CN108923450A - 一种电流源型高压直流输电***及其运行方法 - Google Patents

一种电流源型高压直流输电***及其运行方法 Download PDF

Info

Publication number
CN108923450A
CN108923450A CN201810779896.6A CN201810779896A CN108923450A CN 108923450 A CN108923450 A CN 108923450A CN 201810779896 A CN201810779896 A CN 201810779896A CN 108923450 A CN108923450 A CN 108923450A
Authority
CN
China
Prior art keywords
current source
current
phase
bus
electric system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810779896.6A
Other languages
English (en)
Other versions
CN108923450B (zh
Inventor
王政
刘鹏程
徐阳
程明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810779896.6A priority Critical patent/CN108923450B/zh
Publication of CN108923450A publication Critical patent/CN108923450A/zh
Application granted granted Critical
Publication of CN108923450B publication Critical patent/CN108923450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开两种连接多个电力***的电流源型多端直流输电***和一种可向无源电网络供电的电流源型高压直流输电***,包括:一种由两个送电端的电力***和一个受电端的电力***组成的电流源型多端直流输电***;一种由两个送电端的海上风场和一个受电端的陆上电力***组成的电流源型多端直流输电***;一种由电流源型分布式电力***组成的可向无源电网络供电的电流源型高压直流输电***。本发明还公开了三种***相应的控制技术,以及由多个电力***组成的电流源型多端直流输电***直流故障情况下不依赖于直流断路器的保护策略,使得***可以有效运行。此种技术方案揭示了电流源型变换器用于多端直流输电以及向无源电网络供电的有效性。

Description

一种电流源型高压直流输电***及其运行方法
技术领域
本发明属于多端高压直流输电***领域,具体而言涉及几种电流源型多端高压直流输电***及运行方法。
背景技术
为了解决传统能源的短缺和环境恶化不断加剧的问题,世界各国开始认识到清洁传统能源向清洁能源过渡的重要性。但受限于电力***的消纳能力,大部分可再生能源未得到有效利用,甚至出现“弃风”以及“弃光”的现象。由于新能源发电的间歇性,交流电网无法直接完成新能源的接纳,高压直流输电和直流电网是解决这一问题的有效技术手段之一。
随着大功率电力电子器件、高压换流技术的发展,高压直流输电***也得到了快速的发展。高压直流输电效率高、调节快速可靠、节省输电走廊的优势已经在大容量、远距离的输电中发挥了重要作用。然而传统的两端直流输电仅能实现点对点的直流功率传送,随着经济发展和电网的建设,必然要求电网能够实现多电源供电以及多落点受电,因此在两端直流输电***上发展而来的多端直流输电***和直流电网技术受到了越来越多的探讨和研究。
基于电压源型变换器的高压直流输电技术具有无功有功可独立控制、不需要交流侧提供无功功率,还能起到静止同步补偿器的电压支撑作用、可以向无源的受端交流***进行供电、潮流翻转时电压极性不改变等优势,因此在高压直流输电中得到广泛的应用和快速的发展。然而,由于电压源型高压直流输电***由于直流母线存在电容,因此短路故障给高压直流输电***造成了巨大的挑战,特别是直流侧的短路电流大,上升速度快给快速切除或隔离短路故障造成了保护困难。与此不同,本文提出基于全控型器件的电流源型变换器构成的多端高压直流输电***以及可向无源负载供电的电流源型不间断电源***。基于电流源变流器由于直流母线有电感,因此容易实现短路电流保护。并且由于采用全控器件,本文提出的***具有更强的控制灵活性,可实现多端直流输电和交流侧对无源负载供电。
发明内容
本发明正是针对现有技术中存在的技术问题,提供一种连接多个电力***的电流源型多端直流输电***、一种连接海上风场和陆上电力***的电流源型多端直流输电***、一种可向无源电网络供电的电流源型高压直流输电***,以及三种***运行方法,该方案可以实现电流源型变换器在多端直流输电***和向无源电网络供电的不间断电源***中的应用。
为了达成上述目的,本发明的解决方案是:
一种连接多个电力***的电流源型多端直流输电***,其特征在于包括至少两个送电端的电力***和一个受电端的电力***或至少两个受电端的电力***和一个送电端的电力***;每个受电端电力***或送电端电力***至少包含一个由全控型开关器件组成的电流源型换流器,一个三相滤波电容,一个隔离变压器和一个交流电网;送电端电力***和受电端电力***之间通过直流母线电缆以并联环网式相互连接;每个换流器直流侧的出线端以及每条直流母线电缆的两端都含有快速开关。
上述受电端电力***3的交流电网与隔离变压器一次侧连接;
所述隔离变压器二次侧与三相滤波电容并联,并与电流源逆变器串联;
所述电流源逆变器通过平波电抗器和两路直流母线电缆与送电端电力***1的平波电抗器串联;
所述送电端电力***1的平波电抗器与电流源整流器相连;
所述电流源整流器与三相滤波电容并联,并与隔离变压器的二次侧串联;
所述隔离变压器的一次侧与送电端电力***1的交流电网相连;
所述电流源逆变器通过平波电抗器和两路直流母线电缆与送电端电力***2的平波电抗器串联;
所述送电端电力***1的平波电抗器与电流源整流器相连;
所述送电端电力***2的电流源整流器与三相滤波电容并联,并与隔离变压器的二次侧串联;
所述隔离变压器的一次侧与送电端电力***2的交流电网相连;
所述送电端电力***1的电流源整流器通过平波电抗器和两路直流母线电缆,与所述送电端电力***2的平波电抗器并联;
所述平波电抗器与直流母线电缆相连的一端装设快速开关,直流母线电缆两端都装设快速开关。
一种连接海上风场和陆上电力***的电流源型多端直流输电***,其特征在于包括至少两个送电端的海上风场和一个受电端的电力***(或至少两个受电端的电力***和一个送电端的海上风场);每个受电端电力***至少包含一个由全控型开关器件组成的电流源型换流器,一个三相滤波电容,一个隔离变压器和一个交流电网;每个送电端的海上风场至少包含一个由全控型开关器件组成的电流源型换流器,一个三相滤波电容,一个永磁同步发电机和一个风机;送电端海上风场和受电端电力***之间通过直流母线电缆以并联放射式相互连接。
上述受电端的陆上电力***3的交流电网,该交流电网与隔离变压器一次侧连接;
所述隔离变压器二次侧与三相滤波电容组并联,并与电流源逆变器串联;
所述电流源逆变器通过平波电抗器和两路直流母线电缆与海上风场1的平波电抗器串联;
所述海上风场1的平波电抗器与电流源整流器相连;
所述电流源整流器与三相滤波电容并联,并与永磁同步发电机的定子串联;
所述永磁同步发电机的转子与海上风场1的风机相连;
所述电流源整流器通过平波电抗器和两路直流母线电缆与海上风场2的平波电抗器串联;
所述海上风场2的平波电抗器与电流源整流器相连;
所述海上风场2的电流源整流器与三相滤波电容并联,并与永磁同步发电机的定子串联;
所述永磁同步发电机的转子与海上风场2的风机相连。
一种可向无源电网络供电的电流源型高压直流输电***,其特征在于包括一个分布式电力***,一个主电网和一个无源网络负载;分布式电力***由一个三相交流电网,一个整流侧的三相滤波器,一个电流源整流器,一个直流侧电感,一个电流源逆变器,一个逆变侧的三相滤波器组成;分布式电力***,主电网和无源网络负载通过并联放射式相互连接。
上述分布式电力***中的交流电网,该交流电网与三相滤波电感连接;
所述三相滤波电感与三相滤波电容相并联,并与电流源整流器串联;
所述电流源整流器通过直流母线电感和电流源逆变器串联;
所述电流源逆变器与三相滤波电容相并联,并与三相滤波电感串联;
所述三相滤波电感通过断路器和主电网串联,并与三相负载并联。
一种连接多个电力***的电流源型多端直流输电***的控制以及故障情况下的运行方法,其特征在于:无故障情况下,电网3的电流源逆变器的直流侧采用定直流母线电压的方式进行控制;无故障情况下,直流母线电缆上的电流由电网1和电网2的整流器采用定直流母线电流的方式进行控制;故障情况下,电网3的电流源逆变器的采用闭锁脉冲的方式进行控制,电网1和电网2的整流器采用逆变运行的方式进行控制;直流母线电缆和电网3的电流源逆变器的直流母线可以自动确定。
上述***无故障情况下,受电端电力***3电流源逆变器的直流侧采用定直流母线电压的控制方式包括以下步骤:
步骤1,根据模式选择器,设定电流源逆变器的功率因数角加上由锁相环模块根据三相滤波电容上的电网电压vgc测得的相角θg,得到需要的相角θi
步骤2,根据模式选择器,设定电流源逆变器的直流母线电压设定值根据电压设定值和实际母线电压Vdc的误差,通过母线电压控制器得到调制度为mi
步骤3,利用脉冲发生模块根据调制因数mi和相角θi生成六路开关脉冲。
上述***无故障情况下,直流母线电缆上的电流由送电端电力***1,送电端电力***2的整流器所采用的定直流母线电流的控制方式包括以下步骤:
步骤1,根据模式选择器,设定直流母线电缆的直流母线电流参考值为根据电流参考值与实际电缆上的直流母线电流idc1的误差,利用直流母线电流控制模块得到电缆电感上的电压差值Δv;
步骤2,电压差值Δv加上受电端电力***3直流侧的母线电压vdc,经过调制比计算模块得到调制度为m1
步骤3,根据模式选择器,设定送电端电力***1,2的电流源整流器的功率因数角θdc1,加上由锁相环模块根据三相滤波电容上的电网电压vgc1测得的相角θg1,得到开关脉冲需要的相角θ1
步骤4,利用脉冲发生模块根据调制因数m1和相角θ1生成六路开关脉冲。
上述***故障情况下,受电端电力***的电流源逆变器的采用闭锁脉冲,送电端电力***1和送电端电力***2的整流器采用逆变运行的保护控制方式包括以下步骤:
步骤1,根据模式选择器,设定故障情况下电流源逆变器的功率因数角加上由锁相环模块根据三相滤波电容上的电网电压vgc测得的相角θg,得到需要的相角θi;同时,根据模式选择器,设定故障情况下送电端电力***1,2的电流源整流器的功率因数角加上由锁相环模块根据三相滤波电容上的电网电压vgc1测得的相角θg1,得到开关脉冲需要的相角θ1
步骤2,根据模式选择器,设定故障情况下电流源逆变器的直流母线电压设定值根据电压设定值和实际母线电压Vdc的误差,通过母线电压控制器得到调制度为mi;同时,根据模式选择器,设定故障情况下直流母线电缆的直流母线电流参考值为根据电流参考值与实际电缆上的直流母线电流idc1的误差,利用直流母线电流控制模块得到电缆电感上的电压差值Δv,电压差值Δv加上受电端电力***3直流侧的母线电压vdc,经过调制比计算模块得到调制度为m1
步骤3,利用脉冲发生模块根据调制因数mi和相角θi生成电流源逆变器的六路开关脉冲;同时,利用脉冲发生模块根据调制因数m1和相角θ1生成电流源整流器的六路开关脉冲;
步骤4,根据以上控制步骤,直流侧故障电流可迅速减小到0,然后根据直流故障发生的位置,可通过快速开关将故障线路切除,实现直流侧故障情况下不依赖直流断路器的故障清除;之后,通过将健全线路以及送电端和受电端变换器重新启动运行在无故障情况下,可实现故障清除后的多端直流输电正常运行。
一种连接海上风场和陆上电力***的电流源型多端直流输电***的运行方法,其特征在于:陆上电力***的电流源逆变器直流侧采用定直流母线电压的方式进行控制;海上风场交流侧的风机的转速和直流侧的直流母线电缆上的直流母线电流由本地风机主变流器控制模块进行控制;海上风场1直流侧的直流母线可以自动确定。
上述陆上电力***的电流源逆变器直流侧采用定直流母线电压的控制方法包括以下步骤:
步骤1,设定电流源逆变器的功率因数角加上由锁相环模块根据三相滤波电容上的电网电压vgc测得的相角θg,得到需要的相角θi
步骤2,根据电流源逆变器直流母线电压设定值和实际母线电压Vdc的误差,通过母线电压控制器得到调制度为mi
步骤3,利用脉冲发生模块根据调制因数mi和相角θi生成六路开关脉冲。
上述海上风场交流侧的风机的转速和直流侧的直流母线电缆上的直流母线电流控制采用本地风机主变流器控制策略包括以下步骤:
步骤1,利用最大功率点追踪模块根据风机叶片上测得的风速获得风机的转速参考值利用速度控制模块根据转速参考值和实际风机的转速ωi得到永磁同步发电机q轴电流参考值永磁同步发电机d轴电流参考值设为0;
步骤2,利用电容电流补偿模块根据三相滤波电容上测得的三相电压vgc获得稳态情况下三相滤波电容dq轴的补偿电流
步骤3,用永磁同步发电机dq轴电流参考值 分别减去三相滤波电容dq轴的补偿电流得到电流源整流器dq轴参电流考值
步骤4,利用电流源整流器的极坐标转换模块根据生成电流源整流器的直流电流参考值和相角θdc_1,利用直流母线电流控制模块通过最大直流母线电流参考值与实际直流母线电流idc_1的误差,得到调制因数mr,θdc_1加上永磁同步发电机测得的相角θgi得到需要的相角θri
步骤5,利用电流源整流器的脉冲发生模块根据调制因数mr和相角θri生成六路开关脉冲。
一种可向无源电网络供电的电流源型高压直流输电***的运行方法,其特征在于:分布式电力***的电流源整流器采用直流母线电流和无功功率控制的方式进行控制;断路器闭合连接主电网时,分布式电力***的电流源逆变器采用功率控制的方式进行控制;断路器断开不连接主电网时,分布式电力***的电流源逆变器采用负载电压控制的方式进行控制。
上述分布式电力***的电流源整流器采用直流母线电流和无功功率控制的方式进行控制,所采用的控制方法包括以下步骤:
步骤1,利用最大值比较模块,根据电流源整流器侧电流参考值和电流源逆变器侧电流参考值得到母线电流参考值根据母线电流参考值和实际母线电流idc的误差,利用直流母线电流控制模块获得电网侧d轴电流参考值根据无功功率参考值和无功功率Qg的误差,利用无功功率控制模块获得电网侧q轴电流参考值
步骤2,利用电容电流补偿模块根据三相滤波电容上测得的三相电压vgc获得稳态情况下三相滤波电容dq轴的补偿电流
步骤3,用电网侧dq轴电流参考值 分别减去三相滤波电容dq轴的补偿电流得到电流源整流器dq轴参电流考值
步骤4,利用极坐标转换模块根据生成直流电流参考值和相角θdcr除以实际测得的直流母线电感上的母线电流idc,得到调制因数mr,θdcr加上电网侧根据锁相环模块测得的相角θg得到开关脉冲需要的相角θr
步骤5,利用脉冲发生模块根据调制因数mr和相角θr生成六路开关脉冲。
上述断路器闭合连接主电网时,分布式电力***的电流源逆变器采用功率控制的方式进行控制,所采用的控制方法包括以下步骤:
步骤1,利用三相转两相模块,根据测得的主电网的电压vg和相位角θ得到电网的dq轴电压vgd和vgq,将有功功率参考值除以1.5倍电网的d轴电压vgd,获得主电网侧d轴电流参考值将无功功率参考值除以1.5倍电网的q轴电压vgq,获得主电网侧q轴电流参考值
步骤2,利用电容电流补偿模块根据三相滤波电容上测得的三相电压vg获得稳态情况下三相滤波电容dq轴的补偿电流
步骤3,用主电网侧dq轴电流参考值 分别减去三相滤波电容dq轴的补偿电流得到dq轴参电流考值
步骤4,利用极坐标转换模块根据生成直流电流参考值和相角θdci除以实际测得的直流母线电感上的母线电流idc,得到调制因数mi,θdci加上电网侧根据锁相环模块测得的相角θ得到电流源逆变器开关脉冲需要的相角θi
步骤5,利用脉冲发生模块根据调制因数mi和相角θi生成六路开关脉冲。
上述断路器断开不连接主电网时,分布式电力***的电流源逆变器采用负载电压控制的方式进行控制,所采用的控制方法包括以下步骤:
步骤1,利用三相转两相模块,将测得的三相滤波电容上的负载电压vlg和相位角θl得到负载侧的dq轴电压vld和vlq,利用d轴电压控制模块,通过d轴电压参考值和实际d轴电压vld的误差,获得负载侧d轴电流参考值利用q轴电压控制模块,通过q轴电压参考值和实际q轴电压vlq的误差,获得负载侧q轴电流参考值
步骤2,利用电容电流补偿模块根据三相滤波电容上测得的三相电压vlg获得稳态情况下三相滤波电容dq轴的补偿电流
步骤3,用负载侧dq轴电流参考值 分别减去三相滤波电容dq轴的补偿电流得到电流源逆变器dq轴参电流考值
步骤4,利用极坐标转换模块根据生成直流电流参考值和相角θdci除以实际测得的直流母线电感上的母线电流idc,得到调制因数mi,θdci加上电网侧根据锁相环模块测得的相角θl得到开关脉冲需要的相角θi
步骤5,利用脉冲发生模块根据调制因数mi和相角θi生成六路开关脉冲。
综合以上,本发明***结构包括:一种连接多个电力***的电流源型多端直流输电***、一种连接海上风场和陆上电力***的电流源型多端直流输电***、一种可向无源电网络供电的电流源型高压直流输电***;本发明控制方法包括:三种***相应的控制技术,以及由电力***组成的电流源型多端直流输电***直流故障情况下不依赖于直流断路器的保护策略,使得***可以有效运行。
采用上述方案后,本发明的有益效果在于,由多个电力***和多个海上风场互联组成的多端高压直流输电***具有多个送电端向多个受电端供电的能力,相比两端高压直流输电***,可以有效提高直流功率传输的灵活性和经济性;由电流源型变换器组成的可向无源电网络供电的电流源型高压直流输电***,可以在负载与主电网断开之后仍然为无源负载提供稳定的供电电源;本发明提出的针对三种***相应的控制技术,以及由电力***组成的电流源型多端直流输电***直流故障情况下不依赖于直流断路器的保护策略,使得***在无故障以及直流侧发生故障的情况下都可以良好运行。
附图说明
图1是电力***组成的三端电流源高压直流输电***整体架构图;
图2是电力***和海上风场组成的三端电流源高压直流输电***整体架构图;
图3是可向无源网络供电的电流源型高压直流输电***整体架构图;
图4是定直流母线电压和闭锁脉冲控制策略的原理图;
图5是定直流母线电流和逆变运行控制策略的原理图;
图6是本地风机主变流器控制策略的原理图;
图7是直流母线电流和无功功率控制策略的原理图;
图8是功率控制策略的原理图;
图9是负载电压控制策略的原理图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
实施例1:如图1所示,本发明提供一种连接多个电力***的电流源型多端直流输电***,包括:
受电端电力***3的交流电网1.14,该交流电网与隔离变压器1.13一次侧连接;
所述隔离变压器1.13二次侧与三相滤波电容1.12并联,并与电流源逆变器1.11串联;
电流源逆变器1.11通过平波电抗器1.9、1.10和两路直流母线电缆1.7、1.8与送电端电力***1的平波电抗器1.5、1.6串联;
送电端电力***1的平波电抗器1.5、1.6与电流源整流器1.4相连;
所述电流源整流器1.4与三相滤波电容1.3并联,并与隔离变压器1.2的二次侧串联;
所述隔离变压器1.2的一次侧与送电端电力***1的交流电网1.1相连;
所述电流源逆变器1.11通过平波电抗器1.9、1.10和两路直流母线电缆1.23、1.24与送电端电力***2的平波电抗器1.19、1.20串联;
所述送电端电力***1的平波电抗器1.19、1.20与电流源整流器1.18相连;
所述送电端电力***2的电流源整流器1.18与三相滤波电容1.17并联,并与隔离变压器1.16的二次侧串联;
所述隔离变压器1.16的一次侧与送电端电力***2的交流电网1.15相连;
所述送电端电力***1的电流源整流器1.4通过平波电抗器1.5、1.6和两路直流母线电缆1.21、1.22,与所述送电端电力***2的平波电抗器1.19、1.20并联;
所述平波电抗器1.5、1.6、1.9、1.10、1.19、1.20与直流母线电缆相连的一端装设快速开关,直流母线电缆1.7、1.8、1.21、1.22、1.23、1.24两端都装设快速开关。
实施例2:如图2所示,本发明提供一种连接海上风场和陆上电力***的电流源型多端直流输电***,包括:
受电端电力***3的交流电网2.14,该交流电网与隔离变压器2.13一次侧连接;
所述隔离变压器2.13二次侧与三相滤波电容2.12并联,并与电流源逆变器2.11串联;
所述电流源逆变器2.11通过平波电抗器2.9、2.10和两路直流母线电缆2.7、2.8与海上风场1的平波电抗器2.5、2.6串联;
所述海上风场1的平波电抗器2.5、2.6与电流源整流器2.4相连;
所述电流源整流器2.4与三相滤波电容2.3并联,并与永磁同步发电机(2.2)的定子串联;
所述永磁同步发电机2.2的转子与海上风场1的风机2.1相连;
所述电流源整流器2.4通过平波电抗器2.5、2.6和两路直流母线电缆2.21、2.22与海上风场2的平波电抗器2.19、2.20串联;
所述海上风场2的平波电抗器2.19、2.20与电流源整流器2.18相连;
所述海上风场2的电流源整流器2.18与三相滤波电容(2.17)并联,并与永磁同步发电机(2.16)的定子串联;
所述永磁同步发电机(2.16)的转子与海上风场2的风机2.15相连。
实施例3:如图3所示,本发明提供一种可向无源电网络供电的电流源型高压直流输电***,包括:
分布式电力***中的交流电网3.1,该交流电网与三相滤波电感3.2连接;
所述三相滤波电感3.2与三相滤波电容3.3相并联,并与电流源整流器3.4串联;
所述电流源整流器3.4通过直流母线电感3.5和电流源逆变器3.6串联;
所述电流源逆变器3.6与三相滤波电容3.7相并联,并与三相滤波电感5.8串联;
所述三相滤波电感3.8通过断路器3.9和主电网3.10串联,并与三相负载3.11并联。
实施例4:如图4所示,所述一种连接多个电力***的电流源型多端直流输电***的电流源变换器单元1.11和一种连接海上风场和陆上电力***的电流源型多端直流输电***的电流源逆变器单元2.11的采用的定直流母线电压和闭锁脉冲的控制策略包括以下步骤(以受电端电力***3电流源逆变器1.11为例,其他电网的电流源逆变器类似):
1)无故障情况下,根据模式选择器4.1,设定电流源逆变器1.11的功率因数角加上由锁相环模块4.2根据三相滤波电容上的电网电压vgc测得的相角θg,得到需要的相角θi;故障情况下,根据模式选择器4.1,设定电流源逆变器1.11的功率因数角加上由锁相环模块4.2根据三相滤波电容上的电网电压vgc测得的相角θg,得到需要的相角θi
2)无故障情况下,根据模式选择器4.1,设定电流源逆变器1.11的直流母线电压设定值根据电压设定值和实际母线电压Vdc的误差,通过母线电压控制器4.3得到调制度为mi;故障情况下,根据模式选择器4.1,设定电流源逆变器1.11的直流母线电压设定值根据电压设定值和实际母线电压Vdc的误差,通过母线电压控制器4.3得到调制度为mi
3)利用脉冲发生模块4.4根据调制因数mi和相角θi生成六路开关脉冲。
实施例5:如图5所示,所述直流母线电缆1.21、1.22、1.23、1.24由送电端电力***1,送电端电力***2的电流源整流器1.4、1.18所采用的定直流母线电流和逆变运行的控制策略包括以下步骤:
1)无故障情况下,根据模式选择器5.1,设定直流母线电缆的直流母线电流参考值为根据电流参考值与实际电缆上的直流母线电流idc1的误差,利用直流母线电流控制模块5.2得到电缆电感上的电压差值Δv;故障情况下,根据模式选择器5.1,设定直流母线电缆的直流母线电流参考值为根据电流参考值与实际电缆上的直流母线电流idc1的误差,利用直流母线电流控制模块5.2得到电缆电感上的电压差值Δv
2)电压差值Δv加上受电端电力***3直流侧的母线电压vdc,经过调制比计算模块5.4得到调制度为m1
3)无故障情况下,根据模式选择器5.1,设定送电端电力***1,2的电流源整流器1.4、1.18的功率因数角θdc1,加上由锁相环模块5.3根据三相滤波电容上的电网电压vgc1测得的相角θg1,得到开关脉冲需要的相角θ1;故障情况下,根据模式选择器5.1,设定故障情况下送电端电力***1,2的电流源整流器1.4、1.18的功率因数角加上由锁相环模块5.3根据三相滤波电容上的电网电压vgc1测得的相角θg1,得到开关脉冲需要的相角θ1
4)利用脉冲发生模块5.4根据调制因数m1和相角θ1生成六路开关脉冲。
实施例6:如图6所示,所述海上风场交流侧的风机2.1,2.15的转速和直流侧的直流母线电缆2.7、2.8、2.21、2.22上的直流母线电流控制采用本地风机主变流器控制策略包括以下步骤:
1)利用最大功率点追踪模块6.1根据风机叶片上测得的风速获得风机的转速参考值利用速度控制模块6.2根据转速参考值和实际风机的转速ωi得到永磁同步发电机q轴电流参考值永磁同步发电机d轴电流参考值设为0;
2)利用电容电流补偿模块6.3根据三相滤波电容上测得的三相电压vgc获得稳态情况下三相滤波电容dq轴的补偿电流
3)用永磁同步发电机dq轴电流参考值 分别减去三相滤波电容dq轴的补偿电流得到电流源整流器2.4,2.18dq轴参电流考值
4)利用电流源整流器2.4,2.18的极坐标转换模块6.4根据生成电流源整流器2.4,2.18的直流电流参考值和相角θdc_1,利用直流母线电流控制模块6.5通过最大直流母线电流参考值与实际直流母线电流idc_1的误差,得到调制因数mr,θdc_1加上永磁同步发电机测得的相角θgi得到需要的相角θri
5)利用电流源整流器2.4,2.18的脉冲发生模块6.6根据调制因数mr和相角θri生成六路开关脉冲。
实施例7:如图7所示,所述分布式电力***的电流源整流器3.4采用直流母线电流和无功功率控制的方式进行控制,所采用的控制方法包括以下步骤:
1)利用最大值比较模块7.1,根据电流源整流器3.4侧电流参考值和电流源逆变器3.6侧电流参考值得到母线电流参考值根据母线电流参考值和实际母线电流idc的误差,利用直流母线电流控制模块7.2获得电网侧d轴电流参考值根据无功功率参考值和无功功率Qg的误差,利用无功功率控制模块7.3获得电网侧q轴电流参考值
2)利用电容电流补偿模块7.4根据三相滤波电容上测得的三相电压vgc获得稳态情况下三相滤波电容dq轴的补偿电流
3)用电网侧dq轴电流参考值 分别减去三相滤波电容dq轴的补偿电流得到电流源整流器3.4dq轴参电流考值
4)利用极坐标转换模块7.5根据生成直流电流参考值和相角θdcr除以实际测得的直流母线电感3.5上的母线电流idc,得到调制因数mr,θdcr加上电网侧根据锁相环模块7.6测得的相角θg得到开关脉冲需要的相角θr
5)利用脉冲发生模块7.7根据调制因数mr和相角θr生成六路开关脉冲。
实施例8:如图8所示,所述断路器闭合连接主电网时,分布式电力***的电流源逆变器3.6采用功率控制的方式进行控制,所采用的控制方法包括以下步骤:
1)利用三相转两相模块8.1,根据测得的主电网3.10的电压vg和相位角θ得到电网的dq轴电压vgd和vgq,将有功功率参考值除以1.5倍电网的d轴电压vgd,获得主电网侧d轴电流参考值将无功功率参考值除以1.5倍电网的q轴电压vgq,获得主电网侧q轴电流参考值
2)利用电容电流补偿模块8.2根据三相滤波电容上测得的三相电压vg获得稳态情况下三相滤波电容dq轴的补偿电流
3)用主电网侧dq轴电流参考值 分别减去三相滤波电容dq轴的补偿电流得到dq轴参电流考值
4)利用极坐标转换模块8.3根据生成直流电流参考值和相角θdci除以实际测得的直流母线电感3.5上的母线电流idc,得到调制因数mi,θdci加上电网侧根据锁相环模块8.4测得的相角θ得到电流源逆变器(5.6)开关脉冲需要的相角θi
5)利用脉冲发生模块8.5根据调制因数mi和相角θi生成六路开关脉冲。
实施例9:如图9所示,所述断路器断开不连接主电网时,分布式电力***的电流源逆变器3.6采用负载电压控制的方式进行控制,所采用的控制方法包括以下步骤:
1)利用三相转两相模块9.1,将测得的三相滤波电容3.7上的负载电压vlg和相位角θl得到负载侧的dq轴电压vld和vlq,利用d轴电压控制模块9.2,通过d轴电压参考值和实际d轴电压vld的误差,获得负载侧d轴电流参考值利用q轴电压控制模块9.3,通过q轴电压参考值和实际q轴电压vlq的误差,获得负载侧q轴电流参考值
2)利用电容电流补偿模块9.4根据三相滤波电容上测得的三相电压vlg获得稳态情况下三相滤波电容dq轴的补偿电流
3)用负载侧dq轴电流参考值 分别减去三相滤波电容dq轴的补偿电流得到电流源逆变器3.6dq轴参电流考值
4)利用极坐标转换模块9.5根据生成直流电流参考值和相角θdci除以实际测得的直流母线电感3.5上的母线电流idc,得到调制因数mi,θdci加上电网侧根据锁相环模块9.6测得的相角θl得到开关脉冲需要的相角θi
5)利用脉冲发生模块9.7根据调制因数mi和相角θi生成六路开关脉冲。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (17)

1.一种连接多个电力***的电流源型多端直流输电***,其特征在于,包括至少两个送电端的电力***和一个受电端的电力***或至少两个受电端的电力***和一个送电端的电力***;每个受电端电力***或送电端电力***至少包含一个由全控型开关器件组成的电流源型换流器,一个三相滤波电容,一个隔离变压器和一个交流电网;送电端电力***和受电端电力***之间通过直流母线电缆以并联环网式相互连接;每个换流器直流侧的出线端以及每条直流母线电缆的两端都含有快速开关。
2.如权利要求1所述的一种连接多个电力***的电流源型多端直流输电***,其特征在于:
受电端电力***3的交流电网(1.14),该交流电网与隔离变压器(1.13)一次侧连接;
所述隔离变压器(1.13)二次侧与三相滤波电容(1.12)并联,并与电流源逆变器(1.11)串联;
所述电流源逆变器(1.11)通过平波电抗器(1.9、1.10)和两路直流母线电缆(1.7、1.8)与送电端电力***1的平波电抗器(1.5、1.6)串联;
所述送电端电力***1的平波电抗器(1.5、1.6)与电流源整流器(1.4)相连;
所述电流源整流器(1.4)与三相滤波电容(1.3)并联,并与隔离变压器(1.2)的二次侧串联;
所述隔离变压器(1.2)的一次侧与送电端电力***1的交流电网(1.1)相连;
所述电流源逆变器(1.11)通过平波电抗器(1.9、1.10)和两路直流母线电缆(1.23、1.24)与送电端电力***2的平波电抗器(1.19、1.20)串联;
所述送电端电力***1的平波电抗器(1.19、1.20)与电流源整流器(1.18)相连;
所述送电端电力***2的电流源整流器(1.18)与三相滤波电容(1.17)并联,并与隔离变压器(1.16)的二次侧串联;
所述隔离变压器(1.16)的一次侧与电网2的交流电网(1.15)相连;
所述送电端电力***1的电流源整流器(1.4)通过平波电抗器(1.5、1.6)和两路直流母线电缆(1.21、1.22),与所述送电端电力***2的平波电抗器(1.19、1.20)并联;
所述平波电抗器(1.5、1.6、1.9、1.10、1.19、1.20)与直流母线电缆相连的一端装设快速开关,直流母线电缆(1.7、1.8、1.21、1.22、1.23、1.24)两端都装设快速开关。
3.一种连接海上风场和陆上电力***的电流源型多端直流输电***,其特征在于,包括至少两个送电端的海上风场和一个受电端的电力***,或至少两个受电端的电力***和一个送电端的海上风场;每个受电端电力***至少包含一个由全控型开关器件组成的电流源整流器,一个三相滤波电容,一个隔离变压器和一个交流电网;每个送电端的海上风场至少包含一个由全控型开关器件组成的电流源逆变器,一个三相滤波电容,一个永磁同步发电机和一个风机;送电端海上风场和受电端电力***之间通过直流母线电缆以并联放射式相互连接。
4.如权利要求3所述的一种连接海上风场和陆上电力***的电流源型多端直流输电***,其特征在于:
受电端电力***3的交流电网(2.14),该交流电网与隔离变压器(2.13)一次侧连接;
所述隔离变压器(2.13)二次侧与三相滤波电容(2.12)并联,并与电流源逆变器(2.11)串联;
所述电流源逆变器(2.11)通过平波电抗器(2.9、2.10)和两路直流母线电缆(2.7、2.8)与海上风场1的平波电抗器(2.5、2.6)串联;
所述海上风场1的平波电抗器(2.5、2.6)与电流源整流器(2.4)相连;
所述电流源整流器(2.4)与三相滤波电容(2.3)并联,并与永磁同步发电机(2.2)的定子串联;
所述永磁同步发电机(2.2)的转子与海上风场1的风机(2.1)相连;
所述电流源整流器(2.4)通过平波电抗器(2.5、2.6)和两路直流母线电缆(2.21、2.22)与海上风场2的平波电抗器(2.19、2.20)串联;
所述海上风场2的平波电抗器(2.19、2.20)与电流源整流器(2.18)相连;
所述海上风场2的电流源整流器(2.18)与三相滤波电容(2.17)并联,并与永磁同步发电机(2.16)的定子串联;
所述永磁同步发电机(2.16)的转子与海上风场2的风机(2.15)相连。
5.一种可向无源电网络供电的电流源型高压直流输电***,其特征在于包括一个分布式电力***,一个主电网和一个无源网络负载;分布式电力***由一个三相交流电网,一个整流侧的三相滤波器包括三相滤波电感和三相滤波电容,一个电流源整流器,一个直流侧电感,一个电流源逆变器,一个逆变侧的三相滤波器包括三相滤波电感和三相滤波电容组成;分布式电力***,主电网和无源网络负载通过并联放射式相互连接。
6.如权利要求5所述的一种无源电网络供电的电流源型高压直流输电***,其特征在于:
分布式电力***中的交流电网(3.1),该交流电网与三相滤波电感(3.2)连接;
所述三相滤波电感(3.2)与三相滤波电容(3.3)相并联,并与电流源整流器(3.4)串联;
所述电流源整流器(3.4)通过直流母线电感(3.5)和电流源逆变器(3.6)串联;
所述电流源逆变器3.6)与三相滤波电容(3.7)相并联,并与三相滤波电感(3.8)串联;
所述三相滤波电感(3.8)通过断路器(3.9)和主电网(3.10)串联,并与三相负载(3.11)并联。
7.一种连接多个电力***的电流源型多端直流输电***的控制以及故障情况下的运行方法,其特征在于:无故障情况下,受电端电力***3的电流源逆变器(1.11)的直流侧采用定直流母线电压的方式进行控制;无故障情况下,直流母线电缆(1.7、1.8、1.23、1.24)上的电流由送电端电力***1和送电端电力***2的整流器(1.4、1.18)采用定直流母线电流的方式进行控制;故障情况下,受电端电力***3的电流源逆变器(1.11)的采用闭锁脉冲的方式进行控制,送电端电力***1和送电端电力***2的整流器(1.4、1.18)采用逆变运行的方式进行控制;直流母线电缆(1.21、1.22)和受电端电力***3的电流源逆变器(1.14)的直流母线可以自动确定。
8.如权利要求7所述的一种连接多个电力***的电流源型多端直流输电***的运行方法,其特征在于:无故障情况下,所述受电端电力***3电流源逆变器(1.11)的直流侧采用定直流母线电压的控制方式包括以下步骤:
步骤1,根据模式选择器(4.1),设定电流源逆变器(1.11)的功率因数角加上由锁相环模块(4.2)根据三相滤波电容上的电网电压vgc测得的相角θg,得到需要的相角θi
步骤2,根据模式选择器(4.1),设定电流源逆变器(1.11)的直流母线电压设定值根据电压设定值和实际母线电压Vdc的误差,通过母线电压控制器(4.3)得到调制度为mi
步骤3,利用脉冲发生模块(4.4)根据调制因数mi和相角θi生成六路开关脉冲。
9.如权利要求7所述的由电力***组成的电流源型多端直流输电***的运行方法,其特征在于:无故障情况下,所述直流母线电缆(1.21、1.22、1.23、1.24)上的电流由送电端电力***1,送电端电力***2的整流器(1.4、1.18)所采用的定直流母线电流的控制方式包括以下步骤:
步骤1,根据模式选择器(5.1),设定直流母线电缆的直流母线电流参考值为根据电流参考值与实际电缆上的直流母线电流idc1的误差,利用直流母线电流控制模块(5.2)得到电缆电感上的电压差值Δv;
步骤2,电压差值Δv加上受电端电力***3直流侧的母线电压vdc,经过调制比计算模块(5.4)得到调制度为m1
步骤3,根据模式选择器(5.1),设定送电端电力***1,2的电流源整流器的功率因数角θdc1,加上由锁相环模块(5.3)根据三相滤波电容上的电网电压vgc1测得的相角θg1,得到开关脉冲需要的相角θ1
步骤4,利用脉冲发生模块(5.5)根据调制因数m1和相角θ1生成六路开关脉冲。
10.如权利要求7所述的由电力***组成的电流源型多端直流输电***的运行方法,其特征在于:故障情况下,受电端电力***3的电流源逆变器(1.11)的采用闭锁脉冲,送电端电力***1和送电端电力***2的整流器(1.4、1.18)采用逆变运行的保护控制方式包括以下步骤:
步骤1,根据模式选择器(4.1),设定故障情况下电流源逆变器(1.11)的功率因数角加上由锁相环模块(4.2)根据三相滤波电容上的电网电压vgc测得的相角θg,得到需要的相角θi;同时,根据模式选择器(5.1),设定故障情况下送电端电力***1,2的电流源整流器(1.4、1.18)的功率因数角加上由锁相环模块(5.3)根据三相滤波电容上的电网电压vgc1测得的相角θg1,得到开关脉冲需要的相角θ1
步骤2,根据模式选择器(4.1),设定故障情况下电流源逆变器(1.11)的直流母线电压设定值根据电压设定值和实际母线电压Vdc的误差,通过母线电压控制器(4.3)得到调制度为mi;同时,根据模式选择器(5.1),设定故障情况下直流母线电缆的直流母线电流参考值为根据电流参考值与实际电缆上的直流母线电流idc1的误差,利用直流母线电流控制模块(5.2)得到电缆电感上的电压差值Δv,电压差值Δv加上受电端电力***3直流侧的母线电压vdc,经过调制比计算模块(5.4)得到调制度为m1
步骤3,利用脉冲发生模块(4.4)根据调制因数mi和相角θi生成电流源逆变器(1.11)的六路开关脉冲;同时,利用脉冲发生模块(5.5)根据调制因数m1和相角θ1生成电流源整流器(1.4、1.18)的六路开关脉冲;
步骤4,根据以上控制步骤,直流侧故障电流可迅速减小到0,然后根据直流故障发生的位置,可通过快速开关将故障线路切除,实现直流侧故障情况下不依赖直流断路器的故障清除;之后,通过将健全线路以及送电端和受电端变换器重新启动运行在无故障情况下,可实现故障清除后的多端直流输电正常运行。
11.一种连接海上风场和陆上电力***的电流源型多端直流输电***的运行方法,其特征在于:陆上电力***的电流源逆变器(2.11)直流侧采用定直流母线电压的方式进行控制;海上风场交流侧的风机(2.1,2.15)的转速和直流侧的直流母线电缆(2.7、2.8、2.21、2.22)上的直流母线电流由本地风机主变流器控制模块进行控制;海上风场1直流侧的直流母线可以自动确定。
12.如权利要求11所述的一种连接海上风场和陆上电力***的电流源型多端直流输电***的运行方法,其特征在于:所述陆上电力***的电流源逆变器(2.11)直流侧采用定直流母线电压的控制方法包括以下步骤:
步骤1,设定电流源逆变器(2.11)的功率因数角加上由锁相环模块(4.1)根据三相滤波电容上的电网电压vgc测得的相角θg,得到需要的相角θi
步骤2,根据电流源逆变器(2.11)直流母线电压设定值和实际母线电压Vdc的误差,通过母线电压控制器(4.2)得到调制度为mi
步骤3,利用脉冲发生模块(4.3)根据调制因数mi和相角θi生成六路开关脉冲。
13.如权利要求11所述的一种连接海上风场和陆上电力***的电流源型多端直流输电***的运行方法,其特征在于:所述海上风场交流侧的风机(2.1,2.15)的转速和直流侧的直流母线电缆(2.7、2.8、2.21、2.22)上的直流母线电流控制采用本地风机主变流器控制策略包括以下步骤:
步骤1,利用最大功率点追踪模块(6.1)根据风机叶片上测得的风速获得风机的转速参考值利用速度控制模块(6.2)根据转速参考值和实际风机的转速ωi得到永磁同步发电机q轴电流参考值永磁同步发电机d轴电流参考值设为0;
步骤2,利用电容电流补偿模块(6.3)根据三相滤波电容上测得的三相电压vgc获得稳态情况下三相滤波电容dq轴的补偿电流
步骤3,用永磁同步发电机dq轴电流参考值分别减去三相滤波电容dq轴的补偿电流得到电流源整流器(2.4,2.18)dq轴参电流考值
步骤4,利用电流源整流器(2.4,2.18)的极坐标转换模块(6.4)根据生成电流源整流器(2.4,2.18)的直流电流参考值和相角θdc_1,利用直流母线电流控制模块(6.5)通过最大直流母线电流参考值与实际直流母线电流idc_1的误差,得到调制因数mr,θdc_1加上永磁同步发电机测得的相角θgi得到需要的相角θri
步骤5,利用电流源整流器(2.4,2.18)的脉冲发生模块(6.6)根据调制因数mr和相角θri生成六路开关脉冲。
14.一种可向无源电网络供电的电流源型高压直流输电***,其特征在于:分布式电力***的电流源整流器(3.4)采用直流母线电流和无功功率控制的方式进行控制;断路器闭合连接主电网时,分布式电力***的电流源逆变器(3.6)采用功率控制的方式进行控制;断路器断开不连接主电网时,分布式电力***的电流源逆变器(3.6)采用负载电压控制的方式进行控制。
15.如权利要求14所述的一种可向无源电网络供电的电流源型高压直流输电***的运行方法,其特征在于:所述分布式电力***的电流源整流器(3.4)采用直流母线电流和无功功率控制的方式进行控制,所采用的控制方法包括以下步骤:
步骤1,利用最大值比较模块(7.1),根据电流源整流器(3.4)侧电流参考值和电流源逆变器(3.6)侧电流参考值得到母线电流参考值根据母线电流参考值和实际母线电流idc的误差,利用直流母线电流控制模块(7.2)获得电网侧d轴电流参考值根据无功功率参考值和无功功率Qg的误差,利用无功功率控制模块(7.3)获得电网侧q轴电流参考值
步骤2,利用电容电流补偿模块(7.4)根据三相滤波电容上测得的三相电压vgc获得稳态情况下三相滤波电容dq轴的补偿电流
步骤3,用电网侧dq轴电流参考值分别减去三相滤波电容dq轴的补偿电流得到电流源整流器(3.4)dq轴参电流考值
步骤4,利用极坐标转换模块(7.5)根据生成直流电流参考值和相角θdcr除以实际测得的直流母线电感(3.5)上的母线电流idc,得到调制因数mr,θdcr加上电网侧根据锁相环模块(7.6)测得的相角θg得到开关脉冲需要的相角θr
步骤5,利用脉冲发生模块(7.7)根据调制因数mr和相角θr生成六路开关脉冲。
16.如权利要求14所述的一种可向无源电网络供电的电流源型高压直流输电***的运行方法,其特征在于:断路器闭合连接主电网时,分布式电力***的电流源逆变器(3.6)采用功率控制的方式进行控制,所采用的控制方法包括以下步骤:
步骤1,利用三相转两相模块(8.1),根据测得的主电网(3.10)的电压vg和相位角θ得到电网的dq轴电压vgd和vgq,将有功功率参考值除以1.5倍电网的d轴电压vgd,获得主电网侧d轴电流参考值将无功功率参考值除以1.5倍电网的q轴电压vgq,获得主电网侧q轴电流参考值
步骤2,利用电容电流补偿模块(8.2)根据三相滤波电容上测得的三相电压vg获得稳态情况下三相滤波电容dq轴的补偿电流
步骤3,用主电网侧dq轴电流参考值分别减去三相滤波电容dq轴的补偿电流得到dq轴参电流考值
步骤4,利用极坐标转换模块(8.3)根据生成直流电流参考值和相角θdci除以实际测得的直流母线电感(3.5)上的母线电流idc,得到调制因数mi,θdci加上电网侧根据锁相环模块(8.4)测得的相角θ得到电流源逆变器(5.6)开关脉冲需要的相角θi
步骤5,利用脉冲发生模块(8.5)根据调制因数mi和相角θi生成六路开关脉冲。
17.如权利要求14所述的一种可向无源电网络供电的电流源型高压直流输电***的运行方法,其特征在于:断路器断开不连接主电网时,分布式电力***的电流源逆变器(3.6)采用负载电压控制的方式进行控制,所采用的控制方法包括以下步骤:
步骤1,利用三相转两相模块(9.1),将测得的三相滤波电容(3.7)上的负载电压vlg和相位角θl得到负载侧的dq轴电压vld和vlq,利用d轴电压控制模块(9.2),通过d轴电压参考值和实际d轴电压vld的误差,获得负载侧d轴电流参考值利用q轴电压控制模块(9.3),通过q轴电压参考值和实际q轴电压vlq的误差,获得负载侧q轴电流参考值
步骤2,利用电容电流补偿模块(9.4)根据三相滤波电容上测得的三相电压vlg获得稳态情况下三相滤波电容dq轴的补偿电流
步骤3,用负载侧dq轴电流参考值分别减去三相滤波电容dq轴的补偿电流得到电流源逆变器(3.6)dq轴参电流考值
步骤4,利用极坐标转换模块(9.5)根据生成直流电流参考值和相角θdci除以实际测得的直流母线电感(3.5)上的母线电流idc,得到调制因数mi,θdci加上电网侧根据锁相环模块(9.6)测得的相角θl得到开关脉冲需要的相角θi
步骤5,利用脉冲发生模块(9.7)根据调制因数mi和相角θi生成六路开关脉冲。
CN201810779896.6A 2018-07-16 2018-07-16 电流源型高压直流输电***的控制及运行方法 Active CN108923450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810779896.6A CN108923450B (zh) 2018-07-16 2018-07-16 电流源型高压直流输电***的控制及运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810779896.6A CN108923450B (zh) 2018-07-16 2018-07-16 电流源型高压直流输电***的控制及运行方法

Publications (2)

Publication Number Publication Date
CN108923450A true CN108923450A (zh) 2018-11-30
CN108923450B CN108923450B (zh) 2021-10-26

Family

ID=64411474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810779896.6A Active CN108923450B (zh) 2018-07-16 2018-07-16 电流源型高压直流输电***的控制及运行方法

Country Status (1)

Country Link
CN (1) CN108923450B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078831A (zh) * 2021-04-02 2021-07-06 张昌浩 一种基于电流源的无线发射器电源均流控制器及方法
CN113904366A (zh) * 2021-09-28 2022-01-07 中国华能集团清洁能源技术研究院有限公司 基于igct和lcc器件的海上风电并网***及控制方法
CN113972686A (zh) * 2021-10-11 2022-01-25 中国华能集团清洁能源技术研究院有限公司 一种基于igct器件的电流源型海上风电并网***
CN114421517A (zh) * 2021-11-25 2022-04-29 广州鼎汉轨道交通装备有限公司 锁相环***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032421A1 (en) * 2013-09-03 2015-03-12 Abb Technology Ltd Hvdc series current source converter
CN105281354A (zh) * 2014-06-06 2016-01-27 南方电网科学研究院有限责任公司 一种直流输电逆变侧接入交流***方法
CN105429165A (zh) * 2015-12-23 2016-03-23 湖北工业大学 一种向多落点无源网络供电的多端混合直流输电***拓扑及控制方法
CN105870910A (zh) * 2016-04-28 2016-08-17 华北电力大学 一种用于并联式多端直流输电***控制模式的转换方法
CN107895962A (zh) * 2017-11-23 2018-04-10 东南大学 一种电流源型高压直流输电***及其运行方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032421A1 (en) * 2013-09-03 2015-03-12 Abb Technology Ltd Hvdc series current source converter
CN105281354A (zh) * 2014-06-06 2016-01-27 南方电网科学研究院有限责任公司 一种直流输电逆变侧接入交流***方法
CN105429165A (zh) * 2015-12-23 2016-03-23 湖北工业大学 一种向多落点无源网络供电的多端混合直流输电***拓扑及控制方法
CN105870910A (zh) * 2016-04-28 2016-08-17 华北电力大学 一种用于并联式多端直流输电***控制模式的转换方法
CN107895962A (zh) * 2017-11-23 2018-04-10 东南大学 一种电流源型高压直流输电***及其运行方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. CHANG等: "Multi-terminal VSC-HVDC Pole-to-pole Fault Analysis and Fault Recovery Study", 《11TH IET INTERNATIONAL CONFERENCE ON AC AND DC POWER TRANSMISSION》 *
徐殿国等: "多端直流输电***控制研究综述", 《电工技术学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078831A (zh) * 2021-04-02 2021-07-06 张昌浩 一种基于电流源的无线发射器电源均流控制器及方法
CN113078831B (zh) * 2021-04-02 2022-09-16 张昌浩 一种基于电流源的无线发射器电源均流控制器及方法
CN113904366A (zh) * 2021-09-28 2022-01-07 中国华能集团清洁能源技术研究院有限公司 基于igct和lcc器件的海上风电并网***及控制方法
CN113904366B (zh) * 2021-09-28 2023-09-19 中国华能集团清洁能源技术研究院有限公司 基于igct和lcc器件的海上风电并网***及控制方法
CN113972686A (zh) * 2021-10-11 2022-01-25 中国华能集团清洁能源技术研究院有限公司 一种基于igct器件的电流源型海上风电并网***
CN114421517A (zh) * 2021-11-25 2022-04-29 广州鼎汉轨道交通装备有限公司 锁相环***
CN114421517B (zh) * 2021-11-25 2022-12-13 广州鼎汉轨道交通装备有限公司 锁相环***

Also Published As

Publication number Publication date
CN108923450B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
CN108539796B (zh) 一种风电双极柔直电网的故障穿越及能量耗散控制方法
Khazaei et al. Review of HVDC control in weak AC grids
CN107994613B (zh) 一种风电柔直并网的交直流故障穿越及能量耗散方法
Xiang et al. Coordinated control of an HVDC link and doubly fed induction generators in a large offshore wind farm
Xu et al. Grid connection of large offshore wind farms using HVDC
Torres-Olguin et al. Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission
EP3651305A1 (en) Chained multi-port grid-connected interface apparatus and control method
CN208738855U (zh) 一种风电双极柔直电网***
CN102969732B (zh) 一种混合双极直流输电***
CN109378830B (zh) 一种基于远距离输电的同步调相机选址方法
CN110086198A (zh) 一种适用于海上风电并网的多端混合直流输电***及启动控制方法
CN108923450A (zh) 一种电流源型高压直流输电***及其运行方法
WO2023178887A1 (zh) 一种大容量离网型风光互补制氢直流微电网及其控制方法
CN101969201A (zh) 一种用于辅助风力发电机实现低压穿越的动态电压稳定器
CN101710789A (zh) 兆瓦级永磁直驱式风力发电变流器及控制方法
Abbas et al. PWM based VSC-HVDC systems—a review
CN111600334B (zh) 一种四端风电直流电网的交流故障诊断与穿越控制方法
CN109347144A (zh) 一种风电柔性直流送出***的低电压穿越方法
CN107895962A (zh) 一种电流源型高压直流输电***及其运行方法
Zhan et al. Research on hybrid multi-terminal high-voltage DC technology for offshore wind farm integration
CN105633994A (zh) Fmmc-lcc型混合直流输电***启动方法
CN201829955U (zh) 一种用于辅助风力发电机实现低压穿越的动态电压稳定器
CN114567012B (zh) 风电直流送出***及其控制方法
CN117117886A (zh) 一种海上大规模风电送出***及其控制方法
CN109088428B (zh) 高电压穿越装置、方法,包括该装置的变流***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant