CN107699859A - 轴瓦用全金属自润滑减摩涂层及其制备方法 - Google Patents

轴瓦用全金属自润滑减摩涂层及其制备方法 Download PDF

Info

Publication number
CN107699859A
CN107699859A CN201710879833.3A CN201710879833A CN107699859A CN 107699859 A CN107699859 A CN 107699859A CN 201710879833 A CN201710879833 A CN 201710879833A CN 107699859 A CN107699859 A CN 107699859A
Authority
CN
China
Prior art keywords
bearing shell
alsn20cu
layer
preparation
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710879833.3A
Other languages
English (en)
Other versions
CN107699859B (zh
Inventor
宋惠
刘智勇
唐纬虹
张涛
杨润田
贾利
刘文彬
张华�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Weapon Science Academy Ningbo Branch
Chinese Academy of Ordnance Science Ningbo Branch
Original Assignee
Chinese Academy of Ordnance Science Ningbo Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese Academy of Ordnance Science Ningbo Branch filed Critical Chinese Academy of Ordnance Science Ningbo Branch
Priority to CN201710879833.3A priority Critical patent/CN107699859B/zh
Publication of CN107699859A publication Critical patent/CN107699859A/zh
Application granted granted Critical
Publication of CN107699859B publication Critical patent/CN107699859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing

Abstract

一种轴瓦用全金属自润滑减摩涂层,其特征在于依次包括Ni栅层及磁控溅射的复合沉积层,该复合沉积层由AlSn20Cu层与Ag层交替沉积而成。进一步,每个AlSn20Cu层的厚度为2~3um,每个Ag层的厚度为0.5um~1um。本发明还公开了该涂层的制备方法。Ag/AlSn20Cu纳米多层交替结构设计,不仅使涂层组分多元化且有效的抑制了AlSn20Cu涂层中Sn相成分的长大提高薄膜膜基结合力。同时多层化设计有效缓解了涂层的应力、降低了摩擦系数和磨损率,增强抗疲劳性能。

Description

轴瓦用全金属自润滑减摩涂层及其制备方法
技术领域
本发明涉及一种轴瓦涂层,属于表面涂层技术领域,本发明还涉及该涂层的制备方法。
背景技术
随着现代高新技术产业的迅猛发展,对于在极端苛刻工况下服役的机械零部件提出了迫切的要求。日前,在高紧凑设计的前提下(如滑动轴承逐渐向高速、高承载、低能耗、大功率发展),对具有低摩擦磨损性能的润滑防护技术也提出了强烈的要求。轴瓦作为发动机的核心部件在极端苛刻的负荷状态下和容易造成润滑油膜破裂,从而导致局部疲劳磨损与咬粘等现象。目前研究较多的***PVD轴瓦(如AlSn20Cu)作为一种新型环保轴瓦在承载能力、抗咬合性能方面都具有无可比拟的优势,但该涂层在高速、乏油或干摩擦状态下摩擦系数依然较高,很容易发生高的磨损,具有较低的环境适应性,同时发动机反复启停时润滑油膜不能及时形成很容易降低轴瓦服役寿命,很大程度上限制了该涂层在高速、乏油-干摩擦等苛刻服役环境下的应用。
技术人员作了诸多努力,例如采用喷涂的方法制备聚合物减磨层用以解决轴瓦合金层或镀层经常剥落的问题从而延长轴瓦使用寿命,可以参考参考专利号为ZL201310062249.0的中国发明专利《一种轴瓦及其合金层喷涂MoS2工艺》(授权公告号为CN103122937B)等。然而,聚合物轴瓦在承载、抗疲劳及耐磨性能方面与PVD轴瓦仍然存在一定差距。截止目前,有关提高PVD轴瓦减磨层润滑性能的研究较少。前期我们通过结构设计制备了具有细Sn相的AlSn20Cu涂层,极大的提高了该涂层的抗疲劳性能,见专利号为ZL201410766300.0的中国发明专利《一种用于轴瓦上的细Sn相AlSn20Cu涂层及其制备方法》(授权公告号为CN104532189B)。因此,通过结构与成分设计改善AlSn20Cu涂层自润滑性能具有重要的研究意义。
发明内容
本发明所要解决的技术问题是针对上述的技术现状而另外提供一种低摩擦系数和低磨损率的轴瓦用全金属自润滑减摩涂层。
本发明所要解决的又一个技术问题是针对上述的技术现状而另外提供一种低摩擦系数和低磨损率的轴瓦用全金属自润滑减摩涂层的制备方法。
本发明解决上述技术问题所采用的技术方案为:一种轴瓦用全金属自润滑减摩涂层,其特征在于依次包括Ni栅层及磁控溅射的复合沉积层,该复合沉积层由AlSn20Cu层与Ag层交替沉积而成。
作为优选,于每个AlSn20Cu层的厚度为2~3um,每个Ag层的厚度为0.5um~1um。
作为优选,所述的复合沉积层共有8~12层镀膜涂层,并且,最上面一层为AlSn20Cu层。
一种轴瓦用全金属自润滑减摩涂层的制备方法,制备过程可以在非平衡磁控溅射镀膜设备上完成,其特征在于包括如下步骤:
①轴瓦样件表面清洗,将轴瓦毛坯样件在石油醚、酒精、丙酮中依次清洗后置于镀膜机真空腔室内抽真空至10-3Pa以下,向腔室内通入氩气作为离化气体,基底施加偏压,对轴瓦毛坯表面进行氩离子轰击清洗,除去轴瓦毛坯表面的吸附物;
②Ni栅层制备,清洗完毕后,利用磁控溅射的制备方法,首先在轴瓦毛坯表面沉积一层Ni栅层;
③Ag/AlSn20Cu多层复合涂层制备,选用高纯银靶和铝锡铜合金靶作为溅射靶材,氩气作为溅射气体;通过不断改变溅射靶种类、靶电流大小及沉积时间,实现Ag/AlSn20Cu多层结构交替和周期变化;涂层沉积完毕后待设备冷却至腔室温度小于40℃,释放真空取出样品。
作为优选,步骤①所述的轴瓦样件选自钢/CuPb22Sn4轴瓦毛坯或钢/AlZn4SiPb轴瓦毛坯。
作为优选,步骤①中腔室内气压保持在1.0~3.0Pa,基底偏压为-600~-1200V。
作为优选,步骤②中所述的Ni栅层制备调节如下:腔室气压保持在2╳10-2~4╳10-2Pa,溅射电流1~5A,脉冲偏压-150~-250V,过渡层厚度100~500nm。
作为优选,步骤②中所述的Ni栅层制备采用高纯Ni靶作为溅射靶材,氩气作为溅射气体,加偏压-150-300V用于沉积Ni栅层,沉积时间设为15-25分钟。
作为优选,步骤③中涂层沉积条件如下:腔室气压保持在2╳10-1~4╳10-1Pa,银靶与铝锡铜合金靶靶电流分别设为1~4A、2~10A,脉冲偏压分别设为-100~-600V、-100~-1000V,沉积时间分别为5~10min、20~50min。
作为优选,步骤③中所述的铝锡铜合金靶Al、Sn和Cu重量百分比分别为79%、20%和1%。
与现有技术相比,本发明的优点在于:AlSn20Cu层可以提供承载能力,软金属Ag具有良好的自润滑性能,此外,从Ag金属元素的电子结构和能带填充理论可以看出,Ag金属元素d轨道电子已满,Ag金属处于高能态,不易与其他元素发生化学键合,所以掺杂Ag不会改变AlSn20Cu涂层本来的键合方式,而且Ag纳米粒子的弹性模量较小,可以利用界面强化作用调控涂层的高应力及高脆性;其次,复合薄膜中Ag纳米晶的高比表面积使它具有高的化学活性,在摩擦过程中易于向界面扩散,形成具有低剪切作用的自润滑膜,提高AlSn20Cu涂层在多环境中的减摩抗磨作用。另一方面,制备的轴瓦样件在实际摩擦服役过程中产生的Ag膜屑可以作为润滑油添加剂降低整个固/油复合过程中的摩擦与磨损。
本发明制备的Ag/AlSn20Cu纳米多层交替结构设计,不仅使涂层组分多元化且有效的抑制了AlSn20Cu涂层中Sn相成分的长大提高薄膜膜基结合力。同时多层化设计有效缓解了涂层的应力、增强抗疲劳性能,实现了涂层力学性能和摩擦学性能的双向优化。涂层不仅可在不同油润滑条件(富油、乏油)下降低轴瓦部件的磨损,而且还可在高速、高载等苛刻环境中为滑动部件提供持续润滑。
本发明制备的润滑减摩涂层在多种服役环境(富油、乏油、高速、高载等)中都具有低的摩擦系数与磨损率,可以为以柴油机为代表的轴瓦摩擦部件提供良好的润滑性能。同时所用靶材简单易得,沉积工艺稳定,对获得更高品质轴瓦减摩涂层具有较好的适用性。
附图说明
图1为实施例1制备过程示意图:
图2为实施例1中制备涂层结构示意图。
图3为实施例1中制备涂层在高速、高载及油润滑环境中的摩擦系数变化曲线图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1,结合图1、图2和图3所示。
(1)轴瓦样件表面氩离子清洗:将钢/CuPb22Sn4轴瓦毛坯样件在石油醚、酒精、丙酮中依次清洗后置于镀膜机真空腔室内抽真空至1×10-3Pa以下,向真空腔室内通入高纯氩气使气压保持在1.5Pa。打开脉冲偏压电源,将基底偏压调制-800V,对轴瓦毛坯表面进行氩离子轰击清洗,清洗时间为30分钟,从而除去轴瓦毛坯表面的吸附物;
(2)Ni栅层制备:清洗完毕后,利用磁控溅射的方法首先在轴瓦毛坯表面沉积一层Ni栅层。实验中选用高纯Ni靶(纯度为99.99%)作为溅射靶材,氩气作为溅射气体,调节氩气使腔体内气压保持在2╳10-2Pa,加偏压-150V,靶电流调制3A用于沉积Ni栅层,沉积时间设为20分钟。
(3)Ag/AlSn20Cu多层复合涂层制备:选用高纯银靶(99.99%)和铝锡铜合金靶(Al、Sn和Cu重量百分比分别为79%、20%和1%)作为溅射靶材,氩气作为溅射气体。调节Ar气将腔室内气体保持在4╳10-1Pa,脉冲偏压保持在-200V。间歇打开Ag靶。铝锡铜合金靶交替沉积Ag层与AlSn20Cu层。沉积Ag层时,打开Ag靶溅射电源,调节电流为2A,沉积时间设为10分钟;制备AlSn20Cu层时,关闭银靶,打开铝锡铜合金靶电源,调节溅射电流为8A,沉积时间为30分钟。此循环持续5个周期涂层沉积完毕。待真空腔室冷却至40℃以下,放真空,取出样品。
结合图1所示,1-AlSnCu合金靶;2-Ni靶;3-Ag靶;4-气体。
结合图2所示,1a,2a,3a,4a,5a为AlSn20Cu层;1b,2b,3b,4b为Ag层,2c为Ni栅层,3c为轴瓦样件表面。
实施例1获得的涂层性能指标如表1所示
实施例2
(1)轴瓦样件表面氩离子清洗:将钢/AlZn4SiPb轴瓦毛坯样件在石油醚、酒精、丙酮中依次清洗后置于镀膜机真空腔室内抽真空至1×10-3Pa以下,向真空腔室内通入高纯氩气使气压保持在1.5Pa。打开脉冲偏压电源,将基底偏压调制-800V,对轴瓦毛坯表面进行氩离子轰击清洗,清洗时间为30分钟,从而除去轴瓦毛坯表面的吸附物;
(2)Ni栅层制备:清洗完毕后,利用磁控溅射的方法首先在轴瓦毛坯表面沉积一层Ni栅层。实验中选用高纯Ni靶(纯度为99.99%)作为溅射靶材,氩气作为溅射气体,调节氩气使腔体内气压保持在2╳10-2Pa,加偏压-200V,靶电流调制4A用于沉积Ni栅层,沉积时间设为25分钟。
(3)Ag/AlSn20Cu多层复合涂层制备:选用高纯银靶(99.99%)和铝锡铜合金靶(Al、Sn和Cu重量百分比分别为79%、20%和1%)作为溅射靶材,氩气作为溅射气体。调节Ar气将腔室内气体保持在4╳10-1Pa,脉冲偏压保持在-200V。间歇打开Ag靶。铝锡铜合金靶交替沉积Ag层与AlSn20Cu层。沉积Ag层时,打开Ag靶溅射电源,调节电流为3A,沉积时间设为8分钟;制备AlSn20Cu层时,关闭银靶,打开铝锡铜合金靶电源,调节溅射电流为10A,沉积时间为25分钟。此循环持续8个周期涂层沉积完毕。待真空腔室冷却至40℃以下,放真空,取出样品。
实施例3
(1)轴瓦样件表面氩离子清洗:将钢/AlZn4SiPb轴瓦毛坯样件在石油醚、酒精、丙酮中依次清洗后置于镀膜机真空腔室内抽真空至1×10-3Pa以下,向真空腔室内通入高纯氩气使气压保持在1.5Pa。打开脉冲偏压电源,将基底偏压调制-800V,对轴瓦毛坯表面进行氩离子轰击清洗,清洗时间为30分钟,从而除去轴瓦毛坯表面的吸附物;
(2)Ni栅层制备:清洗完毕后,利用磁控溅射的方法首先在轴瓦毛坯表面沉积一层Ni栅层。实验中选用高纯Ni靶(纯度为99.99%)作为溅射靶材,氩气作为溅射气体,调节氩气使腔体内气压保持在3╳10-2Pa,加偏压-150V,靶电流调制4A用于沉积Ni栅层,沉积时间设为25分钟。
(3)Ag/AlSn20Cu多层复合涂层制备:选用高纯银靶(99.99%)和铝锡铜合金靶(Al、Sn和Cu重量百分比分别为79%、20%和1%)作为溅射靶材,氩气作为溅射气体。调节Ar气将腔室内气体保持在4╳10-1Pa,脉冲偏压保持在-150V。间歇打开Ag靶。铝锡铜合金靶交替沉积Ag层与AlSn20Cu层。沉积Ag层时,打开Ag靶溅射电源,调节电流为3A,沉积时间设为10分钟;制备AlSn20Cu层时,关闭银靶,打开铝锡铜合金靶电源,调节溅射电流为10A,沉积时间为30分钟。此循环持续10个周期涂层沉积完毕。待真空腔室冷却至40℃以下,放真空,取出样品。

Claims (10)

1.一种轴瓦用全金属自润滑减摩涂层,其特征在于依次包括Ni栅层及磁控溅射的复合沉积层,该复合沉积层由AlSn20Cu层与Ag层交替沉积而成。
2.根据权利要求1所述的轴瓦用全金属自润滑减摩涂层,其特征在于每个AlSn20Cu层的厚度为2~3um,每个Ag层的厚度为0.5um~1um。
3.根据权利要求1所述的轴瓦用全金属自润滑减摩涂层,其特征在于所述的复合沉积层共有8~12层镀膜涂层,并且,最上面一层为AlSn20Cu层。
4.一种权利要求1或2或3所述的轴瓦用全金属自润滑减摩涂层的制备方法,其特征在于包括如下步骤:
①轴瓦样件表面清洗,将轴瓦毛坯样件在石油醚、酒精、丙酮中依次清洗后置于镀膜机真空腔室内抽真空至10-3Pa以下,向腔室内通入氩气作为离化气体,基底施加偏压,对轴瓦毛坯表面进行氩离子轰击清洗,除去轴瓦毛坯表面的吸附物;
②Ni栅层制备,清洗完毕后,利用磁控溅射的制备方法,首先在轴瓦毛坯表面沉积一层Ni栅层;
③Ag/AlSn20Cu多层复合涂层制备,选用高纯银靶和铝锡铜合金靶作为溅射靶材,氩气作为溅射气体;通过不断改变溅射靶种类、靶电流大小及沉积时间,实现Ag/AlSn20Cu多层结构交替和周期变化;涂层沉积完毕后待设备冷却至腔室温度小于40℃,释放真空取出样品。
5.根据权利要求4所述的制备方法,其特征在于步骤①所述的轴瓦样件选自钢/CuPb22Sn4轴瓦毛坯或钢/AlZn4SiPb轴瓦毛坯。
6.根据权利要求4所述的制备方法,其特征在于步骤①中腔室内气压保持在1.0~3.0Pa,基底偏压为-600~-1200V。
7.根据权利要求4所述的制备方法,其特征在于步骤②中所述的Ni栅层制备调节如下:腔室气压保持在2╳10-2~4╳10-2Pa,溅射电流1~5A,脉冲偏压-150~-250V,过渡层厚度100~500nm。
8.根据权利要求4所述的制备方法,其特征在于步骤②中所述的Ni栅层制备采用高纯Ni靶作为溅射靶材,氩气作为溅射气体,加偏压-150-300V用于沉积Ni栅层,沉积时间设为15-25分钟。
9.根据权利要求4所述的制备方法,其特征在于步骤③中涂层沉积条件如下:腔室气压保持在2╳10-1~4╳10-1Pa,银靶与铝锡铜合金靶靶电流分别设为1~4A、2~10A,脉冲偏压分别设为-100~-600V、-100~-1000V,沉积时间分别为5~10min、20~50min。
10.根据权利要求4所述的制备方法,其特征在于步骤③中所述的铝锡铜合金靶Al、Sn和Cu重量百分比分别为79%、20%和1%。
CN201710879833.3A 2017-09-26 2017-09-26 轴瓦用全金属自润滑减摩涂层及其制备方法 Active CN107699859B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710879833.3A CN107699859B (zh) 2017-09-26 2017-09-26 轴瓦用全金属自润滑减摩涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710879833.3A CN107699859B (zh) 2017-09-26 2017-09-26 轴瓦用全金属自润滑减摩涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN107699859A true CN107699859A (zh) 2018-02-16
CN107699859B CN107699859B (zh) 2019-11-22

Family

ID=61174875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710879833.3A Active CN107699859B (zh) 2017-09-26 2017-09-26 轴瓦用全金属自润滑减摩涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN107699859B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707868A (zh) * 2018-06-08 2018-10-26 贵州航天精工制造有限公司 一种真空离子镀Ag纳米复合涂层紧固件及制备方法
CN112111717A (zh) * 2020-09-01 2020-12-22 星弧涂层新材料科技(苏州)股份有限公司 轴瓦复合涂层加工方法及基于pvd技术的轴瓦复合涂层
CN115029678A (zh) * 2022-03-29 2022-09-09 核工业理化工程研究院 一种针形轴安装夹具及针形轴端部球面改性处理方法
CN115030958A (zh) * 2022-06-06 2022-09-09 浙江江南石化机械有限公司 一种高密度熔融泵银轴瓦及其加工方法、设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922514A (zh) * 2010-08-03 2010-12-22 广州市安达汽车零件有限公司 一种具有真空溅镀镀层的轴瓦及其生产方法
CN104532189A (zh) * 2014-12-12 2015-04-22 中国兵器科学研究院宁波分院 一种用于轴瓦上的细Sn相AlSn20Cu涂层及其制备方法
CN104962859A (zh) * 2014-09-05 2015-10-07 北京机械工业自动化研究所 WS2/Ag复合梯度固体润滑薄膜的制造方法
CN106811725A (zh) * 2015-11-27 2017-06-09 中国科学院宁波材料技术与工程研究所 宽温域自适应润滑涂层及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922514A (zh) * 2010-08-03 2010-12-22 广州市安达汽车零件有限公司 一种具有真空溅镀镀层的轴瓦及其生产方法
CN104962859A (zh) * 2014-09-05 2015-10-07 北京机械工业自动化研究所 WS2/Ag复合梯度固体润滑薄膜的制造方法
CN104532189A (zh) * 2014-12-12 2015-04-22 中国兵器科学研究院宁波分院 一种用于轴瓦上的细Sn相AlSn20Cu涂层及其制备方法
CN106811725A (zh) * 2015-11-27 2017-06-09 中国科学院宁波材料技术与工程研究所 宽温域自适应润滑涂层及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘道新等: "Ag/Ni多层膜对钛合金微动磨损和微动疲劳抗力的影响", 《摩擦学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707868A (zh) * 2018-06-08 2018-10-26 贵州航天精工制造有限公司 一种真空离子镀Ag纳米复合涂层紧固件及制备方法
CN108707868B (zh) * 2018-06-08 2021-05-28 贵州航天精工制造有限公司 一种真空离子镀Ag纳米复合涂层紧固件及制备方法
CN112111717A (zh) * 2020-09-01 2020-12-22 星弧涂层新材料科技(苏州)股份有限公司 轴瓦复合涂层加工方法及基于pvd技术的轴瓦复合涂层
CN115029678A (zh) * 2022-03-29 2022-09-09 核工业理化工程研究院 一种针形轴安装夹具及针形轴端部球面改性处理方法
CN115030958A (zh) * 2022-06-06 2022-09-09 浙江江南石化机械有限公司 一种高密度熔融泵银轴瓦及其加工方法、设备
CN115030958B (zh) * 2022-06-06 2024-02-13 浙江江南石化机械有限公司 一种高密度熔融泵银轴瓦及其加工方法、设备

Also Published As

Publication number Publication date
CN107699859B (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN107699859B (zh) 轴瓦用全金属自润滑减摩涂层及其制备方法
Ding et al. Tribological properties of Cr-and Ti-doped MoS2 composite coatings under different humidity atmosphere
Nossa et al. The influence of the addition of C and N on the wear behaviour of W–S–C/N coatings
Spalvins Coatings for wear and lubrication
Cui et al. Comparative study on tribological properties of the sulfurizing layers on Fe, Ni and Co based laser cladding coatings
Arslan et al. The effect of deposition parameters and Ti content on structural and wear properties of MoS2Ti coatings
CN107034440B (zh) 一种复合类金刚石碳膜及其制备方法
CN107815645B (zh) 一种低摩擦系数MoS2基金属复合固体润滑膜
Ling et al. Microstructure and improved tribological performance of graphite/copper‑zinc composite coatings fabricated by low pressure cold spraying
CN107841717B (zh) 一种低摩擦系数MoS2基金属-氧化物复合固体润滑薄膜的制备方法
CN106811725A (zh) 宽温域自适应润滑涂层及其制备方法与应用
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN109504945A (zh) 一种空间环境用长效抗菌固体润滑膜层及其制备方法
CN103362954B (zh) 一种具有磁控溅射自润滑复合镀层的轴瓦及其生产方法
CN102744930B (zh) 空调压缩机零部件表面的强韧润滑复合薄膜及其制备方法
CN107058948B (zh) 一种软硬复合涂层刀具及其制备方法
JP2020190031A (ja) 耐摩耗および減摩の作用を有するメッキ層、その調製方法、およびピストンリング
CN113621912A (zh) 一种梯度自润滑复合涂层及其制备方法
Ouyang et al. Friction and wear characteristics of a Ti-containing diamond-like carbon coating with an SRV tester at high contact load and elevated temperature
CN107058949B (zh) 一种耐磨二硫化钨薄膜的制备方法
Kumar et al. Self-lubricating composite coatings: A review of deposition techniques and material advancement
CN101885250A (zh) 一种自润滑金属材料
CN109930108A (zh) 一种高温耐磨自润滑TiB2基涂层及其制备方法和应用
Kim et al. Mechanical and friction behavior of sputtered Mo–Cu–(N) coatings under various N2 gas flow using a multicomponent single alloy target
CN107130223A (zh) 一种新型超润滑固体涂层制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant