CN108957772B - 一种2d/3d切换模组的检测***及检测方法 - Google Patents

一种2d/3d切换模组的检测***及检测方法 Download PDF

Info

Publication number
CN108957772B
CN108957772B CN201810811615.0A CN201810811615A CN108957772B CN 108957772 B CN108957772 B CN 108957772B CN 201810811615 A CN201810811615 A CN 201810811615A CN 108957772 B CN108957772 B CN 108957772B
Authority
CN
China
Prior art keywords
polarizing plate
switching
mode
switching module
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810811615.0A
Other languages
English (en)
Other versions
CN108957772A (zh
Inventor
刘冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhangjiagang Kangdexin Optronics Material Co Ltd
Original Assignee
Zhangjiagang Kangdexin Optronics Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhangjiagang Kangdexin Optronics Material Co Ltd filed Critical Zhangjiagang Kangdexin Optronics Material Co Ltd
Priority to CN201810811615.0A priority Critical patent/CN108957772B/zh
Publication of CN108957772A publication Critical patent/CN108957772A/zh
Application granted granted Critical
Publication of CN108957772B publication Critical patent/CN108957772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

本发明实施例提供一种2D/3D切换模组的检测***及检测方法,2D/3D切换模组的检测***,包括:光源;第一偏光板;第二偏光板;待测2D/3D切换模组放置于第一偏光板与第二偏光板之间;透过率测量装置,位于第二偏光板远离光源一侧,用于获取光源发出的光通过第一偏光板、待测2D/3D切换模组和第二偏光板后的透过率;计时装置,与透过率测量装置电连接,用于获取待测2D/3D切换模组通电和断电过程中的时间信息;数据处理装置,与透过率测量装置以及计时装置电连接,用于根据透过率以及时间信息确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。本发明实施例以实现避免人眼判断的误差,可准确测量结果并进行数值量化以及自动智能化,提高了检测效率。

Description

一种2D/3D切换模组的检测***及检测方法
技术领域
本发明实施例涉及显示技术,尤其涉及一种2D/3D切换模组的检测***及检测方法。
背景技术
图1为一种2D/3D切换模组的结构示意图,2D/3D切换模组一般贴附于显示面板的发光侧,从而可以实现2D(二维)显示和3D(三维)显示。2D/3D切换模组依次包括第一基板11、第一电极12、视镜分离元件13、第一配向层14、液晶层15、第二配向层16、第二电极17和第二基板18,2D/3D切换模组还包括封框胶19,封框胶19位于第一电极12和第二电极17之间。液晶层15中包括多个液晶分子,液晶分子可以在第一电极12与第二电极17产生的电场作用下翻转,可以通过控制2D/3D切换模组的通电和断电来实现2D模式和3D模式的切换。
在制作形成2D/3D切换模组后,往往需要对制作形成的2D/3D切换模组进行检测,以保证产品质量。而现有的2D/3D切换模组的检测往往通过人眼直接观察来判断产品是否良好,但是人眼直接观察的方式存在诸多问题:通电状态下,2D模式到3D模式的切换时间太短,目视几乎无法准确分辨,断电状态下3D模式到2D模式的切换时间目视约2s~5s,但产品画面显示界面效果差异并不明显,出现人员误差状况较大,目前使用目视方式无法准确测定产品2D模式和3D模式间切换时间,无法使用量化数据有效反馈产品性能和质量;人眼直接观察的方式耗费人工成本,同时测试时间较长,不利产品产能节拍提升。
发明内容
本发明实施例提供一种2D/3D切换模组的检测***及检测方法,以实现避免人眼判断的误差,可准确测量结果并进行数值量化以及自动智能化,提高了检测效率。
第一方面,本发明实施例提供一种2D/3D切换模组的检测***,包括:
光源;
第一偏光板,位于所述光源一侧;
第二偏光板,位于所述第一偏光板远离所述光源一侧;待测2D/3D切换模组放置于所述第一偏光板与所述第二偏光板之间;
透过率测量装置,位于所述第二偏光板远离所述光源一侧,用于获取所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率;
计时装置,与所述透过率测量装置电连接,用于获取所述待测2D/3D切换模组通电和断电过程中的时间信息;
数据处理装置,与所述透过率测量装置以及所述计时装置电连接,用于根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
可选地,所述数据处理装置包括:
曲线绘制单元,用于根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息形成透过率-时间变化曲线;
透过率值确定单元,用于根据透过率-时间变化曲线获取所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间;
响应时间确定单元,用于根据所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
可选地,所述待测2D/3D切换模组包括第一基板、液晶层和第二基板,所述液晶层位于所述第一基板和所述第二基板之间;所述第一基板临近所述液晶层的一侧设置有第一配向层,所述第二基板临近所述液晶层的一侧设置有第二配向层;
所述第一偏光板的透振方向与所述第一配向层的配向方向相互平行,所述第二偏光板的透振方向与所述第二配向层的配向方向相互垂直,所述第一偏光板的透振方向与所述第二偏光板透振方向的夹角θ位于[0°,90°)。
可选地,所述待测2D/3D切换模组包括第一基板、液晶层和第二基板,所述液晶层位于所述第一基板和所述第二基板之间;所述第一基板临近所述液晶层的一侧设置有第一配向层,所述第二基板临近所述液晶层的一侧设置有第二配向层;
所述第一偏光板的透振方向与所述第一配向层的配向方向相互平行,所述第二偏光板的透振方向与所述第二配向层的配向方向相互平行,所述第一偏光板的透振方向与所述第二偏光板透振方向的夹角θ位于(0°,90°]。
可选地,所述光源为平行光光源。
第二方面,本发明实施例提供一种2D/3D切换模组的检测方法,由第一方面所述的2D/3D切换模组的检测***执行,包括:
为待测2D/3D切换模组通电和断电并使用计时装置获取所述待测2D/3D切换模组通电和断电过程中的时间信息;
透过率测量装置测量获取所述待测2D/3D切换模组通电和断电过程中光源发出的光通过第一偏光板、所述待测2D/3D切换模组和第二偏光板后的透过率;
数据处理装置根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
可选地,数据处理装置根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间,包括:
根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息形成透过率-时间变化曲线;
根据透过率-时间变化曲线获取所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间;
根据所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
可选地,所述待测2D/3D切换模组包括第一基板、液晶层和第二基板,所述液晶层位于所述第一基板和所述第二基板之间;所述第一基板临近所述液晶层的一侧设置有第一配向层,所述第二基板临近所述液晶层的一侧设置有第二配向层;
所述第一偏光板的透振方向与所述第一配向层的配向方向相互平行,所述第二偏光板的透振方向与所述第二配向层的配向方向相互垂直,所述第一偏光板的透振方向与所述第二偏光板透振方向的夹角θ位于[0°,90°);
根据所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间,包括:
获取所述待测2D/3D切换模组通电过程中出现最小透过率值的时间t1和最大透过率值的时间t2,2D模式切换到3D模式的切换时间为t2-t1;
获取所述待测2D/3D切换模组断电过程中出现最大透过率值的时间t3和最小透过率值的时间t4,3D模式切换到2D模式的切换时间为t4-t3。
可选地,所述待测2D/3D切换模组包括第一基板、液晶层和第二基板,所述液晶层位于所述第一基板和所述第二基板之间;所述第一基板临近所述液晶层的一侧设置有第一配向层,所述第二基板临近所述液晶层的一侧设置有第二配向层;
所述第一偏光板的透振方向与所述第一配向层的配向方向相互平行,所述第二偏光板的透振方向与所述第二配向层的配向方向相互平行,所述第一偏光板的透振方向与所述第二偏光板透振方向的夹角θ位于(0°,90°];
根据所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间,包括:
获取所述待测2D/3D切换模组通电过程中出现最大透过率值的时间t5和最小透过率值的时间t6,2D模式切换到3D模式的切换时间为t6-t5;
获取所述待测2D/3D切换模组断电过程中出现最小透过率值的时间t7和最大透过率值的时间t8,3D模式切换到2D模式的切换时间为t8-t7。本发明实施例中,
本发明实施例提供的2D/3D切换模组的检测***中,待测2D/3D切换模组置于第一偏光板和第二偏光板之间,经过第一偏光板后的光线为线偏振光。3D模式下,经过第一偏光板后形成的线偏振光保持其振动面,然后经过第二偏光板后出射;2D模式下,经过第一偏光板后形成的线偏振光的振动面围绕光线传播方向旋转一定角度,然后经过第二偏光板后出射。3D模式和2D模式具有不同的透过率。因此可以获取透过率测量装置测量的透过率和计时装置记录的时间信息,并由数据处理装置对透过率和时间信息进行处理,从而确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。本发明实施例提供的2D/3D切换模组的检测***避免了人眼判断的误差,可准确测量结果并进行数值量化以及自动智能化,提高了检测效率。
附图说明
图1为一种2D/3D切换模组的结构示意图;
图2为本发明实施例提供的一种2D/3D切换模组的检测***的结构示意图;
图3为本发明实施例提供的一种数据处理装置的结构示意图;
图4为本发明实施例提供的第一偏光板的透振方向、第一配向层的配向方向、第二配向层的配向方向和第二偏光板的透振方向的一种关系示意图;
图5为本发明实施例提供的第一偏光板的透振方向、第一配向层的配向方向、第二配向层的配向方向和第二偏光板的透振方向的另一种关系示意图;
图6为本发明实施例提供的一种光源的结构示意图;
图7为本发明实施例提供的一种2D/3D切换模组的检测方法的流程示意图;
图8为本发明实施例提供的一种透过率-时间变化曲线的示意图;
图9为本发明实施例提供的另一种透过率-时间变化曲线的示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
图2为本发明实施例提供的一种2D/3D切换模组的检测***的结构示意图,参考图2,2D/3D切换模组可以为裸眼3D显示技术中2D/3D可切换裸眼3D Switch Cell。2D/3D切换模组的检测***包括光源30、第一偏光板21、第二偏光板22、透过率测量装置40、计时装置50和数据处理装置60。光源10可以为面光源,光源10发出的光例如可以为光强均匀分布的平行光。第一偏光板21位于光源30一侧,第二偏光板22位于第一偏光板21远离光源30一侧。待测2D/3D切换模组10放置于第一偏光板21与第二偏光板22之间。第一偏光板21和第二偏光板22为线偏振片,经过线偏振片的光束形成线偏振光。光矢量
Figure BDA0001739291360000081
的振动方位保持不变的光称为线偏振光。透过率测量装置40位于第二偏光板22远离光源30一侧,用于获取光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的透过率。透过率测量装置40例如可以为辉度计。计时装置50与透过率测量装置40电连接,用于获取待测2D/3D切换模组10通电和断电过程中的时间信息。数据处理装置60与透过率测量装置40以及计时装置50电连接,用于根据光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的透过率以及待测2D/3D切换模组10通电和断电过程中的时间信息确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
一般而言,待测2D/3D切换模组10在通电时为3D模式,待测2D/3D切换模组10在断电时为2D模式。待测2D/3D切换模组10通电时,并不能立即由2D模式切换到3D模式;待测2D/3D切换模组10断电时,也不能立即由3D模式切换到2D模式,2D模式切换到3D模式以及3D模式切换到2D模式均需要一定的时间。3D模式和2D模式具有不同的显示效果。3D模式下液晶分子垂直于第一基板11排列且不具有旋光性,2D模式下液晶分子处于平躺状态(液晶分子与第一基板11之间存在一预倾角)且具有旋光性。具有旋光性的物质称为旋光物质,当线偏振光通过旋光物质后,振动面以光的传播方向为轴旋转一定的角度。
本发明实施例提供的2D/3D切换模组的检测***中,待测2D/3D切换模组置于第一偏光板和第二偏光板之间,经过第一偏光板后的光线为线偏振光。3D模式下,经过第一偏光板后形成的线偏振光保持其振动面,然后经过第二偏光板后出射;2D模式下,经过第一偏光板后形成的线偏振光的振动面围绕光线传播方向旋转一定角度,然后经过第二偏光板后出射。3D模式和2D模式具有不同的透过率。因此可以获取透过率测量装置测量的透过率和计时装置记录的时间信息,并由数据处理装置对透过率和时间信息进行处理,从而确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。本发明实施例提供的2D/3D切换模组的检测***避免了人眼判断的误差,可准确测量结果并进行数值量化以及自动智能化,提高了检测效率。
图3为本发明实施例提供的一种数据处理装置的结构示意图,参考图2和图3,数据处理装置60包括曲线绘制单元61、透过率值确定单元62和响应时间确定单元63。曲线绘制单元61用于根据光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的透过率以及待测2D/3D切换模组10通电和断电过程中的时间信息形成透过率-时间变化曲线。透过率-时间变化曲线上的透过率值与时间值是一一对应的,有一个透过率值就对应一个时间值,最大透过率值和最小值透过率值对应出现的时间节点只是其中较为特殊的数据节点信息。透过率值确定单元62用于根据透过率-时间变化曲线获取待测2D/3D切换模组10通电和断电过程中光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的最大透过率值和最小透过率值出现的时间。响应时间确定单元63用于根据待测2D/3D切换模组10通电和断电过程中光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
图4为本发明实施例提供的第一偏光板的透振方向、第一配向层的配向方向、第二配向层的配向方向和第二偏光板的透振方向的一种关系示意图,参考图1、图2和图4,透振方向以及配向方向均以箭头表示,待测2D/3D切换模组10包括第一基板11、液晶层15和第二基板18,液晶层15位于第一基板11和第二基板18之间。第一基板11临近液晶层15的一侧设置有第一配向层14,第二基板18临近液晶层15的一侧设置有第二配向层16。第一偏光板21的透振方向与第一配向层14的配向方向相互平行,第二偏光板22的透振方向与第二配向层16的配向方向相互垂直,第一偏光板21的透振方向与第二偏光板22透振方向的夹角θ位于[0°,90°)。2D模式下,液晶层15中的液晶分子处于平躺状态(液晶分子与第一基板11之间存在一预倾角),且液晶层15中的液晶分子根据第一配向层14和第二配向层16的配向方向扭曲排列,入射到液晶层15靠近第一配向层14一侧的线偏振光的偏振方向与第一配向层14的配向方向一致,从液晶层15靠近第二配向层16一侧出射的线偏振光的偏振方向与第二配向层16的配向方向一致。由于第二偏光板22的透振方
向与第二配向层16的配向方向相互垂直,经过液晶层15出射的光线无法透过第二偏光板22,透过率测量装置40测量到的透过率为0。3D模式下,液晶层15中的液晶分子垂直于第一基板11,液晶层15中液晶分子的排列方式与第一配向层14和第二配向层16的配向方向无关。由于第一偏光板21的透振方向与第二偏光板22透振方向的夹角θ位于[0°,90°),因此光线可以透过第二偏光板22,透过率测量装置40测量到透过率Tr1。在2D模式切换到3D模式以及3D模式切换到2D模式的过程中,透过率测量装置40测量到的透过率位于[0,Tr1]。
图5为本发明实施例提供的第一偏光板的透振方向、第一配向层的配向方向、第二配向层的配向方向和第二偏光板的透振方向的另一种关系示意图,透振方向以及配向方向均以箭头表示,参考图1、图2和图5,待测2D/3D切换模组10包括第一基板11、液晶层15和第二基板18,液晶层15位于第一基板11和第二基板18之间。第一基板11临近液晶层15的一侧设置有第一配向层14,第二基板18临近液晶层15的一侧设置有第二配向层16。第一偏光板21的透振方向与第一配向层14的配向方向相互平行,第二偏光板22的透振方向与第二配向层16的配向方向相互平行,第一偏光板21的透振方向与第二偏光板22透振方向的夹角θ位于(0°,90°]。2D模式下,液晶层15中的液晶分子处于平躺状态(液晶分子与第一基板11之间存在一预倾角),且液晶层15中的液晶分子根据第一配向层14和第二配向层16的配向方向扭曲排列,入射到液晶层15靠近第一配向层14一侧的线偏振光的偏振方向与第一配向层14的配向方向一致,从液晶层15靠近第二配向层16一侧出射的线偏振光的偏振方向与第二配向层16的配向方向一致。由于第二偏光板22的透振方向与第二配向层16的配向方向相互平行,经过液晶层15出射的光线全部透过第二偏光板22,透过率测量装置40测量到的透过率Tr3。3D模式下,液晶层15中的液晶分子垂直于第一基板11,液晶层15中液晶分子的排列方式与第一配向层14和第二配向层16的配向方向无关。由于第一偏光板21的透振方向与第二偏光板22透振方向的夹角θ位于(0°,90°],经过液晶层15出射的光线部分透过第二偏光板22,透过率测量装置40测量到透过率Tr4。在2D模式切换到3D模式以及3D模式切换到2D模式的过程中,透过率测量装置40测量到的透过率位于[Tr4,Tr3]。
图6为本发明实施例提供的一种光源的结构示意图,参考图2和图6,光源30为平行光光源。进一步地,光源30可以为二维显示面板,图6中示例性地以液晶显示面板为例进行解释说明,液晶显示面板包括背光源31、阵列基板32、显示液晶层33和彩膜基板34,显示液晶层33位于阵列基板32和彩膜基板34形成的液晶盒中,背光源31位于阵列基板32远离彩膜基板34一侧。背光源31可以为面光源,并发出平行光。显示液晶层33中的液晶分子可以在电场(阵列基板32中像素电极和彩膜基板34中公共电极产生的电场)的作用下发生偏转,从而控制背光源31发出的光线透过液晶显示面板出射时的发光亮度。本发明实施例中,使用二维显示面板作为光源30,二维显示面板发出的光线亮度分布比较均匀,且容易控制二维显示面板的全部或部分发光,从而容易控制光源30所发光线的光束大小。需要说明的是,二维显示面板还可以是有机发光显示面板、电泳显示面板等。光源30还可以使用除二维显示面板外的其他结构,例如使用直接使用背光源31,本发明实施例对于光源30是否为二维显示面板不做限定,只要光源30发出平行光即可。
图7为本发明实施例提供的一种2D/3D切换模组的检测方法的流程示意图,2D/3D切换模组的检测方法由上述实施例中的2D/3D切换模组的检测***执行,参考图2和图7,2D/3D切换模组的检测方法包括如下步骤:
S110、为待测2D/3D切换模组10通电和断电并使用计时装置50获取待测2D/3D切换模组10通电和断电过程中的时间信息。
S120、透过率测量装置40测量获取待测2D/3D切换模组10通电和断电过程中光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的透过率。
S130、数据处理装置60根据光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的透过率以及待测2D/3D切换模组10通电和断电过程中的时间信息确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
本发明实施例提供的2D/3D切换模组的检测方法由上述实施例中的2D/3D切换模组的检测***执行,因此具有上述2D/3D切换模组的检测***的有益效果,即,避免了人眼判断的误差,可准确测量结果并进行数值量化以及自动智能化,提高了检测效率。
可选地,上述步骤S130包括如下子步骤:
S131、根据光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的透过率以及待测2D/3D切换模组10通电和断电过程中的时间信息形成透过率-时间变化曲线。
S132、根据透过率-时间变化曲线获取待测2D/3D切换模组10通电和断电过程中光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的最大透过率值和最小透过率值出现的时间。
S133、根据待测2D/3D切换模组10通电和断电过程中光源30发出的光通过第一偏光板21、待测2D/3D切换模组10和第二偏光板22后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
图8为本发明实施例提供的一种透过率-时间变化曲线的示意图,参考图2、图4和图8,第一偏光板21的透振方向与第一配向层14的配向方向相互平行,第二偏光板22的透振方向与第二配向层16的配向方向相互垂直,第一偏光板21的透振方向与第二偏光板22透振方向的夹角θ位于[0°,90°)。在t1时刻,对待测2D/3D切换模组10通电,此时透过率测量装置40测量到的最小透过率值为Tr2,透过率逐渐上升直至达到最大透过率值Tr1,透过率测量装置40测量到最大透过率值Tr1的时间段为t2-t3(t2-t3时间内,保持最大透过率值Tr1不变);在t3时刻,对待测2D/3D切换模组10断电,从t3时刻透过率逐渐降低直至达到t4时刻的最小透过率值Tr2。由于第二偏光板22的透振方向与第二配向层16的配向方向相互垂直,光线无法透过第二偏光板22,透过率测量装置40测量到的透过率为0,即Tr2=0。上述步骤S133可以包括如下子步骤:
S1011、获取待测2D/3D切换模组10通电过程中出现最小透过率值Tr2的时间t1和最大透过率值Tr1的时间t2,2D模式切换到3D模式的切换时间为t2-t1。
S1012、获取待测2D/3D切换模组10断电过程中出现最大透过率值Tr1的时间t3和最小透过率值Tr2的时间t4,3D模式切换到2D模式的切换时间为t4-t3。
图9为本发明实施例提供的另一种透过率-时间变化曲线的示意图,参考图2、图5和图9,第一偏光板21的透振方向与第一配向层14的配向方向相互平行,第二偏光板22的透振方向与第二配向层16的配向方向相互平行,第一偏光板21的透振方向与第二偏光板22透振方向的夹角θ位于(0°,90°]。在t5时刻,对待测2D/3D切换模组10通电,此时透过率测量装置40测量到的最大透过率值为Tr3,透过率逐渐降低直至达到最小透过率值Tr4,透过率测量装置40测量到最小透过率值Tr4的时间段为t6-t7(t6-t7时间内,保持最小透过率值Tr4不变);在t7时刻,对待测2D/3D切换模组10断电,从t7时刻透过率逐渐升高直至达到t8时刻的最大透过率值Tr3。上述步骤S133可以包括如下子步骤:
S1021、获取待测2D/3D切换模组10通电过程中出现最大透过率值Tr3的时间t5和最小透过率值Tr4的时间t6,2D模式切换到3D模式的切换时间为t6-t5;
S1022、获取待测2D/3D切换模组10断电过程中出现最小透过率值Tr4的时间t7和最大透过率值Tr3的时间t8,3D模式切换到2D模式的切换时间为t8-t7。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (9)

1.一种2D/3D切换模组的检测***,其特征在于,包括:
光源;
第一偏光板,位于所述光源一侧;
第二偏光板,位于所述第一偏光板远离所述光源一侧;待测2D/3D切换模组放置于所述第一偏光板与所述第二偏光板之间;
透过率测量装置,位于所述第二偏光板远离所述光源一侧,用于获取所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率;
计时装置,与所述透过率测量装置电连接,用于获取所述待测2D/3D切换模组通电和断电过程中的时间信息;
数据处理装置,与所述透过率测量装置以及所述计时装置电连接,用于根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
2.根据权利要求1所述的检测***,其特征在于,所述数据处理装置包括:
曲线绘制单元,用于根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息形成透过率-时间变化曲线;
透过率值确定单元,用于根据透过率-时间变化曲线获取所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间;响应时间确定单元,用于根据所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
3.根据权利要求1所述的检测***,其特征在于,所述待测2D/3D切换模组包括第一基板、液晶层和第二基板,所述液晶层位于所述第一基板和所述第二基板之间;所述第一基板临近所述液晶层的一侧设置有第一配向层,所述第二基板临近所述液晶层的一侧设置有第二配向层;
所述第一偏光板的透振方向与所述第一配向层的配向方向相互平行,所述第二偏光板的透振方向与所述第二配向层的配向方向相互垂直,所述第一偏光板的透振方向与所述第二偏光板透振方向的夹角θ位于[0°,90°)。
4.根据权利要求1所述的检测***,其特征在于,所述待测2D/3D切换模组包括第一基板、液晶层和第二基板,所述液晶层位于所述第一基板和所述第二基板之间;所述第一基板临近所述液晶层的一侧设置有第一配向层,所述第二基板临近所述液晶层的一侧设置有第二配向层;
所述第一偏光板的透振方向与所述第一配向层的配向方向相互平行,所述第二偏光板的透振方向与所述第二配向层的配向方向相互平行,所述第一偏光板的透振方向与所述第二偏光板透振方向的夹角θ位于(0°,90°]。
5.根据权利要求1所述的检测***,其特征在于,所述光源为平行光光源。
6.一种2D/3D切换模组的检测方法,由权利要求1-5任一所述的2D/3D切换模组的检测***执行,其特征在于,包括:
为待测2D/3D切换模组通电和断电并使用计时装置获取所述待测2D/3D切换模组通电和断电过程中的时间信息;
透过率测量装置测量获取所述待测2D/3D切换模组通电和断电过程中光源发出的光通过第一偏光板、所述待测2D/3D切换模组和第二偏光板后的透过率;
数据处理装置根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
7.根据权利要求6所述的检测方法,其特征在于,数据处理装置根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间,包括:
根据所述光源发出的光通过所述第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的透过率以及所述待测2D/3D切换模组通电和断电过程中的时间信息形成透过率-时间变化曲线;
根据透过率-时间变化曲线获取所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间;
根据所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间。
8.根据权利要求7所述的检测方法,其特征在于,所述待测2D/3D切换模组包括第一基板、液晶层和第二基板,所述液晶层位于所述第一基板和所述第二基板之间;所述第一基板临近所述液晶层的一侧设置有第一配向层,所述第二基板临近所述液晶层的一侧设置有第二配向层;
所述第一偏光板的透振方向与所述第一配向层的配向方向相互平行,所述第二偏光板的透振方向与所述第二配向层的配向方向相互垂直,所述第一偏光板的透振方向与所述第二偏光板透振方向的夹角θ位于[0°,90°);
根据所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间,包括:
获取所述待测2D/3D切换模组通电过程中出现最小透过率值的时间t1和最大透过率值的时间t2,2D模式切换到3D模式的切换时间为t2-t1;
获取所述待测2D/3D切换模组断电过程中出现最大透过率值的时间t3和最小透过率值的时间t4,3D模式切换到2D模式的切换时间为t4-t3。
9.根据权利要求7所述的检测方法,其特征在于,所述待测2D/3D切换模组包括第一基板、液晶层和第二基板,所述液晶层位于所述第一基板和所述第二基板之间;所述第一基板临近所述液晶层的一侧设置有第一配向层,所述第二基板临近所述液晶层的一侧设置有第二配向层;
所述第一偏光板的透振方向与所述第一配向层的配向方向相互平行,所述第二偏光板的透振方向与所述第二配向层的配向方向相互平行,所述第一偏光板的透振方向与所述第二偏光板透振方向的夹角θ位于(0°,90°];
根据所述待测2D/3D切换模组通电和断电过程中所述光源发出的光通过第一偏光板、所述待测2D/3D切换模组和所述第二偏光板后的最大透过率值和最小透过率值出现的时间确定2D模式切换到3D模式的切换时间以及3D模式切换到2D模式的切换时间,包括:
获取所述待测2D/3D切换模组通电过程中出现最大透过率值的时间t5和最小透过率值的时间t6,2D模式切换到3D模式的切换时间为t6-t5;
获取所述待测2D/3D切换模组断电过程中出现最小透过率值的时间t7和最大透过率值的时间t8,3D模式切换到2D模式的切换时间为t8-t7。
CN201810811615.0A 2018-07-23 2018-07-23 一种2d/3d切换模组的检测***及检测方法 Active CN108957772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810811615.0A CN108957772B (zh) 2018-07-23 2018-07-23 一种2d/3d切换模组的检测***及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810811615.0A CN108957772B (zh) 2018-07-23 2018-07-23 一种2d/3d切换模组的检测***及检测方法

Publications (2)

Publication Number Publication Date
CN108957772A CN108957772A (zh) 2018-12-07
CN108957772B true CN108957772B (zh) 2023-03-14

Family

ID=64463487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810811615.0A Active CN108957772B (zh) 2018-07-23 2018-07-23 一种2d/3d切换模组的检测***及检测方法

Country Status (1)

Country Link
CN (1) CN108957772B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109389922A (zh) * 2018-12-17 2019-02-26 张家港康得新光电材料有限公司 一种2d-3d可切换显示面板的检测装置
CN109738161A (zh) * 2018-12-29 2019-05-10 张家港康得新光电材料有限公司 一种2d/3d可切换视景分离元件的检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423151A (zh) * 2001-11-22 2003-06-11 夏普公司 光移动装置和光显示***
CN106094068A (zh) * 2016-08-23 2016-11-09 张家港康得新光电材料有限公司 电光材料柱状透镜阵列结构与包括其的显示装置
CN107346066A (zh) * 2016-05-06 2017-11-14 上海纪显电子科技有限公司 检测***及其检测方法
CN107357046A (zh) * 2017-05-26 2017-11-17 张家港康得新光电材料有限公司 2d模式与3d模式切换时间的检测方法与检测***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498954B (en) * 2012-01-31 2015-04-15 Samsung Electronics Co Ltd Detecting an object in an image
KR20130112537A (ko) * 2012-04-04 2013-10-14 삼성디스플레이 주식회사 액정 렌즈 패널 및 이를 포함하는 입체 영상 표시 패널
CN102749717B (zh) * 2012-07-27 2017-12-08 深圳超多维光电子有限公司 一种裸眼式立体显示装置
US9612445B2 (en) * 2012-11-27 2017-04-04 Merck Patent Gmbh Lens element
JP6359989B2 (ja) * 2015-02-24 2018-07-18 株式会社ジャパンディスプレイ 表示装置および表示方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423151A (zh) * 2001-11-22 2003-06-11 夏普公司 光移动装置和光显示***
CN107346066A (zh) * 2016-05-06 2017-11-14 上海纪显电子科技有限公司 检测***及其检测方法
CN106094068A (zh) * 2016-08-23 2016-11-09 张家港康得新光电材料有限公司 电光材料柱状透镜阵列结构与包括其的显示装置
CN107357046A (zh) * 2017-05-26 2017-11-17 张家港康得新光电材料有限公司 2d模式与3d模式切换时间的检测方法与检测***

Also Published As

Publication number Publication date
CN108957772A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
KR101068364B1 (ko) 액정표시장치 검사장비 및 그 검사방법
CN108957772B (zh) 一种2d/3d切换模组的检测***及检测方法
US8451445B2 (en) Apparatus and method for detecting array substrate
US9470636B2 (en) Device and method for detecting liquid crystal display panel
US10114241B2 (en) Method and device for measuring mura level of liquid crystal display device
US20200264459A1 (en) Detecting device and detecting method and detecting equipment therefor
CN101097300B (zh) 测量液晶显示器的定向轴的样本
JP4663529B2 (ja) 光学的異方性パラメータ測定方法及び測定装置
JP3023443B2 (ja) 液晶セルパラメータ検出方法
CN100570440C (zh) 用于测量偏光板的偏光方向的装置和方法
TW201512736A (zh) 用於偵測缺陷基板之液晶調變器及具有該液晶調變器之檢驗裝置
CN102566092B (zh) 测定液晶参数的方法及装置
CN112345549A (zh) 用于表面检查的成像***
US11486826B2 (en) Panel retardance measurement
CN107065238B (zh) 一种配向膜膜面检测装置及方法
JPH08248372A (ja) フラットパネルディスプレイの検査方法
CN113376162A (zh) 一种显示芯片检测装置及方法
EP3786621B1 (en) Foreign material inspection system of display unit
JP3142805B2 (ja) 液晶セルパラメータ検出方法及び装置
CN103091014B (zh) 光学测量装置
JP2004170102A (ja) 液晶表示パネルの異物検査装置
KR101367922B1 (ko) 높은 반사 및 투과 효율과 투과광의 위상 지연을 이용하여기판을 검사하는 방법 및 장치
US20130285819A1 (en) Inspection method of backlight module and inspection apparatus thereof
CN109282969A (zh) 偏光度的测量方法
KR100612135B1 (ko) 편광판의 흡수축 틀어짐 측정 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant