CN108922784B - 染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备方法 - Google Patents

染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备方法 Download PDF

Info

Publication number
CN108922784B
CN108922784B CN201811010513.5A CN201811010513A CN108922784B CN 108922784 B CN108922784 B CN 108922784B CN 201811010513 A CN201811010513 A CN 201811010513A CN 108922784 B CN108922784 B CN 108922784B
Authority
CN
China
Prior art keywords
cote
nanowire
counter electrode
preparation
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811010513.5A
Other languages
English (en)
Other versions
CN108922784A (zh
Inventor
陈铭
唐冬梅
李文龙
陆俊杰
戴兰轩
沈超
韩悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201811010513.5A priority Critical patent/CN108922784B/zh
Publication of CN108922784A publication Critical patent/CN108922784A/zh
Application granted granted Critical
Publication of CN108922784B publication Critical patent/CN108922784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备方法,其步骤为:将六水合硝酸钴溶解在甲醇中,在剧烈搅拌下,依次加入亚碲酸钠和水合肼,一段时间后进行水热反应,待反应结束后,自然降温至室温,离心洗涤、干燥,即得到CoTe/Te纳米线。本发明采用水热法和旋涂法,所用的方法简单,仪器设备简易,可得到形貌均一的CoTe/Te纳米线,CoTe/Te纳米线表面CoTe(102)晶面的选择性生长,该晶面对I3ˉ还原表现出较高的电催化活性,单质Te是P型半导体,具有较高的空穴载流子迁移率,有利于提升复合材料的催化性能。

Description

染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备 方法
技术领域
本发明属于太阳能电池纳米材料生产技术领域,具体涉及过渡金属碲化物的纳米线的制备方法。
背景技术
在染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)的对电极中,是采用I3ˉ和Iˉ作为氧化还原电对,在其表面发生I3ˉ的还原反应:I3ˉ+ 2 e- →3 Iˉ。因此对电极对于I3ˉ还原的催化性能好坏决定了电池的整体性能。作为对电极的Pt贵金属电极其催化效果受空气影响严重,同时存在很严重的性能衰减。且Pt在地球上的储量极少,价格昂贵,极大地限制了电池的大规模生产。因此,研发新型、高稳定性、催化性能好的非铂对电极材料是目前染料敏化太阳能电池领域的热点问题之一。
发明内容
本发明的目的在于提供一种一步水热法合成的CoTe/Te纳米线及其方法,并将其应用于DSSCs的对电极。
实现本发明目的的技术解决方案是:
CoTe/Te纳米线及其制备方法,包括如下步骤:
称取一定量的六水合硝酸钴溶解在甲醇中,在剧烈搅拌下,依次加入亚碲酸钠和水合肼,一段时间后进行水热反应,待反应结束后,自然降温至室温,离心洗涤收集并进行样品干燥,即得到CoTe/Te纳米线。
进一步的,六水合硝酸钴与亚碲酸钠质量比为5
Figure DEST_PATH_IMAGE002
3~1。
进一步的,甲醇与水合肼的体积比为25
Figure 75142DEST_PATH_IMAGE002
3~1。
进一步的,水热反应温度100~260
Figure DEST_PATH_IMAGE004
,反应时间1~48h。
制成的CoTe/Te纳米线为核壳结构,在纳米线的两侧存在2~5 nm的壳层结构。
CoTe/Te纳米线的对电极的制备方法:
通过超声使CoTe/Te纳米其完全分散于乙醇中,形成墨汁状的黑色溶液,取上述溶液滴在导电玻璃上,进行旋涂,自然晾干,即得到CoTe/Te非铂对电极。
与现有技术相比,本发明获得形貌均一,分散均匀的CoTe/Te纳米线,将其应用于染料敏化太阳能电池中的对电极,可代替传统的贵金属Pt对电极,同时还在碲化钴中引入了单质Te,方法简单,价格便宜,催化效果稳定,不容易失去催化活性,同时提高了光电转化效率,具有广泛的应用前景。
附图说明
图1为实施例2制备的CoTe/Te纳米线的XRD图。
图2为实施例2制备的CoTe/Te纳米线不同放大倍数的透射电镜图。
图3为实施例2制备的CoTe/Te纳米线的EDS Mapping图。
图4为实施例2和不同对电极的DSSCs的J-V曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行详细地说明。
理论计算表明,Te的存在,使材料的电负性增加,更有利于I3ˉ与非金属原子形成电子耦合作用,电极材料对于I3ˉ的吸附能力增强,而对于Iˉ的束缚将减弱,有利于Iˉ离子快速的离开电极表面,扩散到溶液中,提高物质的催化活性,进而影响DSSCs的光电转换性能。因此,发明人制备了CoTe/Te复合纳米材料并将其作为对电极应用到染料敏化太阳能电池中。
一、材料制备
实施例1:
称取0.15 g 的Co(NO3)2·6H2O溶解在25 mL的甲醇中,搅拌10 min,溶液呈现粉色,加入0.09g Na2TeO3固体粉末,剧烈搅拌30 min,加入3 mL水合肼,将其置于40 mL的水热反应釜中,100℃反应48 h,自然降温至室温,离心洗涤收集并进行样品干燥,即得到CoTe/Te纳米线。
实施例2:
称取0.15 g 的Co(NO3)2·6H2O溶解在25 mL的甲醇中,搅拌10 min,加入0.06gNa2TeO3固体粉末,剧烈搅拌30 min,加入2 mL水合肼,将其置于40 mL的水热反应釜中,200℃反应24 h,自然降温至室温,离心洗涤收集并进行样品干燥,即得到CoTe/Te纳米线。
实施例3:
称取0.15 g 的Co(NO3)2·6H2O溶解在25 mL的甲醇中,搅拌10 min,加入0.03gNa2TeO3固体粉末,剧烈搅拌30 min,加入1 mL水合肼,将其置于40 mL的水热反应釜中,260℃反应1 h,自然降温至室温,离心洗涤收集并进行样品干燥,即得到CoTe/Te纳米线。
将上述实施例中不同条件下制备得到的CoTe/Te固体粉末,分别称取0.1 g分散在1 mL 的乙醇中,超声使其完全分散,得到墨汁状的黑色溶液。取上述溶液滴在导电玻璃上,2000 rpm旋涂30s,自然晾干,得到CoTe/Te非铂对电极。
二、产物验证
在实施例2的条件下,可以获得最优的光电转换性能的染料敏化太阳能电池的对电极材料,以下是选取的实施例2的材料表征:
图1为制备的CoTe/Te纳米线的XRD图。从图分析可知:位于31.3°、43.1°、46.7°、58.3° 的峰对应于(101)、(102)、(110)和(103)晶面,与六方相CoTe的JCPDS标准卡片(PDF#34-0420)相匹配,即有CoTe的存在;图中位于27.6°左右的衍射峰归属于单质Te的(101)晶面,证明了这个物质包含了单质Te的存在。
图2分别为制备的不同放大倍数的CoTe/Te纳米线的透射电镜图。从图可见:该纳米线直径≈25 nm,对纳米线局部放大,发现其为核壳结构,壳层厚度≈5 nm。
图3为制备的CoTe/Te纳米线的EDS Mapping图,从左到右依次是元素Co、元素Te以及Co和Te的组合图。从图可见,Te的分布主要集中在纳米线衬度较暗的中间部分,与TEM得到的结果相一致。
图4为不同对电极的DSSCs的J-V曲线图。在标准1.5 G(100 mW cm-2)模拟太阳光照射下,测定其光电转化效率。从图4和表1可见:当采用Pt为对电极时,DSSCs的短路电流为13.99 mA cm-2,开路电压为0.76 V,光电转换效率为6.65%;当对电极为CoTe/Te时,DSSCs短路电流为17.28 mA cm-2,开路电压为0.74 V,光电转换效率为8.06%;当采用CoTe为对电极材料时,DSSCs短路电流为16.14 mA cm-2,开路电压为0.73 V,光电转换效率为6.92%;当DSSCs的对电极为CoTe2时,其光电转换效率为6.40%。由CoTe/Te作为对电极组装的DSSCs具有最高的光电转换效率。
表1对电极为Pt,CoTe/Te,CoTe,CoTe2的DSSCs的主要性能参数
CEs <i>V</i><sub>oc</sub>(V) <i>J</i><sub>sc</sub>(mA cm<sup>-2</sup>) FF <i>η</i>(%)
Pt 0.76 13.99 0.63 6.65
CoTe/Te 0.74 17.28 0.63 8.06
CoTe 0.73 16.14 0.58 6.92
CoTe<sub>2</sub> 0.70 15.19 0.60 6.40
本发明采用水热法和旋涂法,所用的方法简单,仪器设备简易,可得到形貌均一的CoTe/Te纳米线。CoTe/Te纳米线表面CoTe(102)晶面的选择性生长,该晶面对I3ˉ还原表现出较高的电催化活性。单质Te是P型半导体,具有较高的空穴载流子迁移率,有利于提升复合材料的催化性能。Te在CoTe纳米线中的分布呈现中间高、边缘低,即有利于I3ˉ的吸附,同时便于Iˉ快速的从电极材料表面解吸,释放出更多的活性位点,加速催化反应的进行。CoTe/Te纳米线作为对电极材料代替传统的贵金属Pt对电极,制备方法简单,价格便宜,CoTe与Te之间的协同作用,增强了复合材料的催化性能,催化效果稳定,不易失活。

Claims (2)

1.CoTe/Te纳米线的制备方法,其特征在于,包括如下步骤:
将六水合硝酸钴溶解在甲醇中,在剧烈搅拌下,依次加入亚碲酸钠和水合肼,一段时间后进行水热反应,待反应结束后,自然降温至室温,离心洗涤、干燥,即得到CoTe/Te纳米线,其中,
六水合硝酸钴与亚碲酸钠质量比为5
Figure DEST_PATH_IMAGE001
3~1;
甲醇与水合肼的体积比为25
Figure 144905DEST_PATH_IMAGE001
3~1;
水热反应温度100~260
Figure 986959DEST_PATH_IMAGE002
,反应时间1~48h;
所述的CoTe/Te纳米线为核壳结构,单质Te在纳米线分布呈现中部高、边缘低的微观结构,该纳米线总的直径为15~35 nm,壳层厚度为2~5nm。
2.如权利要求1所述的方法制备的CoTe/Te纳米线。
CN201811010513.5A 2018-08-31 2018-08-31 染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备方法 Active CN108922784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811010513.5A CN108922784B (zh) 2018-08-31 2018-08-31 染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811010513.5A CN108922784B (zh) 2018-08-31 2018-08-31 染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备方法

Publications (2)

Publication Number Publication Date
CN108922784A CN108922784A (zh) 2018-11-30
CN108922784B true CN108922784B (zh) 2020-06-05

Family

ID=64407316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811010513.5A Active CN108922784B (zh) 2018-08-31 2018-08-31 染料敏化太阳能电池非铂对电极CoTe/Te纳米线及其制备方法

Country Status (1)

Country Link
CN (1) CN108922784B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676064A (zh) * 2019-09-12 2020-01-10 天津大学 一种超级电容器电极用CoTe纳米线的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311382A (zh) * 2008-04-09 2008-11-26 中国科学技术大学 一种Te/Bi或Te/Bi2Te3核壳异质结结构纳米线及其制备方法
CN106847531A (zh) * 2017-03-20 2017-06-13 浙江大学 一种用于超级电容器电极的CoTe纳米材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159211C (zh) * 2002-06-07 2004-07-28 清华大学 合成多种金属硒化物及碲化物半导体材料的方法
CN102910595A (zh) * 2012-10-31 2013-02-06 中国科学技术大学 一种超细碲纳米线的宏量制备方法
CN104993042A (zh) * 2015-05-27 2015-10-21 哈尔滨工业大学 PbTe-SrTe微晶热电材料的制备方法
CN107720711A (zh) * 2017-09-28 2018-02-23 合肥师范学院 功能化金纳米颗粒多刺状磁性碲化镍纳米线及制备、应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311382A (zh) * 2008-04-09 2008-11-26 中国科学技术大学 一种Te/Bi或Te/Bi2Te3核壳异质结结构纳米线及其制备方法
CN106847531A (zh) * 2017-03-20 2017-06-13 浙江大学 一种用于超级电容器电极的CoTe纳米材料及其制备方法

Also Published As

Publication number Publication date
CN108922784A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
Liu et al. Hierarchical Ni-MoSex@ CoSe2 core-shell nanosphere as highly active bifunctional catalyst for efficient dye-sensitized solar cell and alkaline hydrogen evolution
Wang et al. One-step microwave-hydrothermal preparation of NiS/rGO hybrid for high-performance symmetric solid-state supercapacitor
Senthil et al. A facile one-pot synthesis of microspherical-shaped CoS2/CNT composite as Pt-free electrocatalyst for efficient hydrogen evolution reaction
Hong et al. Cobalt–nickel sulfide nanosheets modified by nitrogen-doped porous reduced graphene oxide as high-conductivity cathode materials for supercapacitor
CN109023417B (zh) 碳化铁-钴/氮掺杂碳纳米复合材料的制备方法及应用
Qian et al. Ni–Fe–WSx polynary hollow nanoboxes as promising electrode catalysts for high-efficiency triiodide reduction in dye-sensitized solar cells
Jia et al. Understanding the growth of NiSe nanoparticles on reduced graphene oxide as efficient electrocatalysts for methanol oxidation reaction
Deng et al. Cobalt-nickel bimetallic sulfide (NiS2/CoS2) based dual-carbon framework for super sodium ion storage
Huang et al. Formation of CoTe2 embedded in nitrogen-doped carbon nanotubes-grafted polyhedrons with boosted electrocatalytic properties in dye-sensitized solar cells
Hu et al. Carbon felt electrode modified by lotus seed shells for high-performance vanadium redox flow battery
Liu et al. Highly conductive Co3Se4 embedded in N-doped 3D interconnected carbonaceous network for enhanced lithium and sodium storage
Fu et al. Sn-doped nickel sulfide (Ni3S2) derived from bimetallic MOF with ultra high capacitance
Ge et al. Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction
Hsieh et al. Preparation of Pt–Co nanocatalysts on carbon nanotube electrodes for direct methanol fuel cells
Yang et al. In-situ construction of heterostructure (Ni, Co) Se2 nanoarrays derived from cone-like ZIF-L for high-performance hybrid supercapacitors
Chen et al. Porous biomass skeleton/Ni-Co LDH composite nanomaterials electrode with high rate capability for advanced supercapacitors
CN106219616A (zh) 一种二氧化钼/钴酸镍分级杂化纳米结构阵列及其制备方法
Mao et al. A high-performance supercapacitor electrode based on nanoflower-shaped CoTe2
Zhang et al. Surface active-site engineering in NiCoSe2/nitrogen-doped carbon dodecahedrons for efficient triiodide reduction in photovoltaics
Liu et al. Porous 2D cobalt–nickel phosphide triangular nanowall architecture assembled by 3D microsphere for enhanced overall water splitting
Liu et al. Integration of hierarchical tin Sulfide@ Sulfur-Doped carbon porous composites with enhanced performance for triiodide reduction
Wang et al. Hollow CoP nanoparticles embedded in carbon nanotube arrays as sodium ion battery anode with superior performance
He et al. A dye-sensitized solar cells with enhanced efficiency based on a “pillared effect” of CoMoP2@ Mxene@ CNTs composite counter electrode
Dong et al. In situ growth of Ni-Co-S nanosheet arrays on rGO decorated Ni foam toward high-performance supercapacitors
Sun et al. Enhanced electrocatalytic activity in dye-sensitized solar cells via interface coupling of the CoFe2O4/Co3Fe7 heterostructure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant