CN108914085A - 一种多孔微纤负载石墨烯薄膜及其制备方法 - Google Patents

一种多孔微纤负载石墨烯薄膜及其制备方法 Download PDF

Info

Publication number
CN108914085A
CN108914085A CN201810785720.1A CN201810785720A CN108914085A CN 108914085 A CN108914085 A CN 108914085A CN 201810785720 A CN201810785720 A CN 201810785720A CN 108914085 A CN108914085 A CN 108914085A
Authority
CN
China
Prior art keywords
porous
graphene film
fento
fiber
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810785720.1A
Other languages
English (en)
Other versions
CN108914085B (zh
Inventor
张会平
刘飞燕
鄢瑛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810785720.1A priority Critical patent/CN108914085B/zh
Publication of CN108914085A publication Critical patent/CN108914085A/zh
Application granted granted Critical
Publication of CN108914085B publication Critical patent/CN108914085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • B01J35/59

Abstract

本发明属于催化剂和吸附剂的技术领域,公开了一种多孔微纤负载石墨烯薄膜及其制备方法。所述方法包括以下步骤:(1)去除多孔微纤表面的氧化物,得到预处理的多孔微纤;(2)将步骤(1)所得的预处理的多孔微纤在碳源气氛中烧结,降温,获得多孔微纤负载石墨烯薄膜;步骤(2)中所述烧结的温度为900~1100℃。本发明通过气相沉积法成功在多孔微纤表面成功生长出石墨烯薄膜。多孔微纤表面的石墨烯连续性好。本发明的多孔微纤负载石墨烯薄膜传质传热性能好、可随意折叠和裁剪、化学稳定及具有一定孔隙率,将该材料应用于固定床,可以有效降低床层压降、强化传质与传热,以提高床层吸附与催化效率。

Description

一种多孔微纤负载石墨烯薄膜及其制备方法
技术领域
本发明属于吸附和催化材料的制备技术领域,具体涉及一种多孔微纤负载石墨烯薄膜及其制备方法。
背景技术
石墨烯具有特殊的二维表面结构,使其具有许多优异的物理化学性质。石墨烯是人类已知机械强度最高的材料,它的杨氏模量高达1TPa,比钢铁还高200倍;其导热系数理论值高达5300W/mK,是目前导热率最高的天然材料金刚石的2.5倍;以及较高的比表面积,其理论比表面积达2630m2/g。石墨烯的这些性质使其可作为催化剂的载体,负载活性组分用于催化领域,另外也可作为吸附剂,用于吸附净化领域。从石墨烯于2004年发现至今的十几年里,已有大量研究者致力于研究石墨烯的吸附和催化性能。
石墨烯的制备方法主要有机械剥离法、外延生长法、氧化还原法、气相沉积法等,其中气相沉积法是工业上广泛应用的一种大规模制备半导体薄膜材料的方法,也是目前制备大面积高质量石墨烯的一条有效途径。化学气相沉积法的主要原理是通过通入碳源气体,在目标衬底表面沉积从而形成固体薄膜。常用石墨烯的生长基体包括铜箔、镍片、铁片及不锈钢片等,而后通过刻蚀技术将基体刻蚀,从而得到含有石墨烯片的材料。由于石墨烯的大π结构及大的比表面积,常将其用于吸附催化领域。但用化学气相沉积法制备石墨烯材料需要进行刻蚀技术才能得到石墨烯薄膜,且刻蚀过程会影响石墨烯的质量。另外,直接将石墨烯填充于吸附与催化反应固定床容易堵塞孔道,导致床层阻力大,传质传热效果不好,这大大限制了石墨烯在吸附和催化领域的实际应用。
如何制备一种传质传热性能好、机械强度可调、可随意折叠和裁剪、化学稳定及具有一定空隙率的石墨烯复合材料这是一个亟待解决的问题。
发明内容
为了克服现有技术存在的缺点和不足,本发明的目的在于提供一种多孔微纤负载石墨烯薄膜的制备方法。
本发明的另一个目的在于提供由上述制备方法得到的多孔微纤负载石墨烯薄膜。
本发明的目的由如下技术方案实现:
一种多孔微纤负载石墨烯薄膜的制备方法,包括以下步骤:
(1)去除多孔微纤表面的氧化物,得到预处理的多孔微纤;
(2)将步骤(1)所得的预处理的多孔微纤在碳源气氛中烧结,降温,获得多孔微纤负载石墨烯薄膜;步骤(2)中所述烧结的温度为900~1100℃。
步骤(1)中所述去除多孔微纤表面的氧化物具体是指将多孔微纤在非氧的气氛中进行高温烧结;所述高温烧结的温度为900~1100℃;烧结的时间为10~100min。
步骤(1)中所述非氧的气氛为氢气、氮气、氩气或氦气中的一种以上;为多孔微纤材料在高温烧结时提供无氧环境,并除去微纤材料表面的氧化物。
步骤(2)中所述碳源为甲烷、乙烷、乙烯或乙炔中一种以上,提供合成石墨烯所需的碳骨架结构。
步骤(2)中所述碳源的流速为5~100sccm。
步骤(2)中所述烧结时间为10~100min,优选为10~60min。
步骤(1)中所述多孔微纤的制备方法包括如下步骤:
a.将胶粘剂与金属纤维加入水中,搅拌形成均匀浆液;所述胶粘剂与金属纤维的质量比为(1~3):(1~3);
b.将步骤a所得的浆液抄片成型,制成纸张式烧结金属纤维载体前驱体;
c.将步骤b所得的前驱体在100~200℃下干燥,再在600~1200℃下,于氮气或氢气气氛中烧结10~120min,制得具有三维网状结构的纸状烧结金属纤维载体,即称为多孔微纤。
步骤a中所述胶粘剂为纤维素(即植物纤维)、有机酸树脂或热固树脂;所述金属纤维为镍、钴、锡、铁、锌、铝、铬、钌、镁、不锈钢或铜中的任意一种或多种形成的合金纤维;所述金属纤维的直径为0.5~10μm。
本发明制备的多孔微纤负载石墨烯薄膜中石墨烯膜的厚度为0.4-2.5nm。
所述多孔微纤负载石墨烯薄膜通过上述制备方法得到。
所述多孔微纤负载石墨烯薄膜用作吸附或催化剂的载体。
所述多孔微纤负载石墨烯薄膜用作无金属催化剂。本发明制备的多孔微纤负载石墨烯薄膜中石墨烯片层边缘的离域电子可作为活性位点,可直接将石墨烯作为无金属催化剂。
所述多孔微纤负载石墨烯薄膜在固定床中的应用。
本发明利用含碳化合物作为碳源,通过气相沉积法在多孔微纤表面合成厚度可调的石墨烯薄膜。其中微纤是具有较高溶碳率的金属基体,碳源裂解产生的碳原子在高温时渗入金属基体内,再在降温时从其基体内部析出成核,进而生长成石墨烯薄膜。本发明制备工艺简单易行,所负载的石墨烯薄膜厚度可调且连续性好。
本发明使用化学气相沉积法在三维纸状烧结金属纤维上负载厚度可调且连续的石墨烯薄膜,并不影响复合材料的空隙率。
本发明与现有技术相比,具有如下优点:
(1)本发明采用化学气相沉积法,能够在不改变微纤基体的三维网状结构和性质的情况下,在多孔微纤表面成功负载石墨烯薄膜,所获得产物具有石墨烯的结构,并且其传质传热性能好、可随意折叠和裁剪、化学稳定及具有一定空隙率;
(2)本发明利用化学气相沉积法负载石墨烯,制备工艺简单,周期短,成本较低;
(3)本发明的多孔微纤负载石墨烯薄膜具有大比表面积、优异的机械强度、化学稳定性及传热性能,可作为吸附或催化剂的载体,将该材料应用于固定床,可以有效降低床层压降、强化传质与传热,以提高床层吸附与催化效率。
附图说明
图1为本发明实施例1制备的不锈钢纤维负载石墨烯的扫描电子显微镜图;
图2为本发明实施例1制备的不锈钢纤维负载石墨烯的拉曼光谱图;
图3为本发明实施例1制备的不锈钢纤维负载石墨烯的原子力显微镜图;上图中直线为选定测量厚度的位置;下图是样品的厚度图,横坐标为选定测量区域的宽度,纵坐标为选定测量区域的厚度。
具体实施方式
为更好理解本发明,下面结合实施例对本发明做进一步的详细说明,但是本发明要求保护的范围并不局限于此。
实施例1
一种多孔微纤负载石墨烯薄膜的制备方法,包括以下步骤:
(1)不锈钢纤维载体的制备:
将10g针叶木纤维和6g不锈钢纤维加入到水中,在纤维标准解离器中高速搅拌使之分散均匀,形成均匀浆液,其中不锈钢纤维直径为6.5μm;将混合均匀后的浆液快速在手动抄片机进行抄片,滤水后形成湿滤饼;将该滤饼在110℃下压榨烘干,得到不锈钢纤维载体前驱体;将不锈钢纤维载体前驱体在流速为300sccm的N2气保护下,于1050℃管式炉中烧结30min,制得不锈钢纤维载体;
(2)石墨烯薄膜的合成:
将不锈钢纤维载体置于瓷舟中,推进石英管中央恒温区,将管式炉进行抽真空-通N2操作,重复3次,而后进行程序升温反应:在N2保护下,以5℃/min的速率从室温升温至1000℃,开启H2阀门,在该温度维持30min,随之开启C2H2阀门,以10sccm的流速通入石英管50min,而后自然降温,制得不锈钢纤维负载石墨烯材料。
将不锈钢纤维载体,不锈钢纤维负载石墨烯材料进行扫描电子显微镜、拉曼光谱、原子力显微镜和压汞表征,测试结果如图1~3和表1所示。从图1的扫描电镜图可以看出,不锈钢纤维载体(PSSF)表面有连续的石墨烯薄膜覆盖。图2的拉曼光谱图可以看出,FWHM为24cm-1,且IG/I2D=0.46,说明不锈钢纤维上负载的石墨烯为缺陷较少的单层或双层石墨烯。图3的原子力显微镜图可以看出,石墨烯的片层厚度约为0.4-0.7nm,说明合成的石墨烯为单层厚的石墨烯。
表1实施例1制备的不锈钢纤维负载石墨烯的孔结构性能参数
从表1的孔结构性能测试表可以看出不锈钢纤维复合石墨烯材料的空隙率为92.7458%,表明该材料可以有效降低床层压降,强化传质与传热,以提高床层吸附与催化效率。
实施例2
一种多孔微纤负载石墨烯薄膜的制备方法,包括以下步骤:
(1):除以下不同,其他与实施例1相同:步骤(1)中所用金属纤维为镍纤维,其直径为6μm,针叶木纤维和镍纤维加入量分别为9g和7g,烧结温度为1100℃,烧结时间为40min;
(2)与实施例1相同。
实施例3
一种多孔微纤负载石墨烯薄膜的制备方法,包括以下步骤:
(1):除以下不同,其他与实施例1相同:步骤(1)中所用金属纤维为铁、铬及铝合金纤维,其中合金纤维中含铝5%、含铬20~25%,其直径为8μm,针叶木纤维和合金纤维加入量分别为11g和5g,烧结温度为1000℃,烧结时间为25min;
(2)与实施例1相同。

Claims (10)

1.一种多孔微纤负载石墨烯薄膜的制备方法,其特征在于:包括以下步骤:
(1)去除多孔微纤表面的氧化物,得到预处理的多孔微纤;
(2)将步骤(1)所得的预处理的多孔微纤在碳源气氛中烧结,降温,获得多孔微纤负载石墨烯薄膜;步骤(2)中所述烧结的温度为900~1100℃。
2.根据权利要求1所述多孔微纤负载石墨烯薄膜的制备方法,其特征在于:步骤(2)中所述碳源为甲烷、乙烷、乙烯或乙炔中一种以上;
步骤(2)中所述碳源的流速为5~100sccm。
3.根据权利要求1所述多孔微纤负载石墨烯薄膜的制备方法,其特征在于:步骤(2)中所述烧结时间为10~100min;
步骤(1)中所述去除多孔微纤表面的氧化物具体是指将多孔微纤在非氧的气氛中进行高温烧结;所述高温烧结的温度为900~1100℃。
4.根据权利要求3所述多孔微纤负载石墨烯薄膜的制备方法,其特征在于:步骤(1)中所述非氧的气氛为氢气、氮气、氩气或氦气中的一种以上;烧结的时间为10~100min。
5.根据权利要求1所述多孔微纤负载石墨烯薄膜的制备方法,其特征在于:
步骤(1)中所述多孔微纤的制备方法包括如下步骤:
a.将胶粘剂与金属纤维加入水中,搅拌形成均匀浆液;
b.将步骤a所得的浆液抄片成型,制成纸张式烧结金属纤维载体前驱体;
c.将步骤b所得的前驱体在100~200℃下干燥,再在600~1200℃下,于氮气或氢气气氛中烧结10~120min,制得具有三维网状结构的纸状烧结金属纤维载体,即称为多孔微纤。
6.根据权利要求5所述多孔微纤负载石墨烯薄膜的制备方法,其特征在于:所述胶粘剂与金属纤维的质量比为(1~3):(1~3);
步骤a中所述胶粘剂为纤维素、有机酸树脂或热固树脂;所述金属纤维为镍、钴、锡、铁、锌、铝、铬、钌、镁、不锈钢或铜中的任意一种或多种形成的合金纤维;所述金属纤维的直径为0.5~10μm。
7.一种由权利要求1~6任一项所述制备方法得到的多孔微纤负载石墨烯薄膜。
8.根据权利要求7所述多孔微纤负载石墨烯薄膜的应用,其特征在于:所述多孔微纤负载石墨烯薄膜用作吸附和/或催化剂的载体。
9.根据权利要求7所述多孔微纤负载石墨烯薄膜的应用,其特征在于:所述多孔微纤负载石墨烯薄膜用作无金属催化剂。
10.根据权利要求7所述多孔微纤负载石墨烯薄膜在固定床中的应用。
CN201810785720.1A 2018-07-17 2018-07-17 一种多孔微纤负载石墨烯薄膜及其制备方法 Active CN108914085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810785720.1A CN108914085B (zh) 2018-07-17 2018-07-17 一种多孔微纤负载石墨烯薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810785720.1A CN108914085B (zh) 2018-07-17 2018-07-17 一种多孔微纤负载石墨烯薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108914085A true CN108914085A (zh) 2018-11-30
CN108914085B CN108914085B (zh) 2020-12-22

Family

ID=64414619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810785720.1A Active CN108914085B (zh) 2018-07-17 2018-07-17 一种多孔微纤负载石墨烯薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108914085B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774720A (zh) * 2021-07-21 2021-12-10 杭州超探新材料科技有限公司 一种碳纤维纸及其制备方法
CN114797772A (zh) * 2022-04-02 2022-07-29 中国科学院理化技术研究所 吸附薄膜及其制备方法和用于低温***的电加热吸附床

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102512978A (zh) * 2011-11-23 2012-06-27 华南理工大学 一种纸状烧结金属纤维负载分子筛膜及其制备方法
CN103215469A (zh) * 2012-01-19 2013-07-24 中国科学院上海硅酸盐研究所 多孔石墨烯、石墨烯/多孔金属复合材料以及它们的制备方法
CN103263921A (zh) * 2013-06-04 2013-08-28 中国科学院山西煤炭化学研究所 一种金属/石墨烯催化剂及制备方法
CN103588196A (zh) * 2013-11-05 2014-02-19 清华大学 一种多级孔结构的石墨烯纤维及其制备与用途
CN104451227A (zh) * 2014-12-10 2015-03-25 济南大学 镀铜石墨烯增强金属基复合材料的制备方法
CN104707619A (zh) * 2015-02-04 2015-06-17 浙江工商大学 一种石墨烯/Cu-Mn-Ti复合催化剂及其制备方法和应用
CN105985212A (zh) * 2015-01-29 2016-10-05 中国科学院金属研究所 一种高比表面积石墨烯材料作为乙苯氧化脱氢反应催化剂的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102512978A (zh) * 2011-11-23 2012-06-27 华南理工大学 一种纸状烧结金属纤维负载分子筛膜及其制备方法
CN103215469A (zh) * 2012-01-19 2013-07-24 中国科学院上海硅酸盐研究所 多孔石墨烯、石墨烯/多孔金属复合材料以及它们的制备方法
CN103263921A (zh) * 2013-06-04 2013-08-28 中国科学院山西煤炭化学研究所 一种金属/石墨烯催化剂及制备方法
CN103588196A (zh) * 2013-11-05 2014-02-19 清华大学 一种多级孔结构的石墨烯纤维及其制备与用途
CN104451227A (zh) * 2014-12-10 2015-03-25 济南大学 镀铜石墨烯增强金属基复合材料的制备方法
CN105985212A (zh) * 2015-01-29 2016-10-05 中国科学院金属研究所 一种高比表面积石墨烯材料作为乙苯氧化脱氢反应催化剂的应用
CN104707619A (zh) * 2015-02-04 2015-06-17 浙江工商大学 一种石墨烯/Cu-Mn-Ti复合催化剂及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774720A (zh) * 2021-07-21 2021-12-10 杭州超探新材料科技有限公司 一种碳纤维纸及其制备方法
CN113774720B (zh) * 2021-07-21 2022-07-12 杭州超探新材料科技有限公司 一种碳纤维纸及其制备方法
CN114797772A (zh) * 2022-04-02 2022-07-29 中国科学院理化技术研究所 吸附薄膜及其制备方法和用于低温***的电加热吸附床
CN114797772B (zh) * 2022-04-02 2022-11-22 中国科学院理化技术研究所 吸附薄膜及其制备方法和用于低温***的电加热吸附床

Also Published As

Publication number Publication date
CN108914085B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN102115069B (zh) 具有多孔结构的石墨烯及其制备方法
CN110511618B (zh) 一种石墨烯导电油墨的制备方法及其薄膜、复合材料薄膜
WO2013149417A1 (zh) 一种液态催化剂辅助化学气相沉积制备石墨烯的方法
CN107964680B (zh) 一种制备单层六方氮化硼大单晶的方法
TW200526824A (en) Manufacturing method of silicon nanowire
CN108914085A (zh) 一种多孔微纤负载石墨烯薄膜及其制备方法
Song et al. Vopor-polymerization strategy to carbon-rich holey few-layer carbon nitride nanosheets with large domain size for superior photocatalytic hydrogen evolution
Silva et al. Catalyst-free growth of carbon nanotube arrays directly on Inconel® substrates for electrochemical carbon-based electrodes
US9409781B2 (en) Large-area carbon nanomesh from polymer and method of preparing the same
US20230073650A1 (en) Carbon nanotube (cnt)-based three-dimensional ordered macroporous (3dom) material and preparation method thereof
Liu et al. Microstructure evolution and growth mechanism of core-shell silicon-based nanowires by thermal evaporation of SiO
CN109678138B (zh) 一种单手性单壁碳纳米管的制备方法
Wang et al. Conversion of vertically-aligned boron nitride nanowalls to photoluminescent CN compound nanorods: Efficient composition and morphology control via plasma technique
Pilatos et al. Graphene by one-step chemical vapor deposition from ferrocene vapors: Properties and electrochemical evaluation
Yesilbag et al. Synthesis and characterization of graphene/carbon nanotube hybrid: effects of Ni catalyst thickness and H2 flow rate on growth and morphological structure
Yu et al. Catalytic synthesis of crystalline SiC nanowires from a Ni/aC/Si sandwich configuration
Robaiah et al. Synthesis graphene layer at different waste cooking palm oil temperatures
CN110950328A (zh) 一种掺杂石墨烯粉体及其制备方法
Tu et al. Facile synthesis of SnO2 nanotube arrays by using ZnO nanorod arrays as sacrificial templates
Zou et al. Architecting graphene nanowalls on diamond powder surface
Rajesh et al. Lanthanum nickel alloy catalyzed growth of nitrogen-doped carbon nanotubes by chemical vapor deposition
Maity et al. Systematic growth of carbon nanotubes on aluminum substrate for enhanced field emission performance
KR101471625B1 (ko) 전이금속 촉매와 cvd를 이용한 탄소나노섬유 합성방법 및 이 방법으로 제조된 탄소나노섬유
CN113000057A (zh) 负载有Cu/ZnO/CeO2催化剂的多孔材料的制备方法及其应用
Cursaru et al. Control of (n, m) selectivity in single wall carbon nanotubes (SWNT) growth by varying the Co-Ni ratio in bimetallic Co-Ni-MCM 41 catalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant