CN108933629B - 一种多子光束干涉半主动寻的激光水印制导方法 - Google Patents

一种多子光束干涉半主动寻的激光水印制导方法 Download PDF

Info

Publication number
CN108933629B
CN108933629B CN201810588978.2A CN201810588978A CN108933629B CN 108933629 B CN108933629 B CN 108933629B CN 201810588978 A CN201810588978 A CN 201810588978A CN 108933629 B CN108933629 B CN 108933629B
Authority
CN
China
Prior art keywords
laser
sub
interference
beam splitter
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810588978.2A
Other languages
English (en)
Other versions
CN108933629A (zh
Inventor
傅超
尚佩瑾
吴梦瑶
王石语
蔡德芳
李兵斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201810588978.2A priority Critical patent/CN108933629B/zh
Publication of CN108933629A publication Critical patent/CN108933629A/zh
Application granted granted Critical
Publication of CN108933629B publication Critical patent/CN108933629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/60Digital content management, e.g. content distribution
    • H04L2209/608Watermarking

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种激光制导方法,特别是一种多子光束干涉半主动寻的激光水印制导方法,至少包括:激光器、光学分束器、光电接收器,激光器的输出光经光学分束器分束成多束平行光,多束平行光在空间形成干涉场,光电接收器对目标处形成的干涉场光强信息进行成像检测,对检测信息进行分析,并与空间干涉场模形进行比较,依据比较结果进行输出。提供一种具有高辨识度,高抗干扰能力的多子光束干涉半主动寻的激光水印制导方法,将空域水印编码特性与时域编码特性相结合,以便提供激光制导的安全性。

Description

一种多子光束干涉半主动寻的激光水印制导方法
技术领域
本发明涉及一种激光制导方法,特别是一种多子光束干涉半主动寻的激光水印制导方法。
背景技术
激光半主动寻的制导武器具有打击精度高,军事用途广,结构简捷,成本低等优点,是现代战争中不可或缺的重要角色。激光半主动寻的制导***由编码可控的激光目标指示器以及弹上激光导引头组成,激光目标指示器将带有编码特性的激光束照射到目标表面处,激光导引头对接收到的激光信号进行解码识别,进而对目标实施打击。由此可见,激光编码技术是激光制导技术的关键,其目的是保证在复杂多变的战争条件下激光武器可以准确捕获目标并实施打击,也可以在同一战争环境中满足多目标同时打击的战略要求。
现有的激光编码方式主要有:周期型编码,等差型编码,伪随机编码,以及脉宽编码等。这些编码方式的共通点是编码具有规律性,敌方可利用激光诱骗干扰***对采用上述编码方式的半主动制导武器进行干扰,该诱骗干扰***能够在短时间内对激光编码信号进行识别复制,进而由干扰机超前发射具有相同编码方式的激光信号到假目标上,致使制导武器失效,降低半主动制导武器的战场生存能力。
发明内容
本发明的目的是提供一种具有高辨识度,高抗干扰能力的多子光束干涉半主动寻的激光水印制导方法,将空域水印编码特性与时域编码特性相结合,以便提供激光制导的安全性。
本发明的目的是这样实现的,一种多子光束干涉半主动寻的激光水印制导方法,至少包括:激光器、光学分束器、、光电接收器,激光器的输出光经光学分束器分束成多束平行光,多束平行光在空间形成干涉场,光电接收器对目标处形成的干涉场光强信息进行成像检测,对检测信息进行分析,并与空间干涉场模形进行比较,依据比较结果进行输出。
所述的光学分束器是一进三出分束器,三出分束器具有相同的光程。
所述的光学分束器是一进四出分束器,四出分束器具有相同的光程。
所述的光学分束器是一进五出分束器,五出分束器具有相同的光程。
多束平行光在空间形成干涉场按如下分布函数表示:
Figure BDA0001690155980000021
式中c为常数因子,P为激光总功率,其余各符号的计算公式如下式(2)所示
Figure BDA0001690155980000031
θ是远场发散角,w0是基模高斯光束的束腰半径,f是高斯光束的共焦参数,R(z)是与传播轴线相交于z点的高斯光束等相位面的曲率半径,w(z)是与传播轴线相交于z点的高斯光束等相位面上的光斑半径。
当多子光束相干发射时,设第n个子光束的中心坐标为(xnn,ynn),子光束发射的激光光束在目标表面处的光电场分布函数如式(3)所示
Figure BDA0001690155980000032
目标表面处的总光电场分布如式(4)所示
Figure BDA0001690155980000033
目标表面处的光场强度分布如式(5)所示
I(x,y,z)=E(x,y,z)·E*(x,y,z) (5)
目标表面处的总功率分布如式(6)所示
P=∫∫I(x,y,z)dxdy (6)。
所述的激光器包括一个编码调制控制单元,用于输出一个加密编码光束。
本发明的优点是:利用子光束的空间干涉效应使激光光斑具有特定的空间分布,这种空间分布使制导信号在已有的时序编码基础上增加一层激光水印“密钥”,激光导引头可以根据这一水印“密钥”对回波信号进行“敌我”识别。由于激光水印制导***中的多子光束来源于同一激光光源,具有良好的空间相干性,使得激光空间水印效果均有高辨识度,高抗干扰能力,激光导引头根据预先设定的解码指令快速精确的发现目标并实施打击。
附图说明
下面结合实施例附图对本发明进行进一步说明:
图1是激光水印制导三种子光源分布工作原理;其中,图1a是三点子光束分束方式;图1b是四点子光束分束方式;图1c是五点子光束分束方式;
图2目标表面的光强分布;其中,图2a是三点子光束分布;图2b是四点子光束分布;图2c是五点子光束分布;
图3是x轴线方向光强分布。
图中,1、激光器;2、光学分束器;3、光电接收器;4、时序发生器。
具体实施方式
实施例1
如图1a所示,一种多子光束干涉半主动寻的激光水印制导方法,至少包括:激光器1、光学分束器2、光电接收器3,激光器1的输出光经光学分束器2分束成三束平行光,三出分束器具有相同的光程,三束平行光在空间形成干涉场,光电接收器3对目标处形成的干涉场光强信息进行成像检测,对检测信息进行分析,并与空间干涉场模形进行比较,依据比较结果进行输出。
如图2a所示,三束平行光在空间形成干涉场按如下分布函数表示:
Figure BDA0001690155980000051
式中c为常数因子,P为激光总功率,其余各符号的计算公式如下式(2)所示
Figure BDA0001690155980000052
θ是远场发散角,w0是基模高斯光束的束腰半径,f是高斯光束的共焦参数,R(z)是与传播轴线相交于z点的高斯光束等相位面的曲率半径,w(z)是与传播轴线相交于z点的高斯光束等相位面上的光斑半径。
当三子光束相干发射时,设第n个子光束的中心坐标为(xnn,ynn),子光束发射的激光光束在目标表面处的光电场分布函数如式(3)所示
Figure BDA0001690155980000061
目标表面处的总光电场分布如式(4)所示
Figure BDA0001690155980000062
目标表面处的光场强度分布如式(5)所示
I(x,y,z)=E(x,y,z)·E*(x,y,z) (5)
目标表面处的总功率分布如式(6)所示
P=∫∫I(x,y,z)dxdy (6)。
如图1所示,激光器1选取1064nmNd:YAG激光器,泵浦功率为1kW,激光空间传输距离为10km,二级编码发生器设置子光束间距d为固定值7mm,由一级编码发生器确定三种不同多子光束光源排列方式,分别计算目标表面处干涉图样光场强度分布。
由图2的a、b、c可知,不同的编码方式导致子光束光源排列方式发生变化,目标表面形成的干涉图样随之变化。图样间差异明显,具有高辨识度。不同排列方式形成的干涉主峰强度变化明显,对比不同排列方式下x轴线方向的光强分布,如下图3所示。
实施例2
如图1b所示,一种多子光束干涉半主动寻的激光水印制导方法,至少包括:激光器1、光学分束器2、时序发生器4、光电接收器3以及目标,激光器1的输出光经光学分束器2分束成四束平行光,四出分束器具有相同的光程,四束平行光在空间形成干涉场,经时序发生器4后携带有时序编码信息形成时空域融合的制导信号,光电接收器3对目标处形成的干涉场光强信息进行成像检测,对检测信息进行分析,并与空间干涉场模形进行比较,依据比较结果进行输出。
如图2b所示,四束平行光在空间形成干涉场按如下分布函数表示:
Figure BDA0001690155980000071
式中c为常数因子,P为激光总功率,其余各符号的计算公式如下式(2)所示
Figure BDA0001690155980000072
θ是远场发散角,w0是基模高斯光束的束腰半径,f是高斯光束的共焦参数,R(z)是与传播轴线相交于z点的高斯光束等相位面的曲率半径,w(z)是与传播轴线相交于z点的高斯光束等相位面上的光斑半径。
当四子光束相干发射时,设第n个子光束的中心坐标为(xnn,ynn),子光束发射的激光光束在目标表面处的光电场分布函数如式(3)所示
Figure BDA0001690155980000081
目标表面处的总光电场分布如式(4)所示
Figure BDA0001690155980000082
目标表面处的光场强度分布如式(5)所示
I(x,y,z)=E(x,y,z)·E*(x,y,z) (5)
目标表面处的总功率分布如式(6)所示
P=∫∫I(x,y,z)dxdy (6)。
与实施例1相同,如图1所示,激光器1选取1064nmNd:YAG激光器,泵浦功率为1kW,激光空间传输距离为10km,二级编码发生器设置子光束间距d为固定值7mm,由一级编码发生器确定四种不同四子光束光源排列方式,分别计算目标表面处干涉图样光场强度分布。
由图2a、2b、2c可知,不同的编码方式导致子光束光源排列方式发生变化,目标表面形成的干涉图样随之变化。图样间差异明显,具有高辨识度。不同排列方式形成的干涉主峰强度变化明显,对比不同排列方式下x轴线方向的光强分布,如下图3所示。
实施例3
如图1c所示,一种多子光束干涉半主动寻的激光水印制导方法,至少包括:激光器1、光学分束器2、时序发生器4、光电接收器3以及目标,激光器1经时序发生器4加密编码输出,加密编码输出光经光学分束器2分束,分束器具有相同的光程,激光器1的输出光经光学分束器2分束成五束平行光,五出分束器具有相同的光程,五束平行光在空间形成干涉场,经时序发生器4后携带有时序编码信息形成时空域融合的制导信号,光电接收器3对目标处形成的干涉场光强信息进行成像检测,对检测信息进行分析,并与空间干涉场模形进行比较,依据比较结果进行输出。
如图2c所示,五束平行光在空间形成干涉场按如下分布函数表示:
Figure BDA0001690155980000091
式中c为常数因子,P为激光总功率,其余各符号的计算公式如下式(2)所示
Figure BDA0001690155980000092
θ是远场发散角,w0是基模高斯光束的束腰半径,f是高斯光束的共焦参数,R(z)是与传播轴线相交于z点的高斯光束等相位面的曲率半径,w(z)是与传播轴线相交于z点的高斯光束等相位面上的光斑半径。
当五子光束相干发射时,设第n个子光束的中心坐标为(xnn,ynn),子光束发射的激光光束在目标表面处的光电场分布函数如式(3)所示
Figure BDA0001690155980000101
目标表面处的总光电场分布如式(4)所示
Figure BDA0001690155980000102
目标表面处的光场强度分布如式(5)所示
I(x,y,z)=E(x,y,z)·E*(x,y,z) (5)
目标表面处的总功率分布如式(6)所示
P=∫∫I(x,y,z)dxdy (6)。
实施例3与实施例1和实施例2相同,如图1所示,激光器选取1064nmNd:YAG激光器,泵浦功率为1kW,激光空间传输距离为10km,二级编码发生器设置子光束间距d为固定值7mm,由一级编码发生器确定不同五子光束光源排列方式,分别计算目标表面处干涉图样光场强度分布。
由图2c可知,不同的编码方式导致子光束光源排列方式发生变化,目标表面形成的干涉图样随之变化。图样间差异明显,具有高辨识度。不同排列方式形成的干涉主峰强度变化明显,对比不同排列方式下x轴线方向的光强分布,如下图3所示。
本发明中纵坐标I/Im表示多子光束x轴线方向光强与单光源中心光强的比值,I1、I2,I3分别表示三点等边排列、四点方正排列,五点方正排列方式。
从图3中可以观察到干涉主峰峰值均为单光源发射中心强度的N倍,N为多子光束个数。其原因在于中心光强为Im的激光光束被子光束等强度的分为N束,此时子光束的光强为Im/N,子光束在目标表面发生干涉效应干涉主峰强度为N2(Im/N),即NIm。采用多子光束激光构图编码方式可将激光指示器发射的激光束光强提高N倍,这一特性不仅可作为激光导引头解码指令,又大幅度提高了激光光束的大气穿透能力,使目标反射的激光信号更容易被导引头中的探测器接收到。
光电接收器3是一个四象限探测器,采用点阵方式,如8*8面阵探测器,面阵探测器可以实现对回波信号编码特性及水印特性的双重探测。

Claims (1)

1.一种多子光束干涉半主动寻的激光水印制导方法,其特征是:至少包括:激光器、光学分束器、时序发生器、光电接收器以及目标,激光器经时序发生器加密编码输出,加密编码输出光经光学分束器分束,分束器具有相同的光程,激光器的输出光经光学分束器分束成五束平行光,五出分束器具有相同的光程,五束平行光在空间形成干涉场,经时序发生器后携带有时序编码信息形成时空域融合的制导信号,光电接收器对目标处形成的干涉场光强信息进行成像检测,对检测信息进行分析,并与空间干涉场模形进行比较,依据比较结果进行输出;
当多子光束相干发射时,设第n个子光束的中心坐标为(xnn,ynn),子光束发射的激光光束在目标表面处的光电场分布函数如式(3)所示
Figure FDA0002481681640000011
式中c是常数因子,P是激光总功率,N是子光束个数,w0是基模高斯光束的束腰半径,k是波数,f是高斯光束的共焦参数,R(z)是与传播轴线相交于z点的高斯光束等相位面的曲率半径,w(z)是与传播轴线相交于z点的高斯光束等相位面上的光斑半径;
目标表面处的总光电场分布如式(4)所示
Figure FDA0002481681640000021
目标表面处的光场强度分布如式(5)所示
I(x,y,z)=E(x,y,z)·E*(x,y,z) (5)
目标表面处的总功率分布如式(6)所示
P=∫∫I(x,y,z)dxdy (6);
所述的光学分束器是一进五出分束器,五出分束器具有相同的光程;
多束平行光在空间形成干涉场按如下分布函数表示:
Figure FDA0002481681640000022
式中c为常数因子,P为激光总功率,其余各符号的计算公式如下式(2)所示
Figure FDA0002481681640000023
θ是远场发散角,w0是基模高斯光束的束腰半径,f是高斯光束的共焦参数,R(z)是与传播轴线相交于z点的高斯光束等相位面的曲率半径,w(z)是与传播轴线相交于z点的高斯光束等相位面上的光斑半径;
光器选取1064nmNd:YAG激光器,泵浦功率为1kW,激光空间传输距离为10km,二级编码发生器设置子光束间距d为固定值7mm,由一级编码发生器确定不同五子光束光源排列方式。
CN201810588978.2A 2018-06-08 2018-06-08 一种多子光束干涉半主动寻的激光水印制导方法 Active CN108933629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810588978.2A CN108933629B (zh) 2018-06-08 2018-06-08 一种多子光束干涉半主动寻的激光水印制导方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810588978.2A CN108933629B (zh) 2018-06-08 2018-06-08 一种多子光束干涉半主动寻的激光水印制导方法

Publications (2)

Publication Number Publication Date
CN108933629A CN108933629A (zh) 2018-12-04
CN108933629B true CN108933629B (zh) 2020-07-31

Family

ID=64449572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810588978.2A Active CN108933629B (zh) 2018-06-08 2018-06-08 一种多子光束干涉半主动寻的激光水印制导方法

Country Status (1)

Country Link
CN (1) CN108933629B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210065A1 (de) * 2012-06-14 2013-12-19 Robert Bosch Gmbh Vorrichtung und Verfahren zum Identifizieren eines Laserzeigers
CN103675793B (zh) * 2012-08-29 2015-09-16 北京理工大学 激光有源干扰的对抗方法
CN106972921B (zh) * 2017-01-03 2020-07-28 北京理工大学 基于波前传感结合二重光学密钥的非对称光学信息安全***
CN106679504B (zh) * 2017-01-09 2018-08-10 中国人民解放军武汉军械士官学校 一种模拟激光制导实验方法及***
CN106788731B (zh) * 2017-03-17 2019-03-01 维沃移动通信有限公司 数据传输方法及移动终端
CN108037512B (zh) * 2017-11-24 2019-09-17 上海机电工程研究所 激光半主动关联成像跟踪探测***及方法

Also Published As

Publication number Publication date
CN108933629A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
CN103675793B (zh) 激光有源干扰的对抗方法
US8258994B2 (en) IR jamming system for defense against missiles with IR-sensitive homing heads
CN110487120B (zh) 一种远距离照明的激光防御***及方法
CN102141617B (zh) 微波凝视成像关联方法
CN104457452A (zh) 一种伪随机码体制激光引信***及其目标识别方法
CN110352361A (zh) 用人眼安全图案扫描和测距的设备及方法
CN111193167A (zh) 基于分形的相干光纤激光阵列及其产生***
CN108933629B (zh) 一种多子光束干涉半主动寻的激光水印制导方法
RU2382315C1 (ru) Система наведения управляемого снаряда
CN103971672B (zh) 控制指向性的水下激光声源及其控制方法
RU118045U1 (ru) Бортовая станция активных помех для индивидуальной защиты летательных аппаратов от управляемых ракет с инфракрасными головками самонаведения
RU2496096C1 (ru) Неконтактный датчик цели
RU2390721C1 (ru) Способ защиты объекта от управляемых ракет
KR102546720B1 (ko) 영상추적형 위협체 교란 시험용 광학 시스템
US10601131B2 (en) Beam steering and manipulating apparatus and method
US9660339B2 (en) Beam steering and manipulating apparatus and method
Qu et al. Temporal-spatial watermark fusion guidance using laser multiple sub-beams interference
RU2498208C1 (ru) Оптический блок неконтактного взрывателя для боеприпасов
CN117805854B (zh) 基于mimo的激光sal宽视场成像装置及方法
RU2388013C2 (ru) Способ функционального подавления лазерных систем поиска погруженных подводных объектов и устройство для его осуществления
CN104849859A (zh) 一种激光传输光束抖动效应的数值模拟方法
KR102684551B1 (ko) 기만코드시험용 광학시스템
US20110311950A1 (en) Simultaneous multi-source scanning for sectorized simulated projectile trajectories
RU220878U1 (ru) Оптический блок неконтактного взрывателя боеприпаса
RU2497072C1 (ru) Датчик цели для реактивных снарядов

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant