3引物:
5’-TTCGCCCACAACTACATC-3’;
5’-GACAGACAGGTCCTTTCAC-3’。
MAFA引物:
5’-CTTCAGCAAGGAGGAGGTCATC-3’;
5’-TCTCGCTCTCCAGAATGTGCC-3’。
GAPDH引物:
5’-CGAGATCCCTCCAAAATCAAGT-3’;
5’-TGAGGCTGTTGTCATACTTCTC AT-3’。
(七)免疫荧光分析
细胞首先在多聚甲醛中固定30min,4℃。而后在含0.1%Triton X-100和10%牛血清的PBS中进行破膜及封闭处理。随后一抗4℃过夜孵育,最后以荧光标记的二抗室温孵育1hr。所用一抗是anti-Ngn3(Origene)和anti-MAFA(CST);二抗是goat anti-moue AF488和goat anti-rabbit AF568(Invitrogen)。大鼠胰岛素瘤细胞INS-1细胞作为阳性对照组。细胞核以DAPI复染。
(八)统计学分析
所有实验至少重复3次。结果为均数±标准差。统计学分析采用非配对的Student’s t test,p<0.05为具有显著性差异。
二、结果
1、sgRNA载体构建
sgRNA寡核苷酸单链经退火处理后形成互补的寡核苷酸双链。随后经连接反应,将双链sgRNA***lenti sgRNA(MS2)_zeo backbone载体的BsmB I的酶切位点。连接产物经细菌转化后,挑取阳性克隆,进行测序鉴定,最终获得了正确***5种sgRNA的质粒载体(Ngn3和MAFA各5种sgRNA质粒)。
2、dCAS-VP64/MPH细胞系
为高效便捷地研究sgRNA对内源性Ngn3和MAFA的激活作用,本发明构建了表达dCAS-VP64/MPH的293T细胞系。dCAS-VP64和MPH载体分别具有Blasticidin和Hygromycin抗性基因。以表达dCAS-VP64/MPH载体的慢病毒感染细胞后2天,细胞首先在含有10μg/mlBlasticidin S的培养基中加压筛选。经3-4天筛选,对照组细胞(未感染病毒的293T细胞)全部死亡。5-7天后,病毒感染组细胞出现Blasticidin抗性克隆。随后,细胞在含有Hygromycin的培养基中继续加压筛选。经3-4天筛选,对照组细胞全部死亡。病毒感染组细胞在筛选的初期亦可见部分细胞死亡,这些死亡的细胞主要为dCAS-VP64-细胞。5-7天后所形成的阳性细胞克隆为dCAS-VP64+/MPH+细胞。筛选所获细胞用于下一步的内源性基因激活表达研究。
3、sgRNA激活Ngn3和MAFA的表达
sgRNA转染细胞3天后,收取各组细胞的总RNA,RT-PCR检测Ngn3和MAFA基因表达情况。Ngn3检测结果显示,对照组293T细胞不表达Ngn3,sgRNA 1-5以及sgRNA M组Ngn3表达不同程度上调(图2中A)。为进一步分析各组之间Ngn3的表达差异,采用qPCR检测Ngn3的差异表达。结果表明,与对照组相比(sgRNA 5)各组Ngn3的表达明显上调,其中以sgRNA 2和sgRNA 3组上调最显著。sgRNA 1-5之间的协同作用(sgRNA M)不明显(图2中B)。MAFA检测结果显示,对照组293T细胞本身固有表达一定量的MAFA;与293T细胞对照组相比,sgRNA 1-5以及sgRNA M组MAFA表达不同程度上调,但各组之间MAFA的表达差异无法区分(图3中A)。为进一步分析各组之间MAFA的表达差异,采用qPCR检测MAFA的差异表达。结果表明,与对照组相比(293T)各组MAFA的表达明显上调,其中以sgRNA 1和sgRNA 5组上调最显著。sgRNA 1-5之间的协同作用(sgRNA M)不明显(图3中B)。
为进一步优化sgRNA激活Ngn3和MAFA的表达,本发明选取sgRNA 2和sgRNA 3观察其对Ngn3基因激活的协同作用;选取sgRNA 1和sgRNA 5观察其对MAFA基因激活的协同作用。sgRNA转染细胞3天后,qPCR结果显示sgRNA 1.6μg组激活Ngn3表达的效果优于sgRNA0.8μg组,具有一定的剂量依赖性;sgRNA M 1.6μg组激活效果优于sgRNA 3 1.6μg,提示sgRNA 2和sgRNA 3之间在激活Ngn3的表达时具有协同作用(图4中A)。MAFA检测结果显示,sgRNA 2μg组激活效果优于sgRNA 1μg组,具有一定的剂量依赖性;sgRNA M 2μg组激活效果优于sgRNA 5 2μg,提示sgRNA 1和sgRNA 5之间在激活MAFA的表达时具有协同作用(图4中B)。
为进一步在蛋白质水平上确认细胞表达Ngn3和MAFA,本发明收集了转染后3天sgRNA M组细胞,制备细胞甩片进行免疫荧光分析。结果显示,293T细胞Ngn3呈阴性反应,MAFA呈弱阳性反应(图5),与PCR结果一致(图2中A和图3中A)。INS-1细胞阳性对照组Ngn3和MAFA呈阳性反应;sgRNA M组细胞Ngn3和MAFA呈阳性反应(图5)。上述结果表明,sgRNA能够高效地激活293T细胞Ngn3和MAFA表达。
本发明结果表明,应用CRISPRa技术,通过染色质重塑,能够高效地激活293T细胞的Ngn3和MAFA表达。本研究将对基因诱导PSCs定向分化为β细胞以及胰腺的胚胎发育研究具有重要作用。
<110> 中国人民解放军军事科学院军事医学研究院
<120> 一种激活内源性Ngn3和MAFA基因表达的方法
<130> GNCLN181727
<160> 10
<170> PatentIn version 3.5
<210> 1
<211> 20
<212> DNA
<213> Artificial sequence
<400> 1
cagccgggca ggcacgctcc 20
<210> 2
<211> 20
<212> DNA
<213> Artificial sequence
<400> 2
aggagcgggc tcgcgtggcg 20
<210> 3
<211> 20
<212> DNA
<213> Artificial sequence
<400> 3
aatccagctg tgccctgcgg 20
<210> 4
<211> 20
<212> DNA
<213> Artificial sequence
<400> 4
ccgctctgtt tgctctctcg 20
<210> 5
<211> 20
<212> DNA
<213> Artificial sequence
<400> 5
agggcgtcct ttagaattcc 20
<210> 6
<211> 20
<212> DNA
<213> Artificial sequence
<400> 6
cgccgcccgc ggggagcagg 20
<210> 7
<211> 20
<212> DNA
<213> Artificial sequence
<400> 7
aaacttttcc ctgcgcccct 20
<210> 8
<211> 20
<212> DNA
<213> Artificial sequence
<400> 8
caactccggg gcggcgcgct 20
<210> 9
<211> 20
<212> DNA
<213> Artificial sequence
<400> 9
gcaccgctgg ccaggtgtct 20
<210> 10
<211> 20
<212> DNA
<213> Artificial sequence
<400> 10
tcgcgtttag ccgtgggagg 20

Claims (17)

1.一种激活靶细胞中内源性Ngn3基因和/或MAFA基因表达的方法,是基于CRISPRa的SAM***建立激活靶细胞中内源性Ngn3基因和/或MAFA基因表达的方法;
所述SAM***包括靶向Ngn3基因和/或MAFA基因转录起始点上游-400至+1 bp位置的sgRNA;
针对Ngn3基因的所述sgRNA的靶序列为SEQ ID No.2和SEQ ID No.3;
针对MAFA基因的所述sgRNA的靶序列为SEQ ID No.6和SEQ ID No.10。
2.根据权利要求1所述的方法,其特征在于:所述方法包括如下步骤:使所述靶细胞表达dCAS-VP64融合蛋白、MS2-P65-HSF1融合蛋白和所述sgRNA,从而激活所述靶细胞中内源性Ngn3基因和/或MAFA基因表达。
3.根据权利要求2所述的方法,其特征在于:所述方法包括如下步骤:
(1)包装能够表达所述dCAS-VP64融合蛋白的重组慢病毒A;包装能够表达所述MS2-P65-HSF1融合蛋白的重组慢病毒B;然后将所述重组慢病毒A和所述重组慢病毒B一起感染所述靶细胞,得到阳性细胞系;
(2)向步骤(1)所得阳性细胞系中导入能够表达所述sgRNA的载体,进而实现激活所述靶细胞中内源性Ngn3基因和/或MAFA基因表达。
4.根据权利要求3所述的方法,其特征在于:步骤(1)中,包装所述重组慢病毒A时,采用的目的质粒是lenti dCAS-VP64_Blast载体;包装所述重组慢病毒B时,采用的目的质粒是lenti MS2-P65-HSF1_Hygro 载体。
5.根据权利要求3所述的方法,其特征在于:步骤(1)中,包装所述重组慢病毒A和所述重组慢病毒B时,采用的包装细胞均为293T细胞。
6.根据权利要求3所述的方法,其特征在于:步骤(2)中,针对Ngn3基因的能够表达所述sgRNA的载体为载体A和载体B;
所述载体A为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQID No.2所示DNA片段后得到的重组载体;
所述载体B为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQID No.3所示DNA片段后得到的重组载体。
7.根据权利要求3所述的方法,其特征在于:步骤(2)中,针对MAFA基因的能够表达所述sgRNA的载体为载体C和载体D;
所述载体C为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQID No.6所示DNA片段后得到的重组载体;
所述载体D为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQID No.10所示DNA片段后得到的重组载体。
8.根据权利要求1-7中任一所述的方法,其特征在于:所述靶细胞为293T细胞或多能干细胞。
9.一种制备内源性Ngn3基因和/或MAFA基因表达被激活的细胞的方法,包括如下步骤:利用权利要求1-8中任一所述的方法制备得到内源性Ngn3基因和/或MAFA基因表达被激活的细胞。
10.根据权利要求9所述的方法,其特征在于:所述细胞为293T细胞或多能干细胞。
11.sgRNA,为靶向Ngn3基因和/或MAFA基因转录起始点上游-400至+1 bp位置的sgRNA;
针对Ngn3基因的所述sgRNA的靶序列为SEQ ID No.2和SEQ ID No.3;
针对MAFA基因的所述sgRNA的靶序列为SEQ ID No.6和SEQ ID No.10。
12.成套sgRNA,由靶向Ngn3基因转录起始点上游-400至+1 bp位置的sgRNA和靶向MAFA基因转录起始点上游-400至+1 bp位置的sgRNA组成;
针对Ngn3基因的所述sgRNA的靶序列为SEQ ID No.2和SEQ ID No.3;
针对MAFA基因的所述sgRNA的靶序列为SEQ ID No.6和SEQ ID No.10。
13.载体,为能够表达权利要求11所述sgRNA的载体。
14.根据权利要求13所述的载体,其特征在于:所述载体由针对Ngn3基因的载体A和载体B组成,或者由针对MAFA基因的载体C和载体D组成,或者由所述载体A、所述载体B、所述载体C和所述载体D组成;
所述载体A为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQID No.2所示DNA片段后得到的重组载体;
所述载体B为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQID No.3所示DNA片段后得到的重组载体;
所述载体C为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQID No.6所示DNA片段后得到的重组载体;
所述载体D为将通过BsmB I酶切位点向lenti sgRNA(MS2)_zeo backbone中***SEQID No.10所示DNA片段后得到的重组载体。
15.成套载体,由权利要求13或14所述载体、lenti dCAS-VP64_Blast载体、lenti MS2-P65-HSF1_Hygro 载体组成。
16.权利要求1-8中任一所述的方法或权利要求11所述的sgRNA或权利要求12所述的成套sgRNA或权利要求13或14所述的载体或权利要求15所述的成套载体在诱导多能干细胞定向分化为胰岛β细胞中的应用。
17.权利要求1-8中任一所述的方法或权利要求11所述的sgRNA或权利要求12所述的成套sgRNA或权利要求13或14所述的载体或权利要求15所述的成套载体在促进胰腺胚胎发育中的应用。
CN201810947492.3A 2018-08-20 2018-08-20 一种激活内源性Ngn3和MAFA基因表达的方法 Active CN109055433B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810947492.3A CN109055433B (zh) 2018-08-20 2018-08-20 一种激活内源性Ngn3和MAFA基因表达的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810947492.3A CN109055433B (zh) 2018-08-20 2018-08-20 一种激活内源性Ngn3和MAFA基因表达的方法

Publications (2)

Publication Number Publication Date
CN109055433A CN109055433A (zh) 2018-12-21
CN109055433B true CN109055433B (zh) 2021-12-28

Family

ID=64687418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810947492.3A Active CN109055433B (zh) 2018-08-20 2018-08-20 一种激活内源性Ngn3和MAFA基因表达的方法

Country Status (1)

Country Link
CN (1) CN109055433B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218741B (zh) * 2019-05-31 2020-12-25 华中农业大学 采用串联sgRNA同步激活多个猪内源性干细胞因子转录活性的方法
CN116286574B (zh) * 2023-02-09 2023-12-12 中国农业大学 精准调控Bacillus subtilis内源多基因表达的CRISPRa方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108915A1 (en) * 2015-12-24 2017-06-29 Eth Zurich Programmable differentiation control network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108915A1 (en) * 2015-12-24 2017-06-29 Eth Zurich Programmable differentiation control network

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells;Pratik Saxena et al.;《Nature communications》;20160411;第7卷;第1-14页 *
CRISPR-targeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes: a path to clinical success?;Gerace et al.;《Stem Cell Research & Therapy》;20171231;第8卷;第7页及图1 *
In vivo reprogramming of adult pancreatic exocrine cells to β-cells;Zhou et al.;《nature》;20081231;第455卷;摘要 *
PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration;Zhu et al.;《Stem Cell Research & Therapy》;20171231;第8卷;第240页 *
RNA-Guided Activation of Pluripotency Genes;Xiong et al.;《CELLULAR REPROGRAMMING》;20171231;第19卷(第3期);摘要、第190页左栏第5段 *

Also Published As

Publication number Publication date
CN109055433A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
DK2798064T3 (en) PRODUCTION AND USE OF IN VITRO synthesized ssRNA TO FEED IN MAMMALIAN CELLS FOR INDUCTION OF A BIOLOGICAL OR BIOCHEMICAL EFFECT
EP3526322A1 (en) Self-limiting cas9 circuitry for enhanced safety (slices) plasmid and lentiviral system thereof
CN109097400B (zh) 基于染色质重塑激活内源性Pdx1基因表达的方法
AU2021267334A1 (en) Selection by essential-gene knock-in
CN109055433B (zh) 一种激活内源性Ngn3和MAFA基因表达的方法
CA3164660A1 (en) Engineered cells for therapy
TWI689308B (zh) 包含mir-302前驅體的組合物在製造用於肺癌治療之藥物上的用途
CN107523569B (zh) Pdcd1基因的用途及其相关药物
EP3966327A1 (en) Crispr/cas all-in-two vector systems for treatment of dmd
TW201735932A (zh) 使用微核醣核酸前驅物作爲誘導cd34陽性成體幹細胞增殖之藥物
CN111518812B (zh) 一种编辑绵羊FGF5基因实现选择性剪接的sgRNA、成套核酸分子和应用
WO2023193616A1 (zh) 单碱基编辑修复hba2基因突变的方法及其应用
GB2604471A (en) A method for development ally-activating a cell
US20190136200A1 (en) Cellular Reprogramming Utilizing mRNA
US11624067B2 (en) In-vitro induction of adult stem cell expansion and derivation
CN116218906A (zh) 一种rna编辑器表达质粒、外泌体适配子融合表达质粒以及一种靶向基因rna编辑方法
EP3818158A1 (en) In-vitro induction of adult stem cell expansion and derivation
US20220213488A1 (en) Correction of the two most prevalent ush2a mutations by genome editing
JP2021522865A (ja) 栄養要求性調節可能な細胞を使用する遺伝子療法の方法および組成物
CN112266912A (zh) 靶向miR-29b的gRNA、AAV8-CRISPR/Cas9***及其应用
CN110964727A (zh) 特异抑制c-myc基因表达的shRNA慢病毒表达载体构建方法与应用
WO2019241569A1 (en) Reprogramming cells with synthetic messenger rna
WO2012156721A1 (en) Methods for providing human cells comprising a human artificial chromosome
US20220127602A1 (en) Grna targeting mir-29b, aav8-crisper/cas9 system and use thereof
US20200377878A1 (en) Modified t cells and uses thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant