CN108914039B - 核用锆合金防护涂层材料及其制备方法 - Google Patents

核用锆合金防护涂层材料及其制备方法 Download PDF

Info

Publication number
CN108914039B
CN108914039B CN201810812016.0A CN201810812016A CN108914039B CN 108914039 B CN108914039 B CN 108914039B CN 201810812016 A CN201810812016 A CN 201810812016A CN 108914039 B CN108914039 B CN 108914039B
Authority
CN
China
Prior art keywords
zirconium alloy
coating
sputtering
protective coating
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810812016.0A
Other languages
English (en)
Other versions
CN108914039A (zh
Inventor
折生阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Huaqin Technology Industry Co ltd
Original Assignee
Shaanxi Huaqin Technology Industry Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Huaqin Technology Industry Co ltd filed Critical Shaanxi Huaqin Technology Industry Co ltd
Priority to CN201810812016.0A priority Critical patent/CN108914039B/zh
Publication of CN108914039A publication Critical patent/CN108914039A/zh
Application granted granted Critical
Publication of CN108914039B publication Critical patent/CN108914039B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开的核用锆合金防护涂层材料,其特征在于,包括惰性金属层和抗氧化层,所述惰性金属层为铂族金属Pt、Pd、Ru、Ph、Ir和Os中的一种或两种,抗氧化层材料为Cr、FeCrAl、SiC、ZrC、TiN和Mo中的一种或两种,其中惰性金属层的含量为1%~50%,抗氧化层的含量为50%~99%。本发明还公开了该核用锆合金防护涂层材料的制备方法,核用锆合金防护涂层材料及其制备方法,解决了目前锆合金材料存在抗氧化性能差的问题和锆合金加工温度低的难题。本发明的涂层材料及其制备可以有效改善燃料包壳高温水蒸汽环境下的抗氧化性能,提升核反应堆的事故容错性能。

Description

核用锆合金防护涂层材料及其制备方法
技术领域
本发明属于燃料包壳材料技术领域,涉及一种核用锆合金防护涂层材料,还涉及该防护涂层材料的制备方法。
背景技术
锆合金在300℃~400℃之间能稳定存在于高温高压水化学环境中,因其良好的抗辐照性能和较低的原子热中子吸收截面,不会降低核燃料利用率,而主要用于燃料包壳和连接器件等水冷核反应堆堆芯结构材料。核燃料包壳材料锆合金在核反应堆中的恶劣环境下也免不了被腐蚀,特别是在事故工况下堆芯冷却***停运,温度急剧升高使冷却剂迅速变为水蒸气,锆合金包壳与高温水蒸气反应释放出大量的热和氢气,导致性能劣化。反应放出的热量加速了温度上升并导致堆芯熔毁,同时反应产生的氢气最终导致核反应堆***。在现有锆合金包壳材料表面制备抗氧化涂层是提高包壳尺寸稳定性和完整性以及保障核反应安全进行的有效途径。
目前,提高锆合金包壳事故容错性能的研究主要包括以下两方面:一是在包壳外表面粘附一层具有高温水蒸气抗氧化性能的涂层;二是寻找新的核材料代替锆合金燃料包壳。而燃料包壳***的重新设计不仅涉及材料在核反应条件下的物理化学稳定性,还要考虑其与核燃料的相容性以及整个燃料***的工程重新设计等。目前锆合金涂层材料存在抗氧化性能低下,当发生事故时,核反应堆冷却***失效,锆合金外表面直接与高温水蒸气接触而被迅速氧化,最终可能导致***,核燃料泄露造成严重人身、财产损失。锆合金的加工一直存在加工温度低的难题。锆合金在温度升高到600℃时存在α-β相变,密排六方的α相稳定存在600℃以下,体心立方的β相稳定存在600℃以上。核用锆合金为α相等轴晶组织,其水腐蚀性能最好,所以在涂层制备过程中锆合金基体的加工温度不能超过600℃,否则会影响燃料包壳的使用。
发明内容
本发明的目的是提供一种核用锆合金防护涂层材料,解决了目前锆合金材料存在抗氧化性能差的问题。
本发明的另一目的是提供该锆合金防护涂层材料的制备方法,解决了锆合金加工温度低的难题。
本发明所采用的技术方案是,核用锆合金防护涂层材料,其特征在于,包括惰性金属层和抗氧化层,惰性金属层为铂族金属Pt、Pd、Ru、Ph、Ir和Os中的一种或两种,抗氧化层材料为Cr、FeCrAl、SiC、ZrC、TiN和Mo中的一种或两种,其中惰性金属层的含量为1%~50%,抗氧化层的含量为50%~99%,涂层材料厚度为2-300μm。
本发明的其他特点还在于,
惰性金属层和抗氧化层的相对位置可以互换,抗氧化层为FeCrAl时,惰性金属层只能在锆合金基材表面;抗氧化层为Mo时,抗氧化层不做最外层。
还可以只包括惰性金属层,惰性金属层为铂族金属Pt、Pd、Ru、Ph、Ir和Os中的一种或两种。
本发明的另一技术方案是,一种核用锆合金防护涂层材料的制备方法,具体操作过程包括以下步骤:
步骤1.锆合金基材表面预处理:
将锆合金基材制成10mm×20mm×1.5mm的板材,用金刚石砂进行表面喷砂处理,直到表面氧化皮去除干净为止;或者采用砂纸打磨的方式去除锆合金表面氧化层,直到锆合金表面呈亮白色;然后将喷砂或砂纸打磨后的锆合金基材依次放入去离子水、无水乙醇和丙酮中超声波清洗,烘干;
步骤2.锆合金基材表面制备防护涂层:
在清洗好的锆合金基材上沉积防护涂层,采用磁控溅射、多弧离子镀、等离子喷涂三种方法中任一种或两种或三种制备防护涂层。
步骤1中所用的喷砂砂粒为500#金刚石砂,喷砂压力为0.5MPa,喷砂时间为10~20s,所述超声功率为100W,超声清洗时间为15-30min。
步骤2中磁控溅射制备涂层的过程如下:
首先,将试样放入沉积腔室中,打开自动抽真空***,将真空度抽到6.6×10-4Pa以上;
然后,关闭真空计,打开气瓶向溅射腔室通入高纯氩气,调节工作气体压力,功率到溅射值,待气压稳定后打开磁控溅射电源进行15~20min的预溅射以清洗靶材表面氧化皮;
最后,打开偏压电源设置偏压电压值,设定溅射时间,进行正式涂层沉积;
多弧离子镀制备涂层的过程如下:
首先,将试样放入沉积腔室中,打开自动抽真空***将真空度抽到6.6×10-4Pa以上;
然后,关闭真空计,打开气瓶向溅射腔室中通入氩气,调节工作气体压力,待气压稳定后打开多弧电源进行5~10min的预溅射以清洗靶材表面氧化皮;
最后,打开偏压电源并依次设置偏压电源的电压、频率和占空比,然后运行偏压电源,正式进行涂层沉积,记录沉积时间;
等离子喷涂制备涂层的过程如下:
首先,设置好喷涂工艺参数,将事先烘干好的粉末装进送粉器中;
然后,调试机器人程序,先试喷几次,目测火焰中粉末粒子的出现均匀、连续即可;
最后,调试完成后将清洗好的试样装在夹具上,先用等离子枪预热基体,然后再送粉进行喷涂。
磁控溅射的条件如下:溅射功率为60~250W,溅射气压控制在0.2~1Pa之间,靶基距为5~10cm,溅射偏压为40~150V,沉积温度为室温,沉积时间根据所需涂层厚度进行控制。
多弧离子镀制备涂层的条件如下:气压在0.5~1Pa之间,弧电流为70~120A之间,靶基距为20~25cm,脉冲偏压为-80~-300V,偏压频率为40~60kHz,偏压占空比为30%~80%,沉积温度为25~250℃,沉积时间根据所需厚度控制;
等离子喷涂的参数如下:喷涂功率为5~10kW,氩气流量为20~100slpm,载气氮气流量为2~10slpm,喷涂距离为80~200mm,喷涂角度为85~95°,送粉速率为4~10r/min。
本发明的有益效果是,核用锆合金防护涂层材料及其制备方法,解决了目前锆合金材料存在抗氧化性能差的问题和锆合金加工温度低的难题。本发明的涂层材料及其制备可以有效改善燃料包壳高温水蒸汽环境下的抗氧化性能,提升核反应堆的事故容错性能。所制备的涂层完整性好,均匀致密,制备工艺稳定,附着性好。本发明选取高温抗氧化性良好、热导率和线膨胀系数与锆合金相近、抗辐射性能良好的材料制备复合涂层;采用低温制备技术在锆合金基底上沉积防护涂层,制备工艺对基底组织没有影响;制备的防护涂层在1200℃水蒸气环境中对基底起到了良好的防护效果。
附图说明
图1本发明的实施例1-5中制备的防护涂层锆合金试样和Zr-4在1200℃水蒸气中保温3600s的氧化增重曲线对比图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明的核用锆合金防护涂层材料,包括惰性金属层和抗氧化层,惰性金属层为铂族金属Pt、Pd、Ru、Ph、Ir和Os中的一种或两种,抗氧化层材料为Cr、FeCrAl、SiC、ZrC、TiN和Mo中的一种或两种,其中惰性金属层的含量为1%~50%,抗氧化层的含量为50%~99%,所述涂层材料厚度为2-300μm。
惰性金属层和抗氧化层的相对位置可以互换,抗氧化层为FeCrAl时,惰性金属层只能在锆合金基材表面;抗氧化层为Mo时,抗氧化层不做最外层。因为FeCrAl涂层高温下会和锆合金发生互扩散反应,也可以在FeCrAl涂层和锆合金之间加一层Mo涂层作为扩散阻塞层。由于金属Mo高温下容易氧化挥发,所以抗氧化Mo涂层不做最外层。
还可以只包括惰性金属层,惰性金属层为铂族金属Pt、Pd、Ru、Ph、Ir和Os中的一种或两种。
本发明为了解决锆合金燃料包壳在事故工况下发生快速腐蚀的问题,选择的涂层材料除了具有良好的高温抗氧化性之外,还必须与包壳材料的热膨胀系数相当,同时不能太脆,也不易高温剥落,制备的涂层要能有效阻止锆合金基底被氧化,还要求涂层均匀致密、孔隙率低。选取Cr、FeCrAl、ZrC、Pt、SiC和Mo作为防护涂层材料的原因是:金属Cr熔点高、高温氧化性能优异,热膨胀系数与Zr相似,所以是锆合金防护涂层的理想材料;铂具有优良的热电稳定性、高温抗氧化性和高温抗腐蚀性;铁铬铝合金高温下能够生成致密的Al2O3或Cr2O3保护膜阻碍氧的继续扩散,高温下氧化速率比Zr基合金低2到3个数量级,是高温抗氧化性最好的金属材料之一;SiC热膨胀系数低、导热系数高、高温下强度保持率高,具有优异的抗辐射性能,即使在1500℃以上的富氧氛围下,依然具有良好的抗氧化性能;Mo是高熔点金属,高温强度保持性好,但抗氧化性能稍差;ZrC为难熔金属碳化物,具有优良的热传导性和电传导性,还有良好的耐辐射性能。
本发明的一种核用锆合金防护涂层材料的制备方法,具体操作过程包括以下步骤:
步骤1.锆合金基材表面预处理:
将锆合金基材制成10mm×20mm×1.5mm的板材,用金刚石砂进行表面喷砂处理,直到表面氧化皮去除干净为止;或者采用砂纸打磨的方式去除锆合金表面氧化层,直到锆合金表面呈亮白色;然后将喷砂或砂纸打磨后的锆合金基材依次放入去离子水、无水乙醇和丙酮中超声波清洗,烘干;
步骤2.锆合金基材表面制备防护涂层:
在清洗好的锆合金基材上沉积防护涂层,采用磁控溅射、多弧离子镀、等离子喷涂三种方法中任一种或两种或三种制备防护涂层。
步骤1中所用的喷砂砂粒为500#金刚石砂,喷砂压力为0.5MPa,喷砂时间为10~20s,所述超声功率为100W,超声清洗时间为15-30min。
步骤2中磁控溅射制备涂层的过程如下:
首先,将试样放入沉积腔室中,打开自动抽真空***,将真空度抽到6.6×10-4Pa以上;
然后,关闭真空计,打开气瓶向溅射腔室通入高纯氩气,调节工作气体压力,功率到溅射值,待气压稳定后打开磁控溅射电源进行15~20min的预溅射以清洗靶材表面氧化皮;
最后,打开偏压电源设置偏压电压值,设定溅射时间,进行正式涂层沉积;
多弧离子镀制备涂层的过程如下:
首先,将试样放入沉积腔室中,打开自动抽真空***将真空度抽到6.6×10-4Pa以上;
然后,关闭真空计,打开气瓶向溅射腔室中通入氩气,调节工作气体压力,待气压稳定后打开多弧电源进行5~10min的预溅射以清洗靶材表面氧化皮;
最后,打开偏压电源并依次设置偏压电源的电压、频率和占空比,然后运行偏压电源,正式进行涂层沉积,记录沉积时间;
等离子喷涂制备涂层的过程如下:
首先,设置好喷涂工艺参数,将事先烘干好的粉末装进送粉器中;
然后,调试机器人程序,先试喷几次,目测火焰中粉末粒子的出现均匀、连续即可;
最后,调试完成后将清洗好的试样装在夹具上,先用等离子枪预热基体,然后再送粉进行喷涂。
磁控溅射的条件如下:溅射功率为60~250W,溅射气压控制在0.2~1Pa之间,靶基距为5~10cm,溅射偏压为40~150V,沉积温度为室温,沉积时间根据所需涂层厚度进行控制。
多弧离子镀制备涂层的条件如下:气压在0.5~1Pa之间,弧电流为70~120A之间,靶基距为20~25cm,脉冲偏压为-80~-300V,偏压频率为40~60kHz,偏压占空比为30%~80%,沉积温度为25~250℃,沉积时间根据所需厚度控制;
等离子喷涂的参数如下:喷涂功率为5~10kW,氩气流量为20~100slpm,载气氮气流量为2~10slpm,喷涂距离为80~200mm,喷涂角度为85~95°,送粉速率为4~10r/min。
具体实施例如下:
实施例1
在锆合金表面制备金属Cr/Pt复合涂层的方法,复合涂层的厚度为2μm左右:
步骤1.锆合金基材表面预处理
将锆合金基材制成10mm×20mm×1.5mm的试片,用500#金刚石砂进行表面预处理,喷砂压力为0.5MPa,喷砂时间为20s,将喷砂后的锆合金试片放入去离子水、无水乙醇和丙酮中超声波各清洗15min后取出备用,超声波功率为100W。
步骤2.沉积Cr涂层
将清洗好的锆合金试片放入装有高纯Cr靶(3N5)的磁控溅射仪沉积腔室中,调节靶基距为5cm,真空度抽到6.6×10-4Pa,采用直流磁控溅射技术进行涂层沉积。沉积过程为:关闭真空计,打开气瓶充气,调节气体流量和挡板阀的大小来控制溅射腔室中的气压,调好气压后开启电源。在正式溅射之前要先进行10min的预溅射,溅射功率为60W,溅射气压0.3Pa,偏压为80V,沉积时间为40min,打开沉积腔室翻过板材,重复步骤2,进行锆合金板材的另一面的涂层沉积,Cr涂层厚度约1.5μm。
步骤3.沉积Pt涂层
将沉积有Cr涂层的锆合金试片放入装有高纯Pt靶(3N5)的多弧镀膜仪腔室中,调节靶基距为22cm,真空度抽到6.6×10-4Pa以上,采用多弧离子镀技术进行涂层沉积,沉积过程为:通入高纯氩气(99.9%),将脉冲偏压调至300V,氩气流量调节为200mL/min,调节气压至0.7Pa待气压稳定后打开多弧电源进行5min的预溅射以清洗靶材表面氧化皮,然后设置弧电流为120A,脉冲偏压为-150V,偏压频率为50kHz,偏压占空比为50%,沉积温度为25°,沉积时间为20分钟。打开沉积腔室翻过板材,重复步骤3,进行另一面的涂层沉积。Pt涂层厚度约0.5μm。
将制备的防护涂层在高温综合热分析设备中进行抗氧化性能测试。制备的双面防护涂层的锆合金试样在1200℃水蒸汽中氧化3600s后的单位面积质量增重是1187mg/dm2,远低于纯锆合金在相同条件下的单位面积质量增重(4729mg/dm2),说明防护涂层确实对锆合金基底起到保护作用。因为锆合金板材厚1.5mm,而其四个侧面是没有沉积涂层的,所以上述质量增重不仅有涂层的增重,还有侧面锆合金的增重。
实施例2
在锆合金包壳表面制备金属Pd/SiC复合涂层的方法,涂层的总厚度为10μm左右:
步骤1.锆合金基材表面预处理
将锆合金基材切割成10×20×1.5mm的板材。采用600#、1000#、2000#、3000#砂纸依次打磨锆合金表面去除表面氧化皮,直到锆合金表面呈亮白色。将打磨好的锆合金试片放入去离子水、无水乙醇和丙酮中超声波清洗各20min后取出吹干备用,超声波功率为100W。
步骤2.沉积Pd涂层
将清洗好的锆合金试片放入装有高纯Pd靶(3N5)的磁控溅射仪沉积腔室中,调节靶基距为8cm,真空度抽到6.6×10-4Pa以上,采用磁控溅射技术进行Pd涂层沉积。沉积过程为:关闭真空计,打开气瓶充气,调节气体流量和挡板阀的大小来控制溅射腔室中的气压,调好所需气压后即可开启电源。在正式溅射之前要先进行20min的预溅射。溅射功率为150W,溅射气压0.2Pa,偏压为40V,沉积时间为40分钟。打开沉积腔室翻过板材,重复上述步骤,进行另一面的涂层沉积。Pd涂层厚约2μm。
步骤3.沉积SiC涂层
将沉积有Pt涂层的锆合金试片放入装有高纯SiC靶(3N)的磁控溅射仪沉积腔室中,调节靶基距为6cm,真空度抽到6.6×10-4Pa以上,采用射频磁控溅射技术进行涂层沉积。沉积过程为:关闭真空计,打开气瓶充气,调节气体流量和挡板阀的大小来控制溅射腔室中的气压,调好所需气压后即可开启电源。在正式溅射之前要先进行10min的预溅射。溅射功率为180W,溅射气压0.5Pa,沉积时间为6h。打开沉积腔室翻过板材,重复上述步骤,进行另一面的涂层沉积。SiC涂层约8μm厚。
将制备的防护涂层在高温综合热分析设备中进行抗氧化性能测试。制备的双面防护涂层锆合金板材在1200℃水蒸汽中氧化3600s后的单位面积质量增重是1304mg/dm2,仅仅是纯锆合金在相同条件下的单位面积质量增重(4729mg/dm2)的1/4左右,说明金属Cr涂层确实对锆合金基底起到保护作用。因为锆合金板材厚1.5mm,而其四个侧面是没有沉积涂层的,所以上述质量增重不仅有涂层的增重,还有侧面锆合金的增重。
实施例3
在锆合金包壳表面制备Mo/FeCrAl/Pt复合涂层的方法,涂层的厚度为120μm左右:
步骤1.锆合金基材表面处理
将锆合金基材制成10mm×20mm×1.5mm的板材。用500#金刚石砂进行表面处理,喷砂压力为0.5MPa,喷砂时间为10s。将喷砂后的锆合金试片放入去离子水、无水乙醇和丙酮中超声波清洗各20min后取出吹干备用,超声波功率为100W。
步骤2.沉积Mo涂层
将清洗好的锆合金试片放入装有高纯Mo靶(3N5)的磁控溅射仪沉积腔室中,调节靶基距为10cm,将背底真空抽到6.6×10-4Pa,采用直流磁控溅射技术进行涂层沉积。沉积过程为:关闭真空计,打开气瓶充气,调节气体流量和挡板阀的大小来控制溅射腔室中的气压,调好所需气压后即可开启电源。在正式溅射之前要先进行8min的预溅射。溅射功率为250W,溅射气压1Pa,沉积时间为1h。打开沉积腔室翻过板材,重复上述步骤,进行另一面的涂层沉积。Mo涂层厚度约为5μm。
步骤3.沉积FeCrAl涂层
FeCrAl涂层采用等离子喷涂的方式制备。FeCrAl合金粉要进行预处理,在高温烘箱中升温至120℃保温30min,以除去其中的水分,提高粉末的流动性。FeCrAl合金粉中各元素的原子百分比为:75%Fe,21%Cr,4%Al。采用等离子喷涂技术在沉积Mo涂层的锆合金表面涂覆FeCrAl涂层,其中喷涂功率为7kW,主气(Ar)流量为80slpm,载气(N2)流量为10slpm,喷涂距离为80mm,送粉速率为6r/min,喷涂角度为90°。重复上述步骤,进行另一面涂层的喷涂。FeCrAl涂层厚度约为105μm。
步骤四、沉积Pt涂层:同实施例2中的步骤2,其中沉积时间为2h,涂层厚度约10μm。
将制备的防护涂层在高温综合热分析设备中进行抗氧化性能测试。制备的双面防护涂层锆合金试样在1200℃水蒸汽中氧化3600s后的单位面积质量增重是2345mg/dm2,低于纯锆合金在相同条件下的单位面积质量增重(4729mg/dm2),说明防护涂层确实对锆合金基底起到保护作用。相比于其他实施例中涂层的氧化增重结果,该涂层氧化增重略高,主要是因为等离子喷涂制备的涂层孔隙率较高,所以氧的扩散速率较高。
实施例4
在锆合金表面制备金属TiN/Ph复合涂层的方法,复合涂层的厚度为20μm左右:
步骤1.锆合金基材表面预处理
同实施例1中的步骤1。
步骤2.沉积TiN涂层
将清洗好的锆合金试片放入装有高纯Ti靶(3N5)的磁控溅射仪沉积腔室中,调节靶基距为6cm,背底真空抽到6.6×10-4Pa,采用直流磁控溅射技术进行涂层沉积。沉积过程为:关闭真空计,打开气瓶充气,调节气体流量和挡板阀的大小来控制溅射腔室中的气压,调好所需气压后即可开启电源。在正式溅射之前要先进行15min的预溅射。溅射功率为100W,溅射气压0.7Pa,氮气:氧气=1:30,沉积时间为2h。打开沉积腔室翻过板材,重复步骤2,进行锆合金板材的另一面的涂层沉积。TiN涂层厚度约10μm。
步骤3.沉积Ph涂层
将沉积有Cr涂层的锆合金试片放入装有高纯Ph靶(3N5)的多弧镀膜仪腔室中,调节靶基距为25cm,背底真空抽到6.6×10-4Pa,采用多弧离子镀技术进行涂层沉积。沉积过程为:通入高纯氩气(99.9%),将脉冲偏压调至300V,氩气流量调节为200mL/min,调节气压至1Pa待气压稳定后打开多弧电源进行10min的预溅射以清洗靶材表面氧化皮,然后设置弧电流为100A,脉冲偏压为-300V,偏压频率为40kHz,偏压占空比为80%,沉积温度为150℃,沉积时间为2h。打开沉积腔室翻过板材,重复步骤3,进行另一面的涂层沉积。Ph涂层厚度约10μm。
将制备的防护涂层在高温综合热分析设备中进行水蒸气氧化性能测试。制备的双面防护涂层的锆合金试样在1200℃水蒸汽中氧化3600s后的单位面积质量增重是1431mg/dm2,远低于纯锆合金在相同条件下的单位面积质量增重(4729mg/dm2),说明防护涂层确实对锆合金基底起到保护作用。因为锆合金板材厚1.5mm,而其四个侧面是没有沉积涂层的,所以上述质量增重不仅有涂层的增重,还有侧面锆合金的增重。
实施例5
在锆合金包壳表面制备Mo/Pt复合涂层的方法,涂层的厚度为200μm左右:
步骤1.锆合金基材表面处理
将锆合金基材制成10mm×20mm×1.5mm的板材。用500#金刚石砂进行表面处理,喷砂压力为0.5MPa,喷砂时间为10s。将喷砂后的锆合金试片放入去离子水、无水乙醇和丙酮中超声波清洗各15min后取出吹干备用,超声波功率为100W。
步骤2.喷涂Mo涂层
Mo涂层采用等离子喷涂的方式制备。Mo粉要进行预处理,在高温烘箱中升温至120℃保温30min,以除去其中的水分,提高粉末的流动性。采用等离子喷涂技术在锆合金表面涂覆Mo涂层,其中喷涂功率为5kW,主气(Ar)流量为100slpm,载气(N2)流量为8slpm,喷涂距离为200mm,送粉速率4r/min,喷涂角度为95°。重复上述步骤,进行另一面涂层的喷涂。Mo涂层厚度约为195μm。
步骤3.沉积Pt涂层
同实施例2中的步骤2。沉积时间为2h。打开沉积腔室翻过板材,重复上述步骤,进行另一面的涂层沉积。Pt涂层厚度约为5μm。
将制备的防护涂层在高温综合热分析设备中进行抗氧化性能测试。制备的双面防护涂层锆合金板材在1200℃水蒸汽中氧化3600s后的单位面积质量增重是757mg/dm2,仅仅是纯锆合金在相同条件下的单位面积质量增重(4729mg/dm2)的1/4左右,说明防护涂层确实对锆合金基底起到保护效果。因为锆合金板材厚1.5mm,而其四个侧面是没有沉积涂层的,所以上述质量增重不仅有涂层的增重,还有侧面锆合金的增重。
本发明的实施例中可以看出,不同涂层搭配的不同厚度的涂层涂覆锆合金试片的氧化增重略有差异,降低了50~80%的氧化增重。从图1中可以看出,制备的金属防护涂层在高温水蒸气中具有良好的抗氧化性能,涂层对锆合金基底起到了很好的保护效果。
实施例6
在锆合金包壳表面制备SiC/Ir复合涂层的方法,涂层的厚度为300μm左右:
步骤1.锆合金基材表面处理
将锆合金基材制成10mm×20mm×1.5mm的板材。用500#金刚石砂进行表面处理,喷砂压力为0.5MPa,喷砂时间为10s。将喷砂后的锆合金试片放入去离子水、无水乙醇和丙酮中超声波清洗各15min后取出吹干备用,超声波功率为100W。
步骤2.喷涂SiC涂层
SiC涂层采用等离子喷涂的方式制备。SiC粉要进行预处理,在高温烘箱中升温至120℃保温30min,以除去其中的水分,提高粉末的流动性。采用等离子喷涂技术在锆合金表面涂覆SiC涂层,其中喷涂功率为10kW,主气(Ar)流量为20slpm,载气(N2)流量为2slpm,喷涂距离为150mm,送粉速率10r/min,喷涂角度为85°。重复上述步骤,进行另一面涂层的喷涂。SiC涂层厚度约为290μm。
步骤3.沉积Ir涂层
将沉积有SiC涂层的锆合金试片放入装有高纯Ir靶(3N5)的多弧镀膜仪腔室中,调节靶基距为20cm,背底真空抽到6.6×10-4Pa,采用多弧离子镀技术进行涂层沉积。沉积过程为:通入高纯氩气(99.9%),将脉冲偏压调至300V,氩气流量调节为200mL/min,调节气压至0.5Pa待气压稳定后打开多弧电源进行5min的预溅射以清洗靶材表面氧化皮,然后设置弧电流为70A,脉冲偏压为-80V,偏压频率为60kHz,偏压占空比为30%,沉积温度为250℃,沉积时间为2h。打开沉积腔室翻过板材,重复步骤3,进行另一面的涂层沉积。Ir涂层厚度约10μm。

Claims (6)

1.核用锆合金防护涂层材料,其特征在于,包括惰性金属层和抗氧化层,所述惰性金属层为铂族金属Pt、Ru、Ph、Ir和Os中的一种或两种,或Pd与Pt、Ru、Ph、Ir和Os中的一种组成;抗氧化层材料为FeCrAl、SiC、ZrC、TiN和Mo中的两种,其中惰性金属层的含量为1%~50%,抗氧化层的含量为50%~99%,所述涂层材料厚度为2-300μm;所述惰性金属层和所述抗氧化层的相对位置可以互换,所述抗氧化层为FeCrAl时,所述惰性金属层只能在锆合金基材表面;所述抗氧化层为Mo时,抗氧化层不做最外层。
2.一种如权利要求1所述的核用锆合金防护涂层材料的制备方法,其特征在于,具体操作过程包括以下步骤:
步骤1.锆合金基材表面预处理:
将锆合金基材制成10mm×20mm×1.5mm的板材,用金刚石砂进行表面喷砂处理,直到表面氧化皮去除干净为止;或者采用砂纸打磨的方式去除锆合金表面氧化层,直到锆合金表面呈亮白色;然后将喷砂或砂纸打磨后的锆合金基材依次放入去离子水、无水乙醇和丙酮中超声波清洗,烘干;
步骤2.锆合金基材表面制备防护涂层:
在清洗好的锆合金基材上沉积防护涂层,采用磁控溅射、多弧离子镀、等离子喷涂三种方法中任一种或两种或三种制备防护涂层;
所述步骤2中磁控溅射制备涂层的过程如下:
首先,将试样放入沉积腔室中,打开自动抽真空***,将真空度抽到6.6×10-4Pa以上;
然后,关闭真空计,打开气瓶向溅射腔室通入高纯氩气,调节工作气体压力,功率到溅射值,待气压稳定后打开磁控溅射电源进行15~20min的预溅射以清洗靶材表面氧化皮;
最后,打开偏压电源设置偏压电压值,设定溅射时间,进行正式涂层沉积;
所述多弧离子镀制备涂层的过程如下:
首先,将试样放入沉积腔室中,打开自动抽真空***将真空度抽到6.6×10-4Pa以上;
然后,关闭真空计,打开气瓶向溅射腔室中通入氩气,调节工作气体压力,待气压稳定后打开多弧电源进行5~10min的预溅射以清洗靶材表面氧化皮;
最后,打开偏压电源并依次设置偏压电源的电压、频率和占空比,然后运行偏压电源,正式进行涂层沉积,记录沉积时间;
所述等离子喷涂制备涂层的过程如下:
首先,设置好喷涂工艺参数,将事先烘干好的粉末装进送粉器中;
然后,调试机器人程序,先试喷几次,目测火焰中粉末粒子的出现均匀、连续即可;
最后,调试完成后将清洗好的试样装在夹具上,先用等离子枪预热基体,然后再送粉进行喷涂。
3.如权利要求2所述的一种核用锆合金防护涂层材料的制备方法,其特征在于,所述步骤1中所用的喷砂砂粒为500#金刚石砂,喷砂压力为0.5MPa,喷砂时间为10~20s,所述超声功率为100W,超声清洗时间为15-30min。
4.如权利要求3所述的一种核用锆合金防护涂层材料的制备方法,其特征在于,所述磁控溅射的条件如下:溅射功率为60~250W,溅射气压控制在0.2~1Pa之间,靶基距为5~10cm,溅射偏压为40~150V,沉积温度为室温,沉积时间根据所需涂层厚度进行控制。
5.如权利要求4所述的一种核用锆合金防护涂层材料的制备方法,其特征在于,所述多弧离子镀制备涂层的条件如下:气压在0.5~1Pa之间,弧电流为70~120A之间,靶基距为20~25cm,脉冲偏压为-80~-300V,偏压频率为40~60kHz,偏压占空比为30%~80%,沉积温度为25~250℃,沉积时间根据所需厚度控制。
6.如权利要求4所述的一种核用锆合金防护涂层材料的制备方法,其特征在于,所述等离子喷涂的参数如下:喷涂功率为5~10kW,氩气流量为20~100slpm,载气氮气流量为2~10slpm,喷涂距离为80~200mm,喷涂角度为85~95o,送粉速率为4~10r/min。
CN201810812016.0A 2018-07-23 2018-07-23 核用锆合金防护涂层材料及其制备方法 Active CN108914039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810812016.0A CN108914039B (zh) 2018-07-23 2018-07-23 核用锆合金防护涂层材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810812016.0A CN108914039B (zh) 2018-07-23 2018-07-23 核用锆合金防护涂层材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108914039A CN108914039A (zh) 2018-11-30
CN108914039B true CN108914039B (zh) 2021-02-02

Family

ID=64417134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810812016.0A Active CN108914039B (zh) 2018-07-23 2018-07-23 核用锆合金防护涂层材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108914039B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109943811B (zh) * 2019-04-04 2020-12-29 中国核动力研究设计院 一种用于锆合金包壳上涂层的制备方法
CN110055496B (zh) * 2019-04-04 2021-05-04 中国核动力研究设计院 一种在核用锆合金基底表面制备Cr涂层的制备工艺
CN109811316B (zh) * 2019-04-04 2021-05-28 中国核动力研究设计院 一种高燃耗长寿期锆合金涂层及其制备方法
CN110938855A (zh) * 2019-11-01 2020-03-31 成都基创科技有限公司 一种锆合金表面ZrO2/FeCrAl复合涂层的制备方法及一种锆合金
CN113529065B (zh) * 2020-04-16 2022-11-08 中国科学院金属研究所 一种基于冷喷涂高速沉积增材制造技术制备金属铱涂层的方法及装置
CN111826648B (zh) * 2020-07-16 2021-08-06 西安交通大学 一种事故容错核燃料包壳双层涂层结构及其制备方法
CN114147169B (zh) * 2020-09-08 2022-12-20 中国科学院金属研究所 一种提高金属型芯涂层界面稳定性的方法
CN112921299B (zh) * 2021-01-20 2022-03-25 哈尔滨工业大学 一种锆包壳表面复合膜层的制备方法
CN113561066A (zh) * 2021-07-27 2021-10-29 燕山大学 一种锆及锆合金表面喷砂方法
CN113846295B (zh) * 2021-09-27 2022-11-18 重庆文理学院 一种FeCrAl/Cr复合涂层的制备方法
CN114540743A (zh) * 2022-01-14 2022-05-27 江苏通和生物医药科技有限公司 一种锆合金表面等离子喷涂重熔Cr/FeCrAl涂层及其制备方法
CN114657525B (zh) * 2022-03-30 2023-05-02 西安交通大学 一种FeCrAl/Ta合金涂层及其制备方法
CN116377404B (zh) * 2022-12-06 2023-09-22 哈尔滨工业大学 一种在包壳表面基于高熵合金阻扩散性能复合涂层及其制备方法
CN116288178A (zh) * 2023-02-15 2023-06-23 中山大学 一种抗高温氧化复合涂层及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333370A (ja) * 1994-06-09 1995-12-22 Toshiba Corp ジルカロイ燃料被覆管ならびにその腐食抑制方法および装置
US9721676B2 (en) * 2014-05-27 2017-08-01 Westinghouse Electric Company, Llc Deposition of a protective coating including metal-containing and chromium-containing layers on zirconium alloy for nuclear power applications

Also Published As

Publication number Publication date
CN108914039A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108914039B (zh) 核用锆合金防护涂层材料及其制备方法
CN109666911B (zh) 核用锆合金包壳表面耐高温腐蚀的高熵合金涂层及其制备方法
CN109852943B (zh) 核用锆合金表面CrN涂层的制备方法及产品
CN109972098A (zh) 一种包壳材料表面CrN厚涂层的制备方法
CN109207953B (zh) 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺
CN108796454A (zh) 一种核反应堆用锆包壳表面金属涂层pvd制备工艺
CN108103463B (zh) 一种体心立方钽涂层的制备方法
CN109943811B (zh) 一种用于锆合金包壳上涂层的制备方法
EP3696823A1 (en) Zirconium alloy cladding with improved oxidation resistance at high temperature and method for manufacturing same
CN113652659B (zh) 一种与基体冶金结合的高熵合金氮化物涂层的制备方法
CN103590002A (zh) 一种镍基高温合金Al-Cr涂层的制备方法
Wang et al. Hydrogen permeation properties of CrxCy@ Cr2O3/Al2O3 composite coating derived from selective oxidation of a CrC alloy and atomic layer deposition
CN103924203B (zh) 一种基体表面的耐辐照防护涂层及其制备方法
CN109355611A (zh) 一种用于锆合金包壳的复合陶瓷涂层制备方法
CN115142018B (zh) 一种耐高温液态铅/铅铋合金腐蚀的高熵合金涂层及其制备方法
CN104561891A (zh) 双成分梯度阻氢渗透涂层及其制备方法
CN110965035A (zh) 一种事故容错锆包壳管防护涂层及其制备方法与应用
Ougier et al. Effects of HiPIMS discharges and annealing on Cr-Al-C thin films
CN114717516A (zh) 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
CN109811316B (zh) 一种高燃耗长寿期锆合金涂层及其制备方法
CN110499494A (zh) 一种以Zr为基底的Cr/Al单层膜及其制备方法
Wang et al. Comparative study on protective Cr coatings on nuclear fuel cladding Zirlo substrates by AIP and HiPIMS techniques
CN115142028B (zh) 一种耐磨耐腐蚀Fe-Cr-Al复合涂层的制备方法
RU2495154C2 (ru) Способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев
CN116043222A (zh) 一种含有多层结构的抗高温耐蚀防护涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 188, West Avenue, high tech Zone, Xi'an, Shaanxi 710000

Applicant after: Shaanxi Huaqin Technology Industry Co.,Ltd.

Address before: No. 188, West Avenue, high tech Zone, Xi'an, Shaanxi 710119

Applicant before: SHAANXI HUAQIN TECHNOLOGY INDUSTRY Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant