CN108752644A - 一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法 - Google Patents

一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法 Download PDF

Info

Publication number
CN108752644A
CN108752644A CN201810447182.5A CN201810447182A CN108752644A CN 108752644 A CN108752644 A CN 108752644A CN 201810447182 A CN201810447182 A CN 201810447182A CN 108752644 A CN108752644 A CN 108752644A
Authority
CN
China
Prior art keywords
cellulose
polyvinyl alcohol
composite membrane
cation modifying
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810447182.5A
Other languages
English (en)
Inventor
李群
邹杨
段林娟
王新鸽
李颖
张世超
邹竹帆
史亚鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN201810447182.5A priority Critical patent/CN108752644A/zh
Publication of CN108752644A publication Critical patent/CN108752644A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法,属于纳米复合材料制备领域。其基本特点是对纳米纤维素进行阳离子化改性处理后,以改性纳米纤维素作为增强剂,加入聚乙烯醇溶液中,通过流延法工艺制备复合膜。本发明制备的阳离子化改性纳米纤维素/聚乙烯醇复合膜力学性能较强且光学性能优良,同时保留聚乙烯醇复合膜的生物相容性、可降解性,在高强度可降解包装材料中具有良好应用前景。

Description

一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及 制备方法
技术领域
本发明属于纳米复合材料制备领域,具体涉及一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法。
背景技术
聚乙烯醇(PVA)是一种无毒、可降解的水溶性的线性多羟基聚合物,具有良好的成膜性、阻隔性、生物相容性。近年来,聚乙烯醇在包装领域应用十分广泛,但由于其成膜强度性能的缺陷限制其发展。
纳米纤维素(cellulose nanofibers,CNF)由于其纳米尺度,具有高强度、轻质的特点,同时可再生、可生物降解,被广泛应用于增强复合材料、过滤材料、吸附材料、生物医药材料等领域。纳米纤维素的制备方法包括TEMPO催化氧化法,酶处理,以及高压均质,超声处理等机械处理方法。将纳米纤维素作为增强剂加入聚乙烯醇溶液中,可制备出高强度复合膜,但与聚乙烯醇混合过程中,由于电性相斥,纳米纤维素难以与聚乙烯醇混合均匀,从而影响成膜质量。
而对纳米纤维素进行阳离子化改性能够很好地解决这个问题。阳离子纤维素作为纤维素的衍生物之一,主要通过酯化、醚化或者加成试剂对纳米纤维素的处理,在纤维素链中引入含有叔胺、季铵盐和季磷盐等结构所制备而成,稳定纳米颗粒的同时也附以纳米纤维素新的特性,在纺织印染、环境防护等领域均有应用。阳离子化改性纳米纤维素和PVA极性相近,界面相容性好,都有着良好的可生物降解性,是环境友好型材料。阳离子有着高刚性和高强度,而PVA的刚性和强度相对较弱,制备阳离子化改性纳米纤维素 /PVA复合材料可大大拓宽阳离子化改性纳米纤维素和聚乙烯醇的应用,尤其在高强度可溶性包装材料领域具有广阔应用前景。
发明内容
本发明主要解决的技术问题是:针对聚乙烯醇复合膜力学性能的不足,从而限制其在包装等领域的应用的问题,提供一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制各方法。其基本特点是以阳离子化改性纳米纤维素作为增强剂,加入聚乙烯醇溶液中,通过流延法工艺制备出力学性能较强且光学性能优良的高强度复合膜。
本发明通过以下技术方案实施:
(1)制备阳离子化改性纳米纤维素/聚乙烯醇复合膜成膜液:称取聚乙烯醇和去离子水,水浴下混合得到聚乙烯醇水溶液,将阳离子化改性纳米纤维素以及丙三醇分别加入到聚乙烯醇水溶液中,室温搅拌5~ 10min后水浴超声2h;然后水浴静置消泡5~10min,得到阳离子化改性纳米纤维素/聚乙烯醇复合膜成膜液。
(2)制备高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜:将上述成膜液静置冷却后,采用流延法均匀倾倒在玻璃板上,在室温下风干24h,得到高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜。
所述阳离子化改性纳米纤维素为醚化改性纳米纤维素。
所述水浴温度、水浴静置消泡均为70℃。
所述搅拌为机械搅拌,转速为500r/min~600r/min。
所述一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法中,阳离子化改性纳米纤维素∶聚乙烯醇∶去离子水∶丙三醇重量比为(2~30)∶(4~5)∶(70~100)∶(2~3)。
所述一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法中,膜厚度为18~19μm。
与现有技术相比,本发明具有以下优点:
(1)本发明采用流延法制备复合膜,工艺流程简单,相比于吹塑法、挤出法等制膜方法,更易操作,大大降低了制膜成本。
(2)本发明制备的复合膜将阳离子化改性纳米纤维素作为增强剂加入聚乙烯醇膜中,其中对纳米纤维素的阳离子化改性处理,有效地解决了纳米纤维素在聚乙烯醇溶液中易团聚的问题,从而促进其在聚乙烯醇溶液中的均匀分散,使得复合膜力学性能大大提高。
(3)本发明制备的高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜具备优良的光学、力学性能,同时可生物降解,可以扩大聚乙烯醇膜材料在包装、医药等领域的应用。
具体实施方式
下面通过具体实施实例对本发明的最佳实施方案进一步详述。
1.制备阳离子化改性纳米纤维素/聚乙烯醇复合膜成膜液:称取4g聚乙烯醇,在70℃恒温水浴下加入盛有88ml去离子水的烧杯中,混合搅拌15min后在70℃水浴中消泡5min,制得聚乙烯醇溶液,在聚乙烯醇溶液中依次加入浓度1.0%的阳离子化改性纳米纤维素溶胶、1g丙三醇,室温搅拌10min,将混合液水浴超声2h,置于70℃水浴中消泡5min,制得阳离子化改性纳米纤维素/聚乙烯醇复合膜成膜液;
2.制备高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜:将阳离子化改性纳米纤维素/聚乙烯醇复合膜成膜液冷却,通过流延法均匀倾倒在玻璃板上,在室温下风干24h后得到高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜。

Claims (5)

1.一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法,其特征在于如下制备步骤:
(1)制备阳离子化改性纳米纤维素/聚乙烯醇复合膜成膜液:称取聚乙烯醇和去离子水,水浴下混合得到聚乙烯醇水溶液,将阳离子化改性纳米纤维素以及丙三醇分别加入到聚乙烯醇水溶液中,室温搅拌后水浴超声2h;然后水浴静置消泡,得到阳离子化改性纳米纤维素/聚乙烯醇复合膜成膜液。
(2)制备高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜:将上述成膜液静置冷却后,采用流延法均匀倾倒在玻璃板上,在室温下风干24h,得到高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜。
2.根据权利要求1所述一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法,其特征在于:所述阳离子化改性纳米纤维素为醚化改性纳米纤维素。
3.根据权利要求1所述一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法,其特征在于:步骤(1)所述水浴静置消泡温度为70℃水浴。
4.根据权利要求1所述一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法,其特征在于:复合膜中阳离子化改性纳米纤维素∶聚乙烯醇∶去离子水∶丙三醇重量比为(2~30)∶(4~5)∶(70~100)∶(2~3)。
5.根据权利要求1所述一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法,其特征在于:步骤(2)所述阳离子化改性纳米纤维素/聚乙烯醇复合膜厚度为18~19μm。
CN201810447182.5A 2018-05-11 2018-05-11 一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法 Pending CN108752644A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810447182.5A CN108752644A (zh) 2018-05-11 2018-05-11 一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810447182.5A CN108752644A (zh) 2018-05-11 2018-05-11 一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法

Publications (1)

Publication Number Publication Date
CN108752644A true CN108752644A (zh) 2018-11-06

Family

ID=64009469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810447182.5A Pending CN108752644A (zh) 2018-05-11 2018-05-11 一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法

Country Status (1)

Country Link
CN (1) CN108752644A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111119A (zh) * 2020-09-21 2020-12-22 桂林理工大学 一种具有优异性能的聚乙烯醇纳米复合材料及其制备方法
CN113042112A (zh) * 2021-03-16 2021-06-29 福建师范大学 一种功能化阳离子交换膜的制备方法
CN114957753A (zh) * 2022-06-30 2022-08-30 郑州职业技术学院 一种高强度硫化铜/纳米纤维素/聚乙烯醇近红外屏蔽隔热膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387685A (zh) * 2013-08-19 2013-11-13 南京林业大学 一种纤维素纳米纤维/聚乙烯醇复合膜的制备方法
CN103866487A (zh) * 2014-03-27 2014-06-18 同济大学 一种纳米微晶纤维素/壳聚糖/聚乙烯醇复合纳米膜的制备方法
CN104629067A (zh) * 2015-02-16 2015-05-20 东北林业大学 一种再生抗菌性纤维素-聚乙烯醇复合膜的制备方法
CN106832725A (zh) * 2016-12-20 2017-06-13 安徽省阜阳市国泰彩印包装有限公司 一种纳米纤维素增强的可降解型塑料薄膜复合材料及其制备方法
CN106867042A (zh) * 2017-03-14 2017-06-20 天津科技大学 流延法制备纳米纤维素/壳聚糖/聚乙烯醇复合膜及其在生物抗菌膜中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387685A (zh) * 2013-08-19 2013-11-13 南京林业大学 一种纤维素纳米纤维/聚乙烯醇复合膜的制备方法
CN103866487A (zh) * 2014-03-27 2014-06-18 同济大学 一种纳米微晶纤维素/壳聚糖/聚乙烯醇复合纳米膜的制备方法
CN104629067A (zh) * 2015-02-16 2015-05-20 东北林业大学 一种再生抗菌性纤维素-聚乙烯醇复合膜的制备方法
CN106832725A (zh) * 2016-12-20 2017-06-13 安徽省阜阳市国泰彩印包装有限公司 一种纳米纤维素增强的可降解型塑料薄膜复合材料及其制备方法
CN106867042A (zh) * 2017-03-14 2017-06-20 天津科技大学 流延法制备纳米纤维素/壳聚糖/聚乙烯醇复合膜及其在生物抗菌膜中的应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111119A (zh) * 2020-09-21 2020-12-22 桂林理工大学 一种具有优异性能的聚乙烯醇纳米复合材料及其制备方法
CN113042112A (zh) * 2021-03-16 2021-06-29 福建师范大学 一种功能化阳离子交换膜的制备方法
CN114957753A (zh) * 2022-06-30 2022-08-30 郑州职业技术学院 一种高强度硫化铜/纳米纤维素/聚乙烯醇近红外屏蔽隔热膜及其制备方法和应用
CN114957753B (zh) * 2022-06-30 2024-01-05 郑州职业技术学院 一种高强度硫化铜/纳米纤维素/聚乙烯醇近红外屏蔽隔热膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wang et al. Processing nanocellulose to bulk materials: A review
Chen et al. Comparative study on the films of poly (vinyl alcohol)/pea starch nanocrystals and poly (vinyl alcohol)/native pea starch
Khoshkava et al. Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites
CN108752644A (zh) 一种高强度的阳离子化改性纳米纤维素/聚乙烯醇复合膜及制备方法
Yin et al. Simultaneous enhancement of toughness, strength and superhydrophilicity of solvent-free microcrystalline cellulose fluids/poly (lactic acid) fibers fabricated via electrospinning approach
CN106832428B (zh) 一种快速水响应形状记忆复合材料及其制备方法
CN108864667A (zh) 一种纳米纤维素增强的可生物降解复合薄膜及其制备方法
KR101677979B1 (ko) 나노셀룰로오스를 포함하는 하이드로겔 복합재 및 이의 제조방법
Dai et al. Improved properties of gelatin films involving transglutaminase cross-linking and ethanol dehydration: The self-assembly role of chitosan and montmorillonite
CN109280303A (zh) 生物可降解高分子膜及其制备方法
CN110343292A (zh) 一种纤维素纳米纤维/埃洛石纳米管增强淀粉膜及其制备方法
Ben Shalom et al. Cellulose nanocrystals and corn zein oxygen and water vapor barrier biocomposite films
CN107345031A (zh) 一种抗静电增强pp/abs合金材料及其制备方法
Zhao et al. Development and characterisation of multi-form composite materials based on silver nanoclusters and cellulose nanocrystals
Kim et al. Free-form three-dimensional nanocellulose structure reinforced with poly (vinyl alcohol) using freeze-thaw process
Blachechen et al. Interplay of colloidal stability of cellulose nanocrystals and their dispersibility in cellulose acetate butyrate matrix
Jiao et al. Supramolecular cross-linking affords chitin nanofibril nanocomposites with high strength and water resistance
CN106832357A (zh) 一种纤维素微球改性的制备方法
Ding et al. Efficient preparation of holocellulose nanofibers and their reinforcement potential
Zhang et al. 3D printing of cellulose nanofiber/polylactic acid composites via an efficient dispersion method
CN105040444A (zh) 一种用于碳纤维的新型纳米水性环氧树脂上浆剂及其制备方法
CN102558589B (zh) 一种甲醛交联明胶/pva复合膜的制备方法
Szafraniec et al. A critical review on modification methods of cement composites with nanocellulose and reaction conditions during nanocellulose production
Wang et al. Nanocomposites of poly (propylene carbonate) reinforced with cellulose nanocrystals via sol‐gel process
CN105088538B (zh) 一种疏水蛋白涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181106

WD01 Invention patent application deemed withdrawn after publication