CN108838372B - 大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法 - Google Patents

大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法 Download PDF

Info

Publication number
CN108838372B
CN108838372B CN201810836454.0A CN201810836454A CN108838372B CN 108838372 B CN108838372 B CN 108838372B CN 201810836454 A CN201810836454 A CN 201810836454A CN 108838372 B CN108838372 B CN 108838372B
Authority
CN
China
Prior art keywords
kpa
stage
liquid
pressure
pressurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810836454.0A
Other languages
English (en)
Other versions
CN108838372A (zh
Inventor
邱子傲
曹福洋
孙剑飞
陈宏钧
彭德林
宋和谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810836454.0A priority Critical patent/CN108838372B/zh
Publication of CN108838372A publication Critical patent/CN108838372A/zh
Application granted granted Critical
Publication of CN108838372B publication Critical patent/CN108838372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/08Controlling, supervising, e.g. for safety reasons

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法,它涉及一种加压方法。本发明解决了现有的差压铸造加压曲线由于控制精度低,难以保证结构壁厚不均的螺旋桨桨毂类铸件的平稳充型的问题。步骤一、升液过程:将升液过程划分为三个阶段,第一升液阶段为升液管填充过程,第二升液阶段为横浇道填充过程,第三升液阶段为内浇道填充过程;步骤二、充型过程:将充型过程划分为四个阶段;步骤三、增压过程:将步压力由500KPa增压至600KPa;步骤四、结晶保压:对步骤三中增压后的压力进行保压,保压时间为步骤五、泄压。本发明用于大型船舶铜合金螺旋桨桨毂差压铸造成型。

Description

大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法
技术领域
本发明涉及一种差压铸造成型加压方法,具体涉及一种用于大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法。
背景技术
差压铸造是在低压铸造的基础上派生出来的一种铸造方法。与低压铸造的不同点是在铸型外罩个密封罩,内充压缩气体,使铸型处于气体的一定压力之下。金属液充型时,使保温炉中气体的压力大于铸型中气体的压力,如低压铸造时那样实现金属液的充型、保压和增压。但此时铸件是在更高的压力作用下结晶凝固的,所以可保证获得致密度更高的铸件。
差压铸造为更高质量的大型船舶铜合金螺旋桨的液态成形提供了工艺保障。差压铸造条件下,铜水包内的铜合金液体是通过铜水包内液面上的气体压力大于铸型型腔内的压力,迫使铜水包内的合金液体沿着升液管逆着重力方向充填到铸型型腔,直到型腔内的液体金属凝固冷却成固态获得铸件。相比于重力铸造,差压铸造能控制充型过程及充型速度,使充型液面平稳、铸件充型完整并且致密,有效的减少氧化夹渣和因补缩不良导致的缩孔、缩松等缺陷。传统差压铸造一般分为升液、充型、增压、保压结晶、降压五阶段,由于大型船舶铜合金螺旋桨桨毂在结构上薄厚不均匀,为了始终使充型液面保持平稳,这就要求差压铸造设备在充型时要根据铸件结构而随时改变充型速率,即加压压强。
传统差压铸造的充型过程为恒压充型,该种加压方式下,型腔截面发生改变时,如突扩、突缩、渐扩、渐缩,充型速度会发生改变,当充型速度发生突变时,金属液的自由表面将无法再保持水平向前推进,而是出现水平流动的情况。此种水平震荡将导致液面氧化膜被破坏或发生折叠,折叠过程有时会包裹住空气,将空气一起卷入到金属液内部。金属液凝固后,这些卷入金属液内部的折叠而成的双层膜最终形成裂缺陷。而且传统的差压铸造加压曲线由于控制精度不够,难以保证结构壁厚不均的螺旋桨桨毂类铸件的平稳充型。
综上,现有的差压铸造加压曲线由于控制精度低,难以保证结构壁厚不均的螺旋桨桨毂类铸件的平稳充型。
发明内容
本发明为解决现有的差压铸造加压曲线由于控制精度低,难以保证结构壁厚不均的螺旋桨桨毂类铸件的平稳充型的问题,进而提供了一种大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法。
本发明为解决上述技术问题采取的技术方案是:
本发明的大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法是按着以下步骤实现的:
步骤一、升液过程:将升液过程划分为三个阶段,第一升液阶段为升液管填充过程,第二升液阶段为横浇道填充过程,第三升液阶段为内浇道填充过程,
第一升液阶段的加压速度为4KPa/s,第一升液阶段的压力范围为200KPa~220KPa,
第二升液阶段的加压速度为10KPa/s,第二升液阶段的压力范围为220KPa~260KPa,
第三升液阶段的加压速度为5KPa/s,第三升液阶段的压力范围为260KPa~280KPa;
步骤二、充型过程:将充型过程划分为四个阶段,
第一充型阶段的加压速度为6KPa/s,第一充型阶段的压力范围为280KPa~340KPa,
第二充型阶段的加压速度为3KPa/s,第二充型阶段的压力范围为340KPa~360KPa,
第三充型阶段的加压速度为6KPa/s,第三充型阶段的压力范围为360KPa~400KPa,
第四充型阶段的加压速度为10KPa/s,第四充型阶段的压力范围为400KPa~500KPa;
步骤三、增压过程:将压力由500KPa增压至600KPa;
步骤四、结晶保压:对步骤三中增压后的压力进行保压,
步骤五、泄压。
进一步地,其特征在于步骤一中升液速度为0.07m/s。
进一步地,其特征在于步骤一中在接近铸件截面突变处减缓加压速度。
进一步地,其特征在于步骤二中在接近铸件截面突变处减缓加压速度。
进一步地,其特征在于步骤一和步骤二中在截面突变处对加压曲线进行PID模糊控制。
进一步地,其特征在于铸件突扩结构中达到液面悬停后,在保证铜合金金属液铺展完下一充型截面结束时不发生卷气的情况下,铺展速度越快越好。
进一步地,突缩结构中达到液面悬停后,通过调节PID参数使加压速度平稳减缓到下一阶段所需速度。
本发明与现有技术相比具有以下有益效果:
本发明的大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法在型腔截面发生改变时,如突扩、突缩、渐扩、渐缩,充型速度会相应改变,即对升液过程和充型过程进行细化,从而提高差压铸造加压曲线控制精度,保证了结构壁厚不均的螺旋桨桨毂类铸件的平稳充型。
附图说明
图1是本发明的大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法的流程示意图;
图2是现有差压铸造成型加压方法的流程示意图;
图3是铜合金螺旋桨桨毂的主视图。
图3中1-9为铜合金螺旋桨桨毂各部分依据截面变化划分为八个过程,上述八个过程与图1中各个过程对应,即1-2、2-3和3-4为升液过程,4-5、5-6、6-7和7-8为充型过程;8-9为增压过程。
具体实施方式
具体实施方式一:如图1~3所示,本实施方式大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法是按着以下步骤实现的:
步骤一、升液过程:将升液过程划分为三个阶段,第一升液阶段为升液管填充过程,第二升液阶段为横浇道填充过程,第三升液阶段为内浇道填充过程,
第一升液阶段的加压速度为4KPa/s,第一升液阶段的压力范围为200KPa~220KPa,
第二升液阶段的加压速度为10KPa/s,第二升液阶段的压力范围为220KPa~260KPa,
第三升液阶段的加压速度为5KPa/s,第三升液阶段的压力范围为260KPa~280KPa;
步骤二、充型过程:将充型过程划分为四个阶段,
第一充型阶段的加压速度为6KPa/s,第一充型阶段的压力范围为280KPa~340KPa,
第二充型阶段的加压速度为3KPa/s,第二充型阶段的压力范围为340KPa~360KPa,
第三充型阶段的加压速度为6KPa/s,第三充型阶段的压力范围为360KPa~400KPa,
第四充型阶段的加压速度为10KPa/s,第四充型阶段的压力范围为400KPa~500KPa;
步骤三、增压过程:将压力由500KPa增压至600KPa;
步骤四、结晶保压:对步骤三中增压后的压力进行保压,
步骤五、泄压。
具体实施方式二:如图1所示,本实施方式步骤一中升液速度为0.07m/s。如此操作,提高差压铸造加压曲线控制精度,保证了结构壁厚不均的螺旋桨桨毂类铸件的平稳充型。其它组成及连接关系与具体实施方式一相同。
具体实施方式三:如图1和图3所示,本实施方式步骤一中在接近铸件截面突变处减缓加压速度。如此操作,使得充型液面稳定悬停在突变点,避免充型液面表面氧化膜破裂,进而进行下一段加压。其它组成及连接关系与具体实施方式一或二相同。
具体实施方式四:如图1和图3所示,本实施方式步骤二中在接近铸件截面突变处减缓加压速度。如此操作,使得充型液面稳定悬停在突变点,避免充型液面表面氧化膜破裂,进而进行下一段加压。其它组成及连接关系与具体实施方式三相同。
具体实施方式五:如图1和图3所示,本实施方式步骤一和步骤二中在截面突变处对加压曲线进行PID模糊控制。如此操作,可以防止在截面突变处由于加压速度发生突变导致充型液面水平震荡引起的表面氧化膜破裂和卷气。其它组成及连接关系与具体实施方式一、二或四相同。
具体实施方式六:图3所示,本实施方式铸件突扩结构中达到液面悬停后,在保证铜合金金属液铺展完下一充型截面结束时不发生卷气的情况下,铺展速度越快越好。如此操作,可以通过PID参数适当加大加压速度,使其尽快完成铺展。其它组成及连接关系与具体实施方式五相同。
具体实施方式七:如图3所示,本实施方式突缩结构中达到液面悬停后,通过调节PID参数使加压速度平稳减缓到下一阶段所需速度。如此操作,可以避免金属液飞溅。其它组成及连接关系与具体实施方式一、二、四或六相同。

Claims (4)

1.一种大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法,其特征在于所述差压铸造成型非线性加压方法是按着以下步骤实现的:
步骤一、升液过程:将升液过程划分为三个阶段,第一升液阶段为升液管填充过程,第二升液阶段为横浇道填充过程,第三升液阶段为内浇道填充过程,
第一升液阶段的加压速度为4KPa/s,第一升液阶段的压力范围为200KPa~220KPa,
第二升液阶段的加压速度为10KPa/s,第二升液阶段的压力范围为220KPa~260KPa,
第三升液阶段的加压速度为5KPa/s,第三升液阶段的压力范围为260KPa~280KPa;
在接近铸件截面突变处减缓加压速度;
步骤二、充型过程:将充型过程划分为四个阶段,
第一充型阶段的加压速度为6KPa/s,第一充型阶段的压力范围为280KPa~340KPa,
第二充型阶段的加压速度为3KPa/s,第二充型阶段的压力范围为340KPa~360KPa,
第三充型阶段的加压速度为6KPa/s,第三充型阶段的压力范围为360KPa~400KPa,
第四充型阶段的加压速度为10KPa/s,第四充型阶段的压力范围为400KPa~500KPa;
在接近铸件截面突变处减缓加压速度;
步骤三、增压过程:将压力由500KPa增压至600KPa;
步骤四、结晶保压:对步骤三中增压后的压力进行保压,
步骤五、泄压。
2.根据权利要求1所述的大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法,其特征在于步骤一中升液速度为0.07m/s。
3.根据权利要求1或2所述的大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法,其特征在于步骤一和步骤二中在截面突变处对加压曲线进行PID模糊控制。
4.根据权利要求3所述的大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法,其特征在于突缩结构中达到液面悬停后,通过调节PID参数使加压速度平稳减缓到下一阶段所需速度。
CN201810836454.0A 2018-07-26 2018-07-26 大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法 Active CN108838372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810836454.0A CN108838372B (zh) 2018-07-26 2018-07-26 大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810836454.0A CN108838372B (zh) 2018-07-26 2018-07-26 大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法

Publications (2)

Publication Number Publication Date
CN108838372A CN108838372A (zh) 2018-11-20
CN108838372B true CN108838372B (zh) 2020-09-08

Family

ID=64195019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810836454.0A Active CN108838372B (zh) 2018-07-26 2018-07-26 大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法

Country Status (1)

Country Link
CN (1) CN108838372B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110181024B (zh) * 2019-07-09 2021-09-24 佛山市南海奔达模具有限公司 轮毂低压铸造工艺
CN115365478B (zh) * 2022-08-12 2023-08-29 中国兵器装备集团西南技术工程研究所 一种复杂金属构件铸造成型用非线性加压控制方法及***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2394347A1 (fr) * 1977-06-15 1979-01-12 Novatome Ind Procede et dispositif de regulation d'une operation de coulee basse pression
CN101497119A (zh) * 2008-01-31 2009-08-05 上海爱仕达汽车零部件有限公司 柴油发动机铝合金缸体金属型低压铸造的加压方法
CN101758203B (zh) * 2008-11-12 2013-04-03 郑东海 一种铝合金车轮毂的熔炼与低压铸造工艺
JP2012106277A (ja) * 2010-11-19 2012-06-07 Sukegawa Electric Co Ltd 低圧鋳造装置と低圧鋳造方法
CN105081284A (zh) * 2015-09-17 2015-11-25 高文梅 一种优质刹车助力真空泵壳体的铸造方法
CN105583393B (zh) * 2016-03-08 2017-05-10 北京航空航天大学 一种铝合金汽车底盘铸件金属型低压铸造成型用结晶保压后顺序增压方法
CN107020367A (zh) * 2017-04-26 2017-08-08 哈尔滨工业大学 一种大型船舶用铜合金螺旋桨差压铸造成形方法

Also Published As

Publication number Publication date
CN108838372A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN104308081B (zh) 一种用于铝合金铸件v法造型反重力浇注的方法
US11364539B2 (en) Method and apparatus for counter-gravity mold filling
CN108838372B (zh) 大型船舶铜合金螺旋桨桨毂差压铸造成型非线性加压方法
CN103302242A (zh) 航空发动机燃烧室浮动壁瓦片的精密铸造方法
CN101274361A (zh) 低速真空压挤铸造工艺
CN203917866U (zh) 多功能反重力铸造物理模拟装置
CN105642866B (zh) 一种铝合金车轮金属型低压铸造成型用结晶增压方法
WO2005095022A1 (ja) 減圧鋳型造型の注湯方法、装置及び鋳物
CN110181024B (zh) 轮毂低压铸造工艺
EP3960330A1 (en) Casting mold, counter-pressure casting method and low-pressure casting method
CN105598418B (zh) 一种铝合金汽车底盘铸件金属型低压铸造成型用保压后快速增压方法
CN110976814B (zh) 一种铝合金汽车架的半连续反重力浇注方法
CN111014617A (zh) 基于反重力铸造的带有螺旋形结构薄壁蜗壳壳体成形方法
CN104001900A (zh) 多功能反重力铸造物理模拟装置
US9744587B2 (en) Mould for monocrystalline casting
CN106180579A (zh) 一种铸型快速冷却方法
CN106270407B (zh) 解决金属型航空铸件缩松、夹渣的模具及方法
JP2006175492A (ja) 消失模型鋳造法による鋳物の製造方法
CN105618710B (zh) 一种铝合金车轮金属型低压铸造成型用保压后快速增压方法
CN111250664A (zh) 一种低磅级大口径止回阀阀体铸件裂纹的预防方法
CN109128101B (zh) 一种钛合金粉铸耦合成形方法
CN212216999U (zh) 一种铸造模具
CN108127101A (zh) 一种大型薄壁铝合金铸件石膏型铸造方法
CN105436471A (zh) 一种铝车轮的铸造方法及其设备
CN101992286A (zh) 用于铸造水泵铜叶轮的真空低压铸造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant