CN108998636B - 一种加工软化低碳钢的制备方法 - Google Patents

一种加工软化低碳钢的制备方法 Download PDF

Info

Publication number
CN108998636B
CN108998636B CN201810937208.4A CN201810937208A CN108998636B CN 108998636 B CN108998636 B CN 108998636B CN 201810937208 A CN201810937208 A CN 201810937208A CN 108998636 B CN108998636 B CN 108998636B
Authority
CN
China
Prior art keywords
carbon steel
low
room temperature
deformation
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810937208.4A
Other languages
English (en)
Other versions
CN108998636A (zh
Inventor
张静武
门浩
杨猛
缑慧阳
赵一博
李慧
李晗
景子毅
王思涵
王金萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Publication of CN108998636A publication Critical patent/CN108998636A/zh
Application granted granted Critical
Publication of CN108998636B publication Critical patent/CN108998636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种加工软化低碳钢的制备方法,其主要是采用含碳量为0.13~0.21%的普通低碳钢,在Ac1上30℃保温1小时,放入10%氯化钠冰水淬火得到板条马氏体,室温冷轧,变形量为75~80%,其组织为平行排列的C过饱和的变形板条铁素体;在200℃~400℃回火,得到薄饼形晶粒低碳钢板。本发明制备方法简单,低碳钢室温应力‑应变曲线呈现出加工软化特征,其组织为薄饼形过饱和变形铁素体晶粒,强度和延伸率高于淬火‑回火态的同一低碳钢。

Description

一种加工软化低碳钢的制备方法
技术领域
本发明属于金属材料技术领域,特别涉及一种金属材料的制备方法。
技术背景
金属材料室温变形普遍出现加工硬化行为。在特定条件下,少数单晶体金属存在室温(低温)加工软化。
钢铁、有色金属合金等多晶体工程材料,普遍具有加工硬化特性,表现为材料在室温变形时,晶粒形状改变,位错密度增加,硬度、强度提高。其应力-应变曲线在屈服点后呈抛物线型继续上升,按曲线最高点确定断裂强度,普遍高于屈服强度。例如304LN不锈钢,其室温屈服强度约为400-500MPa,在屈服点后应力-应变曲线斜率保持上升,断裂强度约为600~750MPa,是典型的加工硬化行为[Science and Engineering A,486(2008),283–286];超细晶Q&P钢在室温至190℃拉伸,其应力-应变曲线在屈服点后普遍升高,断裂强度分别为1450MPa-1650MPa,普遍高于屈服强度[Scripta Materialia,123(2016),69–72]。
这种加工硬化是多晶体金属材料的普遍性质。只有在特殊情况下,金属材料才会出现加工软化的反传统行为。
A.H.Cottrell提出,金属材料的加工软化表现为其应力-应变曲线第3阶段的硬化速率降低。他认为,确定金属材料的加工软化通常需要3个条件:1)在低温或室温下变形;2)材料为单晶体;3)延性好的金属,如Al、Cu、不锈钢,如Al单晶体室温变形即发生加工软化[Philosophical Magazine Letters,81(1),2001,23-28]。单晶体Zn在77K压缩变形,其应力-应变曲线在没有明显的塑性变形即发生应***化,经X-Ray、TEM分析,确定这种应***化的机制是变形中晶体发生扭折,〈1120〉(0001)滑移系开动导致的几何软化[Philosophical Magazine,30:3,515-526,DOI:10.1080/14786439808206577]。
低碳钢的主要成分为Fe、C元素,通常经过热处理得到回火低碳马氏体、珠光体或铁素体+渗碳体组织,其屈服强度300MPa~1200MPa,在船舶、桥梁、车辆、锅炉等领域有广泛的应用。已经发现,对低碳钢分别进行热轧、淬火和ECAP处理,ECAP晶粒细化优于固溶处理和相变处理,材料强化效果优于淬火[Materials and Design,65(2015),115-119,];0.18%C钢通过提高轧制速度使晶粒细化至400μm,强度由350GMp提高到810GMp,但钢的韧性显著降低[Materials Letters,160(2015),213-217]。
值得注意的是,有关钢铁材料的各项研究中,无一例外的其应力-应变曲线都呈现加工硬化特征。
发明内容
本发明的目的在于提供一种方法简单、低碳钢室温应力-应变曲线呈现出加工软化特征的加工软化低碳钢的制备方法。
本发明的制备方法如下:
采用含碳量为0.13%~0.21%的普通低碳钢,在Ac1上30℃保温1小时,放入10%氯化钠冰水淬火得到板条马氏体,室温冷轧,变形量为75~80%,其组织为平行排列的C过饱和变形铁素体板条,在200~400℃回火,得到薄饼形晶粒低碳钢板。
本发明与现有技术相比具有如下优点:
制备方法简单,低碳钢室温应力-应变曲线呈现出加工软化特征,其组织为薄饼形过饱和变形铁素体晶粒,强度和延伸率高于淬火-回火态的同一低碳钢。
附图说明
图1是本发明实施例1制备的低碳钢的室温拉伸应力-应变曲线对比图。
图2是本发明实施例1制备的加工软化低碳钢的光学金相组织,a)钢板侧面金相组织、b)钢板轧面金相组织。
图3是本发明实施例1制备的加工软化低碳钢淬火-80%变形-400℃回火的室温应力应变曲线图。
图4是本发明实施例2制备的加工软化低碳钢淬火-80%变形-200℃回火的室温应力应变曲线图。
图5是本发明实施例3制备的加工软化低碳钢淬火-80%变形-300℃回火的室温应力应变曲线图。
图6是本发明实施例4制备的加工软化低碳钢淬火-75%变形-300℃回火的室温应力应变曲线图。
图7是本发明实施例5制备的加工软化低碳钢淬火-75%变形-400℃回火的室温应力应变曲线图。
具体实施方式
实施例1
选用15低碳钢,其化学成分的重量百分比为:C 0.13%、Si 0.08%、Mn 0.13%、P0.01%、S0.004%、余量为Fe,加热到920℃保温1小时,经10%氯化钠冰水淬火得到板条马氏体;室温下冷轧,变形量为80%,其组织为平行排列的C过饱和变形铁素体板条;在400℃回火,得到薄饼形晶粒低碳钢板。
如图1所示,1是制备的低碳钢曲线在屈服点后随着应变增加强度降低,具有加工软化特征;作为对比,2是同一低碳钢退火态的曲线,在屈服点后随着应变增加强度增高,是经典的加工硬化特征。
如图2所示,a)钢板侧面金相组织,细线为平行排列的C过饱和变形铁素体板条;b)钢板轧面金相组织,多边形是大尺寸C过饱和铁素体晶粒。低碳钢晶粒为薄饼形。
测量室温拉伸应力-应变曲线,如图3所示;其力学性能见表1。
表1 15钢淬火-80%变形-400℃回火的力学性能
Figure BDA0001768126960000031
实施例2
选用15号低碳钢,其化学成分的重量百分比为:C 0.13%、Si 0.08%、Mn 0.13%、P 0.01%、S 0.004%、余量为Fe,加热到920℃保温1小时,经10%氯化钠冰水淬火得到板条马氏体,室温冷轧,变形量为80%,其组织为平行排列的C过饱和变形铁素体板条,在200℃回火,得到薄饼形晶粒低碳钢板。
测量室温拉伸应力-应变曲线,如图4所示;其力学性能见表2。
表2 15钢淬火-80%变形-200℃回火的力学性能
Figure BDA0001768126960000032
实施例3
选用15号低碳钢,其化学成分的重量百分比为:C 0.13%、Si 0.08%、Mn 0.13%、P 0.01%、S 0.004%、余量为Fe,加热到920℃保温1小时,经10%氯化钠冰水淬火得到板条马氏体,室温冷轧,变形量为80%,其组织为平行排列的C过饱和变形铁素体板条,在300℃回火,得到薄饼形晶粒低碳钢板。
测量室温拉伸应力-应变曲线,如图5所示;其力学性能见表3。
表5 15钢淬火-80%变形-300℃回火的力学性能
Figure BDA0001768126960000033
实施例4
选用20号低碳钢,其化学成分的重量百分比为:C 0.21%、Si 0.07%、Mn 0.18%、P 0.02%、S 0.006%、Cr 0.41%、Mo 0.33%、余量为Fe,加热到935℃保温1小时,经10%氯化钠冰水淬火得到板条马氏体,室温冷轧,变形量为75%,其组织为平行排列的C过饱和变形铁素体板条,在300℃回火,得到薄饼形晶粒低碳钢板。
测量室温拉伸应力-应变曲线,如图6所示;其力学性能见表4.
表4 20钢淬火-75%变形-300℃回火的力学性能
Figure BDA0001768126960000041
实施例5
选用20号低碳钢,其化学成分的重量百分比为:C 0.21%、Si 0.07%、Mn 0.18%、P 0.02%、S 0.006%、Cr 0.41%、Mo 0.33%、余量为Fe,加热到935℃保温1小时,经10%氯化钠冰水淬火得到板条马氏体,室温冷轧,变形量为75%,其组织为平行排列的C过饱和变形铁素体板条,在400℃回火,得到薄饼形晶粒低碳钢板。
测量室温拉伸应力-应变曲线,如图7所示;其力学性能见表5.
表5 20钢淬火-75%变形-400℃回火的力学性能
Figure BDA0001768126960000042

Claims (1)

1.一种加工软化低碳钢的制备方法,其特征是:采用含碳量为0.13~0.21%的普通低碳钢,在Ac1上30℃保温1小时,放入10%氯化钠冰水中淬火得到板条马氏体,室温冷轧,变形量为75~80%,其组织为平行排列的C过饱和变形铁素体;在200℃~400℃回火,得到薄饼形C过饱和铁素体晶粒的低碳钢板。
CN201810937208.4A 2018-01-12 2018-08-16 一种加工软化低碳钢的制备方法 Active CN108998636B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018100346690 2018-01-12
CN201810034669 2018-01-12

Publications (2)

Publication Number Publication Date
CN108998636A CN108998636A (zh) 2018-12-14
CN108998636B true CN108998636B (zh) 2020-03-31

Family

ID=64593143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810937208.4A Active CN108998636B (zh) 2018-01-12 2018-08-16 一种加工软化低碳钢的制备方法

Country Status (1)

Country Link
CN (1) CN108998636B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146409A (en) * 1977-06-06 1979-03-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for making a high toughness-high strength iron alloy
CN101225459A (zh) * 2007-11-16 2008-07-23 燕山大学 高塑性超细晶微合金低碳钢的制造方法
CN102864299A (zh) * 2012-09-10 2013-01-09 莱芜钢铁集团有限公司 一种超高强度钢的等温转变热处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146409A (en) * 1977-06-06 1979-03-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for making a high toughness-high strength iron alloy
CN101225459A (zh) * 2007-11-16 2008-07-23 燕山大学 高塑性超细晶微合金低碳钢的制造方法
CN102864299A (zh) * 2012-09-10 2013-01-09 莱芜钢铁集团有限公司 一种超高强度钢的等温转变热处理方法

Also Published As

Publication number Publication date
CN108998636A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
US8313592B2 (en) Thermal mechanical treatment of martensitic stainless steel
JP4288216B2 (ja) 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
EP0058016B1 (en) Process for producing steel wire or rods of high ductility and strength
KR20190077772A (ko) 냉간압조용 선재, 이를 이용한 가공품 및 이들의 제조방법
CN1024025C (zh) 用于生产弹性极限值优越并具有双重结构之高强不锈钢的方法
US10570479B2 (en) High tensile steel wire
US7678207B2 (en) Steel product for induction hardening, induction-hardened member using the same, and methods producing them
JPH07179985A (ja) 耐食性に優れた高強度懸架ばねおよびその製法
EP3887556B1 (en) Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof
CN108998636B (zh) 一种加工软化低碳钢的制备方法
JP4328719B2 (ja) クロム鋼を耐食性スプリング構成要素用原料として用いる使用および前記クロム鋼の製造方法
WO2019186257A1 (en) A high ductile bainitic steel and a method of manufacturing thereof
CN116018421A (zh) 具有优异的生产率和成本降低效果的高强度奥氏体不锈钢及其生产方法
WO2020157665A1 (en) A high strength-high ductile steel and a method of manufacturing thereof
US6786980B2 (en) Steel product and method for manufacturing
CN108998648B (zh) 一种铁素体-孪晶马氏体低碳钢的制备方法
JP3462473B2 (ja) 耐応力腐食割れ性に優れた強靱鋼およびその製造方法
EP4397781A1 (en) Hot-rolled ferritic stainless steel sheet having excellent formability and method for manufacturing same
JPH10147816A (ja) 成形性に優れた高炭素熱延鋼板および高炭素冷延鋼板の製造方法
JPH0598357A (ja) 焼き戻し省略型高炭素薄鋼板の製造方法
JPH0660345B2 (ja) 冷間加工性にすぐれ,且つ,浸炭加熱時の結晶粒粗大化を防止した鋼の製造方法
CN116200649A (zh) 一种基于薄板坯短流程的马氏体钢板及其柔性制造方法
CN116694997A (zh) 一种耐高温搪烧的屈服强度360MPa级低碳热轧高强搪瓷钢及其生产方法
JPS59162248A (ja) 加工性、浸炭焼入れ性の優れた熱延鋼板
JPH0466644A (ja) 耐めっき割れ性に優れた高張力鋼およびその製造法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant