CN108707868A - 一种真空离子镀Ag纳米复合涂层紧固件及制备方法 - Google Patents

一种真空离子镀Ag纳米复合涂层紧固件及制备方法 Download PDF

Info

Publication number
CN108707868A
CN108707868A CN201810584163.7A CN201810584163A CN108707868A CN 108707868 A CN108707868 A CN 108707868A CN 201810584163 A CN201810584163 A CN 201810584163A CN 108707868 A CN108707868 A CN 108707868A
Authority
CN
China
Prior art keywords
nanometers
thickness
nano
target
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810584163.7A
Other languages
English (en)
Other versions
CN108707868B (zh
Inventor
胡隆伟
胡娅
杨兵
杨彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Aerospace Precision Products Co Ltd
Original Assignee
Guizhou Aerospace Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Aerospace Precision Products Co Ltd filed Critical Guizhou Aerospace Precision Products Co Ltd
Priority to CN201810584163.7A priority Critical patent/CN108707868B/zh
Publication of CN108707868A publication Critical patent/CN108707868A/zh
Application granted granted Critical
Publication of CN108707868B publication Critical patent/CN108707868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B1/00Devices for securing together, or preventing relative movement between, constructional elements or machine parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种真空离子镀Ag纳米复合涂层紧固件及制备方法,针对紧固件银高温自润滑涂层制备污染问题和性能较差缺点,结合电弧离子镀技术和磁控溅射技术,采用先进的离子刻蚀辅助工艺,开发一种银纳米复合涂层材料及其制备方法,以解决紧固件镀银污染和性能较差问题。开发紧固件Ag纳米复合涂层材料及制备技术。本发明属于新材料技术研究制备领域。

Description

一种真空离子镀Ag纳米复合涂层紧固件及制备方法
技术领域
本发明涉及一种真空离子镀Ag纳米复合涂层紧固件及制备方法,属于新材料技术领域。
背景技术
航空航天及其他特种领域使用的高强度紧固件一般由不锈钢、钛合金以及高温合金制造,对其表面不但需要优越的耐磨性能,同时还要求具有良好的润滑和抗腐蚀性能。银及银基涂层在高低温、真空环境中具有良好的润滑性能,是紧固件中广泛应用的涂层材料。镀银有电镀、化学镀、气相沉积等方法,其中电镀应用最为广泛。广泛采用电镀银最早始于1800年,第一个镀银的专利是1838年由英国伯明翰的Elkington兄弟提出的,所用的镀液为碱性氰化物镀液,与他们发明的碱性氰化物镀黄金体系很类似。一个多世纪以来,镀银液的基本配方和最初的配方差别不大,仅仅是提高了银配位离子浓度以达到快速镀银的目的而已。银镀层最早应用于装饰,在电子工业、通讯设备和仪器仪表制造业中,镀银以减少金属零件表面的接触电阻和提高金属的焊接能力。在各种镀液体系中,氰系镀液应用较广,过去的主要缺点是使用的电流密度小,现在高效镀银使电流密度可高达10A/dm2。光亮镀银一般为1.5~3A/dm2,其镀面光滑而无需再打光,也可镀厚。近年来快速发展起来的电子元器件的高速选择性镀银,如引线框架的选择性镀银,采用喷射镀的方法。所用的电流密度高达300~3000A/dm2,镀液中氰化银钾的浓度也高达40~75g/L,阳极采用白金或镀铂的钛阳极,这样在1s内即可镀上约4~5μm的银层,它已能满足硅芯片和银焊垫之间用铝线来键合。电器、仪表等工业还采用无氰镀银。电镀液用硫代硫酸盐、亚硫酸盐、硫氰酸盐、亚铁氰化物等。为了防止银镀层变色,通常要经过镀后处理,主要是浸亮、化学和电化学钝化,镀贵金属或稀有金属或涂覆盖层等。
与电镀相比,化学镀银具有工艺简单、适用于不规则的基体材料、成本较低等优点;化学镀层具有高致密度、厚度均匀、良好的抗蚀性和耐磨性等性能。除了常规的工件处理外,近年来,粉体表面的化学镀银取得了一定进展。表面镀银的复合粉体应用十分广泛,如:在铜粉表面镀银可用作电子浆料、电极材料、催化剂和电磁屏蔽材料等;在空心或实心微球(玻璃或陶瓷)表面镀银可用作厚膜电路材料、电容器、垫圈和密封材料;在高密度聚乙烯薄膜制成的微囊表面镀银可作为临床上介入疗法使用的球囊电极等。目前许多工作者都在致力于化学镀银的研究,不断探索采用简单的工艺、低廉的成本制备优良的化学镀层。我们日常使用的热水壶里面的胆就是经过化学镀银处理的。由于银镀层是光亮反光的,对于热量所产生的红外辐射能很好的反射回去,以达到更好的保温效果。所以镀银的热水壶就具有更好的保温的作用。
PVD离子镀技术是近二十年来国内外研究的热点技术,制备的各类涂层具有硬度高、附着力好、基体适应性好以及无污染等缺点,在零部件领域上获得了成功的应用,是表面处理技术发展最为活跃的领域。银及银基涂层的PVD涂层技术主要有蒸镀、溅射、离子镀等。真空蒸发镀银最常用的是电阻加热法,其优点是加热源的结构简单,造价低廉,操作方便;电子束加热和激光加热镀银则能克服电阻加热的缺点。电子束加热上利用聚焦电子束直接对被轰击材料加热,电子束的动能变成热能,使材料蒸发。激光加热是利用大功率的激光作为加热源,但由于大功率电子束蒸发和激光器的造价很高,目前只能在少数研究性实验室中使用。蒸发镀银最明显的优点就是沉积速率快,很容易做到几十上百微米的银涂层制备。但其缺点就是均匀性较差,无法在复杂形状的工件上面获得均匀的涂层,同时其附着为机械结合,附着力较差。随着PVD涂层技术的进一步发展,涂层和基体间的结合强度得到进一步提高,在紧固件表面利用PVD涂层技术制备高附着力的银涂层是零部件表面涂层技术的首选。
由于紧固件在使用过程中存在接触和变形,对涂层附着力与普通工件相比具有很高的要求。PVD涂层技术中的磁控溅射技术可以提供很好的表面质量,但无法较好的提高表面涂层附着力。电弧离子镀可以提供较好的附着力,但由于具有较大的颗粒污染,涂层的抗腐蚀性能存在一定问题。为此综合利用电弧离子镀和磁控溅射技术的优点在紧固件表面进行银涂层的沉积具有较好的应用前景。。
发明内容
本发明的目的在于:针对紧固件银高温自润滑涂层制备污染问题和性能较差缺点,结合电弧离子镀技术和磁控溅射技术,采用先进的离子刻蚀辅助工艺,开发一种银纳米复合涂层材料及其制备方法,以解决紧固件镀银污染和性能较差问题。开发紧固件Ag纳米复合涂层材料及制备技术。
为解决上述问题,拟采用这样一种真空离子镀Ag纳米复合涂层紧固件,该紧固件表面具有Ag纳米复合涂层,且所述Ag纳米复合涂层为梯度层结构,由扩散层、结合层、过渡层以及Ag高温自润滑复合涂层所构成,扩散层为采用电弧离子镀方法高能轰击制备的纯Ti扩散层,结合层为采用离子镀方法低能量制备的纯Ti层,过渡层为电弧离子镀方法蒸发的Ti和中频磁控溅射法高电压条件下制备的Ag所形成的Ti-Ag纳米多层膜,自润滑层为中频方法制备的AgI以及直流磁控溅射法制备的AgII所构成的AgI/AgII纳米多层膜。
Ti-Ag过渡层涂层为Ti和Ag交替形成的纳米多层结构,单层Ti层的厚度为3-20纳米,单层Ag层的厚度为5-20纳米,两种涂层所形成的调制周期厚度范围为8-40纳米;
AgI/AgII纳米多层膜为中频磁控溅射形成的AgI和直流磁控溅射形成的AgII层构成的纳米交替涂层,单层AgI层的厚度为5-30纳米,单层AgII层的厚度为10-50纳米,两种涂层所形成的调制周期厚度范围为15-80纳米;
扩散层厚度为5-10纳米,结合层厚度为20-200纳米,过渡层厚度为100-200纳米,高温自润滑涂层厚度为1-10微米;
本发明还提供了一种真空离子镀Ag纳米复合涂层紧固件的制备方法,具体方法如下:
在100-450℃、氩气和氢气环境下,对合金钢紧固件经过等离子体刻蚀后,采用圆形真空炉的电弧对靶2在氩气环境中进行电弧放电,在0.02-0.2Pa,-800V到-1000V条件进行2-10纳米Ti扩散层制备;随后在氩气环境中采用中频磁控溅射对靶8在0.4-1Pa,-50V到-500V条件进行20-200纳米Ti结合层制备;结合层制备结束后,在0.4-1Pa,-50V到-200V条件下,采用中频磁控溅射对靶8和第一直流磁控溅射对靶4进行100-200纳米Ti-Ag纳米复合金属过渡层制备,单层Ti层的厚度为3-20纳米,单层Ag层的厚度为5-20纳米,两种涂层所形成的调制周期厚度范围为8-40纳米;在过渡层制备结束后,在0.4-1Pa,采用中频磁控溅射对靶8和第一直流磁控溅射对靶4和第二直流磁控溅射对靶5在-50V到-250V条件下氩气环境中进行1-10微米的AgI/AgII纳米多层高温自润滑涂层制备,单层AgI层的厚度为5-30纳米,单层AgII层的厚度为10-50纳米,两种涂层所形成的调制周期厚度范围为15-80纳米,涂层总厚度在控制在1.125-10.41微米,制备结束后自然冷却,得到Ti-Ag纳米复合金属涂层紧固件。
本发明采用离子源刻蚀技术的目的是为了清洗掉紧固件表明的氧化物,其中气氛采用氩气和氢气的混合气体,氩气主要提供较重的氩离子刻蚀,氢气的主要目的是对氩离子清洗较差的高分子材料进行破坏达到清洗的目的。采用中频磁控溅射的目的主要是为了提高离化率,提高涂层的致密度。采用直流磁控溅射主要是为了提高沉积速率。由于真空离子镀银技术属于完全环保型的技术,不会对环境造成污染,将会大幅度减少电镀银引起的污染情况,具有良好的社会和经济效益。
与现有技术相比,本发明还具备如下优点:
1、与普通辉光放电离子源相比,本发明采用弧光放电离子源进行镀膜前的离子清洗,能够大幅度提高紧固件表面的表面质量,提高涂层的附着力,不清洗的附着力一般低于30N,清洗后可以达到60N;
2、本发明涂层结构采用多层结构,有扩散层、结合层、过渡层、自润滑层,形成结构和成分渐变,涂层和基体为冶金结合,具有良好的附着力;
3、与常规电弧离子镀涂层结构相比,本发明采用多层结构技术抑制了柱状晶的生长,提高涂层的致密度,这不但提高了涂层的耐腐蚀性,同时韧性也大幅度提高;
4、本发明中过渡层采用较厚的Ti金属层,不但具有较好的结合效果,同时降低了涂层的应力;
5、由于采用多层结构,本发明能够制备较厚的涂层;
6、本发明将Ti层和Ag层结合形成多层结构,为多层纳米结构材料,在国内外是个尝试,特别是应用到紧固件表面,将大幅度提高紧固件的自润滑和抗腐蚀性能;同时涂层设备结构简单,易于控制,工业应用前景良好。
附图说明
图1.为本发明中所采用的涂层装置(圆形真空炉)示意图;
图2.为本发明设计的涂层结构示意图;
附图标记含义如下,1.真空室门;2.(柱状)电弧对靶;3.离子源;4.第一直流磁控溅射对靶;5. 第二直流磁控溅射对靶;6. 抽气口;7.紧固件;8.中频磁控溅射对靶,9.辅助阳极,10.真空炉壁,11.加热管,a.基体,b.Ti扩散层,c.Ti结合层,d.Ti/Ag纳米多层过渡层,e.AgI/AgII纳米多层自润滑层。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细说明,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1:
参照附图1和2,本实施例提供一种真空离子镀Ag纳米复合涂层紧固件,真空离子镀Ag纳米复合涂层采用梯度层结构,由扩散层、结合层、过渡层以及Ag高温自润滑复合涂层所构成。扩散层5-10纳米,结合层厚度为20-200纳米,过渡层厚度为100-200纳米,高温自润滑涂层厚度为1-10微米。扩散层为采用电弧离子镀方法高能轰击制备的纯Ti扩散层,结合层为采用离子镀方法低能量制备的纯Ti层,过渡层为电弧离子镀方法蒸发的Ti和中频磁控溅射法高电压条件下制备的Ag所形成的Ti-Ag纳米多层膜,单层Ti层的厚度为3-20纳米,单层Ag层的厚度为5-20纳米,两种涂层所形成的调制周期厚度范围为8-40纳米。自润滑层为中频方法制备的AgI以及直流磁控溅射法制备的AgII所构成的AgI/AgII纳米多层膜。单层AgI层的厚度为5-30纳米,单层AgII层的厚度为10-50纳米,两种涂层所形成的调制周期厚度范围为15-80纳米。
上述真空离子镀Ag纳米复合金属涂层紧固件及其制备方法,在100-450℃、氩气和氢气环境下,对合金钢紧固件经过等离子体刻蚀后,采用电弧对靶2在氩气环境中进行电弧放电,在0.02-0.2Pa,-800V到-1000V条件进行2-10纳米Ti扩散层制备;随后在氩气环境中采用靶8在0.4-1Pa,-50V到-500V条件进行20-200纳米Ti结合层制备;结合层制备结束后,在0.4-1Pa,-50V到-200V条件下,采用中频磁控溅射对靶8和第一直流磁控溅射对靶4进行100-200纳米Ti-Ag纳米复合金属过渡层制备,单层Ti层的厚度为3-20纳米,单层Ag层的厚度为5-20纳米,两种涂层所形成的调制周期厚度范围为8-40纳米;在过渡层制备结束后,在0.4-1Pa,采用中频磁控溅射对靶8和第一直流磁控溅射对靶4在-50V到-250V条件下氩气环境中进行1-10微米的AgI/AgII纳米多层高温自润滑涂层制备,单层AgI层的厚度为5-30纳米,单层AgII层的厚度为10-50纳米,两种涂层所形成的调制周期厚度范围为15-80纳米涂层总厚度在控制在1.125-10.41微米,制备结束后自然冷却,得到Ti-Ag纳米复合金属涂层紧固件。
由上述技术方案可知本发明是利用电弧离子镀的高离化率和中频磁控溅射的高致密度特性来制备Ag纳米多层复合涂层材料。为了提高Ag涂层和紧固件的附着力,该方法首先利用弧光放电过程产生的高浓度氩离子和氢离子刻蚀紧固件的表面氧化物,一般情况下由于氧化物会降低涂层和基体的结合力,为此氧化物的去处是涂层中非常关键的技术。常规化学清洗在清洗过程中可以去处氧化层,但接触空气后表面会很快形成氧化层。常规辉光放电离子源输出功率较小,采用常规辉光放电清洗法也可以去除表面的氧化物,但由于放电等离子体密度低,清洗效果有限。对工件表面的清洗效果有限,为了提高工件表面的清洗效率,本专利中使用的弧光放电等离子体源可大幅度提高紧固件的清洗效率。经试验证明可以大幅度提高涂层和基体的附着力。
本发明使用的设备为圆形真空炉,直径为1.2米,高度为1.5米。抽气口6外接分子泵***对真空炉进行抽气,设备通过加热管11进行加热,控制炉内温度。炉体安装有一对中频磁控溅对靶8,中频磁控溅射对靶8相对布局,由40kW交流电源驱动进行交流辉光放电蒸发;电弧对靶2(电弧放电对靶)为两个相对布局的靶,由两个直流电源分别驱动进行弧光放电蒸发;对第一直流磁控溅射对靶4和第二直流磁控溅射对靶5由4个单独的直流电源驱动进行辉光放电溅射,每个直流电源功率为40Kw;炉门上安装离子源3(离子刻蚀源),离子源3由一个直流弧电源驱动,弧光放电时,靶和辅助阳极9之间产生强等离子体,使工件表面的氧化层以及污染物被清洗干净,可以提高涂层的附着力,当工件镀膜时,工件完全浸没在等离子体当中,离子轰击的效果非常显著,涂层的均匀性得到了良好的保证。等离子体刻蚀一般在负的800到1000V的偏压下进行,清洗时间为30-60分钟。在离子刻蚀结束后,紧固件基体表面处于比较清洁的状态,随后,采用电弧离子镀技术从电弧对靶2上将Ti离子高温蒸发并在高偏压作用下高速扩散到紧固件表面,在紧固件表面加有800-1200V的负高压,高压对离化的Ti离子具有加速作用,经过加速的Ti离子会高速撞击紧固件表面,形成Ti冶金扩散层,然后降低偏压,增加气压,在0.4-1Pa,-50V到-500V条件进行20-200纳米Ti结合层制备,在结合层制备结束后,开启中频磁控溅射对靶8,电弧离子镀的Ti和中频磁控溅射对靶8溅射出的Ag形成纳米多层膜,过渡层的目的是提高表面银涂层和Ti过渡层的结合力,在过渡层结束后,保持中频磁控溅射对靶8开启,关闭电弧对靶2,开启第一对直流磁控溅射对靶4和第二对直流磁控溅射对靶5,沉积AgI/AgII纳米多层高温自润滑涂层,其中AgI为中频磁控靶制备的银层,AgII为直流磁控靶制备的银层,由于中频磁控靶和直流磁控靶离化率有较大的差别,导致沉积的银涂层结构有所差别,两种银层晶粒尺度有一定差距,所以才能形成多层膜,大幅度提高涂层的致密性。
实施例2:在100℃、氩气和氢气环境下,对合金钢紧固件经过等离子体刻蚀后,采用电弧对靶2在氩气环境中进行电弧放电,在0.02Pa,-800V条件进行纳米Ti扩散层制备;随后在氩气环境中采用中频磁控溅射对靶8在0.4Pa,-50V条件进行20纳米Ti结合层制备;结合层制备结束后,在0.4Pa,-50V条件下,采用中频磁控溅射对靶8和第一直流磁控溅射对靶4进行100纳米Ti-Ag纳米复合金属过渡层制备,单层Ti层的厚度为3纳米,单层Ag层的厚度为5纳米,两种涂层所形成的调制周期厚度范围为8纳米;在过渡层制备结束后,在0.4Pa,采用中频磁控溅射对靶8、第一直流磁控溅射对靶4和第二直流磁控溅射对靶5在-50V条件下氩气环境中进行1微米的AgI/AgII纳米多层高温自润滑涂层制备,单层AgI层的厚度为5纳米,单层AgII层的厚度为10纳米,两种涂层所形成的调制周期厚度范围为15纳米。涂层总厚度在控制在1.125微米,制备结束后自然冷却,得到Ag纳米复合金属涂层紧固件。
实施例3:在450℃、氩气和氢气环境下,对合金钢紧固件经过等离子体刻蚀后,采用电弧对靶2在氩气环境中进行电弧放电,在0.2Pa, -1000V条件进行10纳米Ti扩散层制备;随后在氩气环境中采用靶8在1Pa, -500V条件进行200纳米Ti结合层制备;结合层制备结束后,在1Pa,-200V条件下,采用电弧对靶2和第一直流磁控溅射对靶4进行200纳米Ti-Ag纳米复合金属过渡层制备,单层Ti层的厚度为20纳米,单层Ag层的厚度为20纳米,两种涂层所形成的调制周期厚度范围为40纳米;在过渡层制备结束后,在1Pa,采用中频磁控溅射对靶8、第一直流磁控溅射对靶4和第二直流磁控溅射对靶5在-250V条件下氩气环境中进行10微米的AgI/AgII纳米多层高温自润滑涂层制备,单层AgI层的厚度为30纳米,单层AgII层的厚度为50纳米,两种涂层所形成的调制周期厚度范围为80纳米涂层。总厚度在控制在10.41微米,制备结束后自然冷却,得到Ti-Ag纳米复合金属涂层紧固件。。
实施例4:在350℃、氩气和氢气环境下,对合金钢紧固件经过等离子体刻蚀后,采用电弧对靶2在氩气环境中进行电弧放电,在0.1Pa,-800V条件进行5纳米Ti扩散层制备;随后在氩气环境中采用靶8在1Pa,-50V条件进行100纳米Ti结合层制备;结合层制备结束后,在0.4Pa,-200V条件下,采用电弧对靶2和中频磁控溅射对靶8进行150纳米Ti-Ag纳米复合金属过渡层制备,单层Ti层的厚度为10纳米,单层Ag层的厚度为10纳米,两种涂层所形成的调制周期厚度范围为20纳米;在过渡层制备结束后,在0.4Pa,采用中频磁控溅射对靶8、第一直流磁控溅射对靶4和第二直流磁控溅射对靶5在-250V条件下氩气环境中进行5微米的AgI/AgII纳米多层高温自润滑涂层制备,单层AgI层的厚度为10纳米,单层AgII层的厚度为10纳米,两种涂层所形成的调制周期厚度范围为20纳米,涂层总厚度在控制在5.255微米,制备结束后自然冷却,得到Ti-Ag纳米复合金属涂层紧固件。
实施例5:在300℃、氩气和氢气环境下,对合金钢紧固件经过等离子体刻蚀后,采用电弧对靶2在氩气环境中进行电弧放电,在0.2Pa,-1000V条件进行10纳米Ti扩散层制备;随后在氩气环境中采用中频磁控溅射对靶8在0.4a,-50V条件进行200纳米Ti结合层制备;结合层制备结束后,在0.4Pa,-50V条件下,采用电弧对靶2和中频磁控溅射对靶8进行200纳米Ti-Ag纳米复合金属过渡层制备,单层Ti层的厚度为3纳米,单层Ag层的厚度为20纳米,两种涂层所形成的调制周期厚度范围为23纳米;在过渡层制备结束后,在0.4Pa,采用中频磁控溅射对靶8、第一直流磁控溅射对靶4和第二直流磁控溅射对靶5在-50V条件下氩气环境中进行6微米的AgI/AgII纳米多层高温自润滑涂层制备,单层AgI层的厚度为5纳米,单层AgII层的厚度为50纳米,两种涂层所形成的调制周期厚度范围为55纳米,涂层总厚度在控制在6.41微米,制备结束后自然冷却,得到Ti-Ag纳米复合金属涂层紧固件。
上述实施例所用装置如图1所示,装置的真空室由炉壁围成,真空室高度为1-1.5米,直径为800-1500mm。1为真空室门;2为面对面安装的管状电弧对靶;3为离子源;4和5分别为两对直流磁控溅射对靶,整过设备中有两个电弧靶;7为紧固件,紧固件本身不旋转,但可以随工件架公转;6为抽气口;该布局使真空室中靶前部位等离子体密度大幅度增加,工件完全浸没在等离子体中。使涂层沉积速率、硬度、附着力得到较大的提高。由于对靶结构进行了优化,两个磁控靶之间的磁场分布更均匀,使靶面上均匀溅射,提高了涂层的均匀性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种真空离子镀Ag纳米复合涂层紧固件,其特征在于:该紧固件表面具有Ag纳米复合涂层,且所述Ag纳米复合涂层为梯度层结构,由扩散层、结合层、过渡层以及Ag高温自润滑复合涂层所构成,扩散层为采用电弧离子镀方法高能轰击制备的纯Ti扩散层,结合层为采用离子镀方法低能量制备的纯Ti层,过渡层为电弧离子镀方法蒸发的Ti和中频磁控溅射法高电压条件下制备的Ag所形成的Ti-Ag纳米多层膜,自润滑层为中频方法制备的AgI以及直流磁控溅射法制备的AgII所构成的AgI/AgII纳米多层膜。
2.根据权利要求1所述一种真空离子镀Ag纳米复合涂层紧固件,其特征在于:Ti-Ag过渡层涂层为Ti和Ag交替形成的纳米多层结构,单层Ti层的厚度为3-20纳米,单层Ag层的厚度为5-20纳米,两种涂层所形成的调制周期厚度范围为8-40纳米。
3.根据权利要求2所述一种真空离子镀Ag纳米复合涂层紧固件,其特征在于:AgI/AgII纳米多层膜为中频磁控溅射形成的AgI和直流磁控溅射形成的AgII层构成的纳米交替涂层,单层AgI层的厚度为5-30纳米,单层AgII层的厚度为10-50纳米,两种涂层所形成的调制周期厚度范围为15-80纳米。
4.根据权利要求1所述一种真空离子镀Ag纳米复合涂层紧固件,其特征在于:扩散层厚度为5-10纳米,结合层厚度为20-200纳米,过渡层厚度为100-200纳米,高温自润滑涂层厚度为1-10微米。
5.一种真空离子镀Ag纳米复合涂层紧固件的制备方法,其特征在于,具体方法如下:
在100-450℃、氩气和氢气环境下,对合金钢紧固件经过等离子体刻蚀后,采用圆形真空炉的电弧对靶在氩气环境中进行电弧放电,在0.02-0.2Pa,-800V到-1000V条件进行2-10纳米Ti扩散层制备;随后在氩气环境中采用中频磁控溅射对靶在0.4-1Pa,-50V到-500V条件进行20-200纳米Ti结合层制备;结合层制备结束后,在0.4-1Pa,-50V到-200V条件下,采用中频磁控溅射对靶、第一直流磁控溅射对靶和第二直流磁控溅射对靶进行100-200纳米Ti-Ag纳米复合金属过渡层制备,单层Ti层的厚度为3-20纳米,单层Ag层的厚度为5-20纳米,两种涂层所形成的调制周期厚度范围为8-40纳米;在过渡层制备结束后,在0.4-1Pa,采用中频磁控溅射对靶和第一直流磁控溅射对靶和第二直流磁控溅射对靶在-50V到-250V条件下氩气环境中进行1-10微米的AgI/AgII纳米多层高温自润滑涂层制备,单层AgI层的厚度为5-30纳米,单层AgII层的厚度为10-50纳米,两种涂层所形成的调制周期厚度范围为15-80纳米,涂层总厚度在控制在1.125-10.41微米,制备结束后自然冷却,得到Ti-Ag纳米复合金属涂层紧固件。
CN201810584163.7A 2018-06-08 2018-06-08 一种真空离子镀Ag纳米复合涂层紧固件及制备方法 Active CN108707868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810584163.7A CN108707868B (zh) 2018-06-08 2018-06-08 一种真空离子镀Ag纳米复合涂层紧固件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810584163.7A CN108707868B (zh) 2018-06-08 2018-06-08 一种真空离子镀Ag纳米复合涂层紧固件及制备方法

Publications (2)

Publication Number Publication Date
CN108707868A true CN108707868A (zh) 2018-10-26
CN108707868B CN108707868B (zh) 2021-05-28

Family

ID=63872447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810584163.7A Active CN108707868B (zh) 2018-06-08 2018-06-08 一种真空离子镀Ag纳米复合涂层紧固件及制备方法

Country Status (1)

Country Link
CN (1) CN108707868B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554670A (zh) * 2018-12-11 2019-04-02 贵州航天精工制造有限公司 一种真空离子镀银工艺
CN110144477A (zh) * 2019-05-23 2019-08-20 西安建筑科技大学 一种Ag/Ti2AlNb自润滑梯度复合材料的制备方法
CN111155066A (zh) * 2020-01-20 2020-05-15 西安交通大学 一种镀银层的微针阵列及其制备方法
CN113106399A (zh) * 2020-12-29 2021-07-13 阳江市新辉科技有限公司 一种多色彩抗菌膜层及其制备方法和应用
CN114807881A (zh) * 2022-04-24 2022-07-29 贵州航天精工制造有限公司 提高铁基高温合金紧固件的磁控溅射镀银层方法
CN115094395A (zh) * 2022-08-23 2022-09-23 北京辰融科技有限责任公司 一种叶盘抗高温涂层的沉积方法
CN115094373A (zh) * 2022-08-23 2022-09-23 北京辰融科技有限责任公司 一种叶盘叶尖表面沉积工艺方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132029A (zh) * 2011-11-25 2013-06-05 现代自动车株式会社 具有低摩擦的涂层的制造方法
US20140170441A1 (en) * 2012-12-13 2014-06-19 Hyundai Motor Company TiAgN COATING LAYER, TiAgN COATING METHOD AND TiAgN COATING APPARATUS
CN107190234A (zh) * 2017-05-22 2017-09-22 天津师范大学 一种表面注银的TiN/Ag纳米多层膜及其制备方法与应用
CN107699859A (zh) * 2017-09-26 2018-02-16 中国兵器科学研究院宁波分院 轴瓦用全金属自润滑减摩涂层及其制备方法
CN107779814A (zh) * 2017-08-31 2018-03-09 昆明贵金属研究所 一种含Ag纳米粒子梯度耐磨涂层的制备方法
CN108103462A (zh) * 2018-01-31 2018-06-01 西安赛福斯材料防护有限责任公司 航空用螺栓表面耐磨防锁死Ni-AgPd复合涂层的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132029A (zh) * 2011-11-25 2013-06-05 现代自动车株式会社 具有低摩擦的涂层的制造方法
US20140170441A1 (en) * 2012-12-13 2014-06-19 Hyundai Motor Company TiAgN COATING LAYER, TiAgN COATING METHOD AND TiAgN COATING APPARATUS
CN107190234A (zh) * 2017-05-22 2017-09-22 天津师范大学 一种表面注银的TiN/Ag纳米多层膜及其制备方法与应用
CN107779814A (zh) * 2017-08-31 2018-03-09 昆明贵金属研究所 一种含Ag纳米粒子梯度耐磨涂层的制备方法
CN107699859A (zh) * 2017-09-26 2018-02-16 中国兵器科学研究院宁波分院 轴瓦用全金属自润滑减摩涂层及其制备方法
CN108103462A (zh) * 2018-01-31 2018-06-01 西安赛福斯材料防护有限责任公司 航空用螺栓表面耐磨防锁死Ni-AgPd复合涂层的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554670A (zh) * 2018-12-11 2019-04-02 贵州航天精工制造有限公司 一种真空离子镀银工艺
CN110144477A (zh) * 2019-05-23 2019-08-20 西安建筑科技大学 一种Ag/Ti2AlNb自润滑梯度复合材料的制备方法
CN111155066A (zh) * 2020-01-20 2020-05-15 西安交通大学 一种镀银层的微针阵列及其制备方法
CN111155066B (zh) * 2020-01-20 2021-03-16 西安交通大学 一种镀银层的微针阵列及其制备方法
CN113106399A (zh) * 2020-12-29 2021-07-13 阳江市新辉科技有限公司 一种多色彩抗菌膜层及其制备方法和应用
CN114807881A (zh) * 2022-04-24 2022-07-29 贵州航天精工制造有限公司 提高铁基高温合金紧固件的磁控溅射镀银层方法
CN115094395A (zh) * 2022-08-23 2022-09-23 北京辰融科技有限责任公司 一种叶盘抗高温涂层的沉积方法
CN115094373A (zh) * 2022-08-23 2022-09-23 北京辰融科技有限责任公司 一种叶盘叶尖表面沉积工艺方法
CN115094373B (zh) * 2022-08-23 2022-11-22 北京辰融科技有限责任公司 一种叶盘叶尖表面沉积工艺方法

Also Published As

Publication number Publication date
CN108707868B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN108707868A (zh) 一种真空离子镀Ag纳米复合涂层紧固件及制备方法
CN103668095B (zh) 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法
CN108396295B (zh) 曲面磁控溅射阴极、闭合磁场涂层磁控溅射设备及其应用方法
US10260143B2 (en) Method and apparatus for application of metallic alloy coatings
CN103590008B (zh) 一种在TiAl合金和MCrAlY涂层间制备Al2O3扩散障的方法
US20140186654A1 (en) Surface treatment method for stainless steel and housing made from the treated stainless steel
CN110408931B (zh) 一种具有长寿命的热障涂层及其制备方法
CN104278234B (zh) 一种室温到800℃宽温域自润滑涂层的制备技术
CN103882426A (zh) 一种轻金属及其合金表面复合涂层的制备方法
CN101310969B (zh) 一种用于Ti-Al合金的Al/Al2O3/MCrAlY复合涂层及制备方法
CN111636082A (zh) 一种电化学制备核燃料包壳元件事故容错Cr涂层的方法
CN106493348A (zh) 一种TiAl3/Al2O3复合粉末及其制备方法和应用
CN107513690B (zh) 一种类金刚石/立方氮化硼多层复合涂层及其制备方法
TW201305356A (zh) 鍍膜件及其製備方法
CN103668061B (zh) 一种高附着力高硬度低摩擦系数类金刚石膜的涂层设备
RU2379378C2 (ru) Способ ионно-плазменного нанесения многокомпонентных пленочных покрытий и установка для его осуществления
Ando et al. Alumina and titania films deposition by APS/ASPPS dual mode thermal spray equipment using Ar added N2 working gas
CN110438421A (zh) 一种铝合金材料及铝合金固溶处理+pvd涂层同步强化方法
CN109487214A (zh) 一种镁合金表面镀膜方法及由其制备的抗腐蚀镁合金
Kumar et al. Modern coating processes and technologies
CN104402244B (zh) 一种真空镀银膜玻璃及其制备工艺
CN108149197B (zh) 一种激光发生器反射板制作方法
CN108008476A (zh) 一种激光发生器反射板
KR101245324B1 (ko) 알루미늄 코팅 강판 및 그 제조 방법
CN207276697U (zh) 一种铣刀自润滑纳米镀层结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant