CN108923625B - 一种同步整流器控制方法及电路 - Google Patents

一种同步整流器控制方法及电路 Download PDF

Info

Publication number
CN108923625B
CN108923625B CN201810833258.8A CN201810833258A CN108923625B CN 108923625 B CN108923625 B CN 108923625B CN 201810833258 A CN201810833258 A CN 201810833258A CN 108923625 B CN108923625 B CN 108923625B
Authority
CN
China
Prior art keywords
voltage
current
tube
circuit
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810833258.8A
Other languages
English (en)
Other versions
CN108923625A (zh
Inventor
张正根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810833258.8A priority Critical patent/CN108923625B/zh
Publication of CN108923625A publication Critical patent/CN108923625A/zh
Application granted granted Critical
Publication of CN108923625B publication Critical patent/CN108923625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1555Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供了一种同步整流器控制方法及电路,所述的同步整流器控制方法及电路包括:第一电流检测电路,所述电流检测电路可以通过电流互感器或电阻等方式,通过检测电路检测出电流流过信号,如CURR1和CURR2,其中波形的上升及下降沿对应电流开始流过和结束的时刻;第二电压比较电路,所述第二电压比较电路将半导体功率开关管两端电压,如MOS管的漏极及源极之间的电压进行比较。当电压满足设定条件时,比较电路输出高或低电平。如VOLT1和VOLT2;同步控制信号要使MOS管在最佳时刻开通或关断。如果MOS管开通过早或关断过晚,可能会造成短路;而MOS管开通过晚或关断过早,又会使整流器的损耗增大和器件的温度升高。

Description

一种同步整流器控制方法及电路
技术领域
本发明整体涉及同步整流电路,尤其更具体地涉及一种新型的同步整流器控制方法及电路,适用于新型的开关模式电源。
背景技术
开关模式电源由于重量轻、效率高而广泛用于各种应用中。为进一步提高整流效率,可选择同步整流技术。在不使用同步整流技术的开关模式电源中,一般使用整流二极管将交流电整流成直流电。但在低电压、大电流输出的情况下,整流二极管的导通电压降较高,输出端整流管的损耗尤为突出。就是使用快恢复二极管或超快恢复二极管其导通电压降也达1.0~1.2V左右。即使采用低电压降的肖特基二极管,也会产生大约0.6V的电压降。这就必然会使整流损耗增大,电源效率降低。因此,传统的整流二极管已经无法满足实现低电压、大电流的开关电源高效率、小体积的需要,成为制约开关模式电源提高效率的瓶颈。
而在同步整流技术中,是采用导通电阻极低的功率MOS管来取代传统的整流二极管以降低整流损耗的一项新技术。功率MOS管的导通电压Vsd比较小,一般只有 0.001~0.01V左右,因此能大大降低整流管的损耗,提高开关模式电源的效率,满足低压/大电流和高效率、小体积的需要。在同步整流技术中,如果过早开通或过晚关闭MOS管,都会使电源短路;而过晚开通或过早关闭MOS管,又会使整流电路的电压降升高,引起损耗增加降低了开关模式电源的效率。所以同步整流技术中关键的问题是要处理好同步整流管适时导通和适时关闭问题。
发明内容
本发明的核心在于同步控制信号的产生只通过对同步整流管的电流和电压检测来实现。就LLC谐振电路拓扑而言,同步整流管在电路变压器的次级端。传统的同步整流控制需要使用隔离变压器原边的电流信息。使用模拟隔离器件实现电流信号的传输,一方面带来成本上的增加,另一方面带来不可避免的传输延迟,影响同步整流的效果。为了更好地判断出同步整流管何时开通及何时关闭,本发明提供一种新型的同步整流开通控制方法及电路,用于开关模式电源的同步整流管的开通控制。该方法及电路能够提高开关模式电源的可靠性及效率,在实施方案中,同步整流电路包括:电流检测电路,该电路可以通过电流互感器或电阻等方式,通过检测电路检测出电流流过信号,如CURR1和CURR2,其中波形的上升及下降沿对应电流开始流过和结束的时刻;电压比较电路,该电压比较电路将半导体功率开关管两端电压,如MOS管的漏极及源极之间的电压进行比较。当电压满足设定条件时,比较电路输出高或低电平;逻辑处理单元电路,该逻辑处理单元电路将上述电流检测电路和电压比较电路的输出信号进行逻辑运算,最后得到同步整流控制信号;MOS管门极驱动信,该门极驱动信号是将上述同步整流控制信号进行放大处理,输出驱动半导体开关管的驱动信号,使同步整流管在适当的时刻开通或关断。
附图说明
图1示出根据本发明提出的同步整流开通控制电路框架图。
图2示出根据本发明实施例一的一个同步整流开通控制的全波整流电路原理图。
图3示出为实现上述MOS管控制,本发明所设计使用的电流检测电路及输入输出波形变化图。
图4示出为实现上述MOS管控制,本发明所设计使用的电压比较电路及输入输出波形变化图。
图5示出根据本发明实施例的一个同步整流MOS管导通或关闭时的电压、电流变化波形图:
图6示出,采用本发明的同步整流器控制方法所设计的全波整流电路。
图7示出,采用本发明的同步整流器控制方法所设计的全桥整流电路。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
一种同步整流器控制方法及电路,所述的同步整流器控制方法及电路包括:
第一电流检测电路,所述电流检测电路可以通过电流互感器或电阻等方式,通过检测电路检测出电流流过信号,如CURR1和CURR2,其中波形的上升及下降沿对应电流开始流过和结束的时刻;
第二电压比较电路,所述第二电压比较电路将半导体功率开关管两端电压,如MOS管的漏极及源极之间的电压进行比较。当电压满足设定条件时,比较电路输出高或低电平。如VOLT1和VOLT2;
第三逻辑处理单元电路,所述逻辑处理单元电路将上述电流检测电路和电压比较电路的输出信号CURR和VOLT进行逻辑运算,最后得到同步整流控制信号PWM.
第四门极驱动信号,所述门极驱动信号是将上述同步整流控制信号进行放大处理,输出驱动半导体开关管的驱动信号。
本发明的核心在于同步控制信号的产生只通过对同步整流管的电流和电压检测来实现。就LLC谐振电路拓扑而言,同步整流管在电路变压器的次级端。传统的同步整流控制需要使用隔离变压器原边的电流信息。使用模拟隔离器件实现电流信号的传输,一方面带来成本上的增加,另一方面带来不可避免的传输延迟,影响同步整流的效果。
同步控制信号要使MOS管在最佳时刻开通或关断。如果MOS管开通过早或关断过晚,可能会造成短路;而MOS管开通过晚或关断过早,又会使整流器的损耗增大和器件的温度升高。
图1示出根据本发明提出的同步整流开通控制电路框架图:
图2示出根据本发明实施例一的一个同步整流开通控制的全波整流电路原理图:
图3示出为实现上述MOS管控制,本发明所设计使用的电流检测电路及输入输出波形变化图。
电流检测电路功能性描述
其核心功能在于检测同步管流过的电流,经过和零电流的比较,产生相应的方波信号。比如,方波的上下降边沿代表电流开始和结束。
图4示出为实现上述MOS管控制,本发明所设计使用的电压比较电路及输入输出波形变化图。
电压比较电路功能性描述
其核心功能在于检测同步整流管MOSFET漏极电势和源极电势的差,即 Vds电压。如果Vds电压小于某设定值,比如5V,这时候电压比较器输出电平反转,表明同步整流管体内电容已经接近完全放电状态。
逻辑电路功能性描述
其核心功能在于利用电流检测电路输出信号和电压比较电路输出信号,通过某种逻辑运算去产生同步整流控制信号。
图5示出根据本发明实施例的一个同步整流MOS管导通或关闭时的电压、电流变化波形图:
在此发明中,要使MOS管导通,必须满足两个条件:第一,Vds电压下降到设定的阀值以下;第二,流过MOS管的电流从零开始上升。
为了检测出交流电压由零开始上升,设置了电压比较电路,用于比较MOS 管漏极D的电压值Vd和源极S的电压值Vs。在图5中Vds就是指MOS管的电压Vd和电压Vs的电压差值(Vd-Vs)。任何时候MOS管的上管下管都是只有一个导通,另一个关闭。导通管的Vds接近零,关闭管的Vds等于输出电压。在此MOS管导通前一刻,MOS管Vds等于输出电压,由于电路中的电容C(MOS 管体内电容)放电,Vds就逐渐下降,当Vds下降到设定的阀门值以下时,MOS 管就具备了导通的第一个条件。在Vds继续下降到(Vd-Vs)≈-0.7V左右时,体二极管开始导通,有电流流过体二极管。二极管导通后就把电压Vds被钳位。此时电流检测电路检测出电流开始流过信号,满足MOS管导通的第二个条件。
逻辑处理单元电路将上述电流检测电路和电压比较电路的输出信号进行逻辑运算,得到同步整流控制信号。
此同步整流控制信号经过放大处理,输出驱动半导体开关管的驱动信号,使MOS管导通。MOS管的电压降Vsd接近0,一般只有0.001~0.01V左右,同步整流的整流管损耗是非常小的。
实施例一
图6示出,采用本发明的同步整流器控制方法所设计的全波整流电路。
实施例二
图7示出,采用本发明的同步整流器控制方法所设计的全桥整流电路。
本公开的实施方案包括电子器件,该电子器件被配置为进行本文所述的操作中的一个或多个操作。然而,实施方案不限于此。
虽然已经公开了示例性实施方案以帮助理解本公开,但是实施方案不限于此,而是仅由所附权利要求的范围限制。实施方案可包括所附权利要求的范围内包括的各种修改形式和等效布置。实施方案中描述的操作顺序是示例性的,并且可被重新排序,除非另有约束。另外,可以组合两个或更多个实施方案的特征以形成新的实施方案。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (2)

1.一种同步整流管开通控制方法,其特征在于:由电流检测电路、电压比较电路、逻辑处理单元电路和门极驱动信号实现,
所述电流检测电路通过电流互感器或电阻方式检测出经过同步整流管的电流信号,并与零电流比较以产生方波信号,其中方波波形的上升及下降沿对应电流开始流过和结束的时刻;
所述电压比较电路将同步整流管的漏极及源极之间的电压进行比较;当电压满足设定条件时,电压比较电路输出高或低电平;
所述逻辑处理单元电路将所述电流检测电路和所述电压比较电路的输出信号进行逻辑运算,最后得到同步整流控制信号;
所述门极驱动信号是将上述同步整流控制信号进行放大处理,输出驱动同步整流管的驱动信号,使同步整流管在适当的时刻开通或关断;其中,当漏极及源极之间的电压下降至设定的阈值以下时,同步整流管满足第一导通条件,当漏极及源极之间的电压继续下降至-0.7V左右时,同步整流管的体二极管开始导通,电流检测电路检测到电流从零开始上升,满足第二导通条件,此时驱动同步整流管导通。
2.根据权利要求1所述的同步整流管开通控制方法,其特征在于:所述同步整流管是由门极驱动信号控制的MOS管,此同步整流电路采用通态电阻极低的MOS管来取代传统的整流二极管,因此能大大降低同步整流管的损耗,提高DC/DC变换器的效率,满足低压和大电流的需要。
CN201810833258.8A 2018-07-23 2018-07-23 一种同步整流器控制方法及电路 Active CN108923625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810833258.8A CN108923625B (zh) 2018-07-23 2018-07-23 一种同步整流器控制方法及电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810833258.8A CN108923625B (zh) 2018-07-23 2018-07-23 一种同步整流器控制方法及电路

Publications (2)

Publication Number Publication Date
CN108923625A CN108923625A (zh) 2018-11-30
CN108923625B true CN108923625B (zh) 2021-08-24

Family

ID=64418427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810833258.8A Active CN108923625B (zh) 2018-07-23 2018-07-23 一种同步整流器控制方法及电路

Country Status (1)

Country Link
CN (1) CN108923625B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224931B (zh) * 2020-01-21 2022-09-23 华为技术有限公司 一种整流器的控制方法、装置、设备和存储介质
CN112260524B (zh) * 2020-09-30 2022-05-17 中国航空工业集团公司雷华电子技术研究所 一种数字电源及其同步整流控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728958A (zh) * 2008-11-03 2010-06-09 成都芯源***有限公司 尾电流控制隔离式转换器的方法及控制装置
CN102195492A (zh) * 2011-05-24 2011-09-21 成都芯源***有限公司 同步整流开关电源及其控制电路和控制方法
CN105099233A (zh) * 2014-05-15 2015-11-25 中国长城计算机深圳股份有限公司 一种同步整流控制电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388611B (zh) * 2008-10-23 2012-07-18 英飞特电子(杭州)有限公司 一种副边采样电流控制同步整流驱动电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728958A (zh) * 2008-11-03 2010-06-09 成都芯源***有限公司 尾电流控制隔离式转换器的方法及控制装置
CN102195492A (zh) * 2011-05-24 2011-09-21 成都芯源***有限公司 同步整流开关电源及其控制电路和控制方法
CN105099233A (zh) * 2014-05-15 2015-11-25 中国长城计算机深圳股份有限公司 一种同步整流控制电路

Also Published As

Publication number Publication date
CN108923625A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN107342691B (zh) 用于同步整流管的控制装置和方法
KR102467987B1 (ko) 최소 전력 손실의 바디 다이오드를 가지는 스위칭 컨버터를 위한 게이트 드라이버
US7612602B2 (en) Resonant gate drive circuits
TWI740837B (zh) 自動增強自驅動同步整流控制電路、主動箝位順向轉換器及主動箝位功率轉換器
US8675374B2 (en) Auto-optimization circuits and methods for cyclical electronic systems
US7382116B2 (en) Semiconductor device configured to control a gate voltage between a threshold voltage and ground
US20160233779A1 (en) Soft switching flyback converter
US11245324B2 (en) Switching converter and a method thereof
US8174269B2 (en) Abnormal switching monitoring device and abnormal switching monitoring method
US10547300B1 (en) Driving device and switching device
US9935547B2 (en) System and method for a switched-mode power supply
US9948289B2 (en) System and method for a gate driver
US8102677B2 (en) Switching power supply device and method for adjusting dead time thereof
US20220140743A1 (en) Switching-type regulation driver and regulation driving method thereof
US10637465B2 (en) Driving device and switching device
US9128500B2 (en) Switching circuits with voltage valley detection
CN108923625B (zh) 一种同步整流器控制方法及电路
US10566970B2 (en) Power switch drive circuit with built-in power supply capacitor
CN109149968B (zh) 一种同步整流二极管及同步整流控制电路
CN110855134A (zh) 功率管驱动方法、驱动电路及开关电路
CN115224914B (zh) 实现反激拓扑的同步整流芯片预关断电路结构
US9431920B2 (en) Non-isolated DC/DC converter with 2 inductors and zero voltage switching
CN109660138B (zh) 一种有源全桥整流器
CN112821768B (zh) 一种反激同步整流电路
WO2023100318A1 (ja) スイッチング制御装置、スイッチング電源装置および電力供給システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant