CN108695137A - 一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件 - Google Patents

一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件 Download PDF

Info

Publication number
CN108695137A
CN108695137A CN201710233270.0A CN201710233270A CN108695137A CN 108695137 A CN108695137 A CN 108695137A CN 201710233270 A CN201710233270 A CN 201710233270A CN 108695137 A CN108695137 A CN 108695137A
Authority
CN
China
Prior art keywords
film
nano
particles
preparation
crosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710233270.0A
Other languages
English (en)
Other versions
CN108695137B (zh
Inventor
陈崧
钱磊
杨行
杨一行
曹蔚然
向超宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Corp
Original Assignee
TCL Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201710233270.0A priority Critical patent/CN108695137B/zh
Application filed by TCL Corp filed Critical TCL Corp
Priority to KR1020197028863A priority patent/KR102260236B1/ko
Priority to US16/603,772 priority patent/US20200313089A1/en
Priority to EP18784835.3A priority patent/EP3611756A4/en
Priority to JP2020502747A priority patent/JP7075476B2/ja
Priority to PCT/CN2018/079025 priority patent/WO2018188448A1/zh
Publication of CN108695137A publication Critical patent/CN108695137A/zh
Application granted granted Critical
Publication of CN108695137B publication Critical patent/CN108695137B/zh
Priority to US17/874,934 priority patent/US11778891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件,其中,包括:将纳米颗粒分散在溶剂中,并搅拌均匀,得到纳米颗粒溶液;通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜,并通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。本发明采用在纳米颗粒成膜时,通入组合气体,促使颗粒之间相互交联,由此增加颗粒之间的电学耦合,降低载流子传输的势垒,增加载流子迁移率,从而大幅度提升电学性能。

Description

一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件
技术领域
本发明涉及器件薄膜制备领域,尤其涉及一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件。
背景技术
氧化物纳米颗粒(或球形氧化物纳米晶)具有良好的结晶程度,这保证了其与体材料(低维材料)相似的光学、电学性质;另一方面,由于纳米颗粒自组装成膜的效果很好,使低成本的涂布制备工艺可以被应用。溶液法制备的光电子器件的过程中,纳米颗粒是形成相应氧化物薄膜的重要解决方案之一。常见的例子包括氧化锌(ZnOx)纳米颗粒,氧化钛(TiOx)颗粒的薄膜在发光二极管、薄膜太阳能电池、薄膜晶体管中作为传输电子的半导体材料;氧化镍(NiOx)在同样器件中作为传输空穴的半导体材料。
尽管如此,纳米颗粒之间相互堆积形成的薄膜与体材料薄膜仍然存在区别,这主要体现在载流子的传输特性上。虽然纳米颗粒内部具有良好的结晶性,但这样的结构只局限在纳米级别的范围内,即便在密排的情况下,纳米颗粒之间往往是由绝缘的表面配体填充甚至没有任何物质填充。如此,纳米颗粒之间存在相当高的载流子传输势垒,载流子在纳米颗粒薄膜内部的传输只能遵循跳跃式传输的规律,这导致材料在薄膜尺度下表现出的载流子迁移率远小于相应的体材料薄膜。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件,旨在解决现有器件薄膜的载流子传输势垒较高,载流子迁移率较低的问题。
本发明的技术方案如下:
一种交联纳米颗粒薄膜的制备方法,其中,包括:
步骤A、将纳米颗粒分散在溶剂中,并搅拌均匀,得到纳米颗粒溶液;
步骤B、通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜,并通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。
所述的交联纳米颗粒薄膜的制备方法,其中,所述组合气体包括还原性气体、氧气、水汽和二氧化碳。
所述的交联纳米颗粒薄膜的制备方法,其中,还原性气体偏压控制在1~100Pa之间,氧气偏压控制在0~2×104Pa之间,水汽偏压控制在0~2×103Pa之间,二氧化碳偏压控制在0~100Pa之间。
所述的交联纳米颗粒薄膜的制备方法,其中,所述步骤A中,所述纳米颗粒溶液的质量浓度为1~100mg/ml。
所述的交联纳米颗粒薄膜的制备方法,其中,所述纳米颗粒为氧化物纳米颗粒、硫化物纳米颗粒、硒化物纳米颗粒、氮化物纳米颗粒、氟化物纳米颗粒中的一种或多种。
所述的交联纳米颗粒薄膜的制备方法,其中,所述纳米颗粒的平均直径控制在5nm以内。
所述的交联纳米颗粒薄膜的制备方法,其中,所述溶剂为醇类溶剂。
所述的交联纳米颗粒薄膜的制备方法,其中,所述步骤B具体包括:
步骤B1、首先将纳米颗粒溶液置于密闭的环境中,通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜;
步骤B2、然后往密闭的环境中通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。
所述的交联纳米颗粒薄膜的制备方法,其中,所述步骤B具体包括:
步骤B1’、首先将纳米颗粒溶液置于惰性气体环境中,通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜;
步骤B2’、然后将纳米颗粒薄膜置于密闭的环境中,往密闭的环境中通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。
所述的交联纳米颗粒薄膜的制备方法,其中,所述还原性气体为一氧化碳、氢气和氨气中的一种。
所述的交联纳米颗粒薄膜的制备方法,其中,所述步骤B中,所述交联纳米颗粒薄膜的厚度为15~60nm。
一种交联纳米颗粒薄膜,其中,采用如上任一项所述的交联纳米颗粒薄膜的制备方法制备而成。
一种薄膜光电子器件,其中,包括如上所述的交联纳米颗粒薄膜。
所述的薄膜光电子器件,其中,所述薄膜光电子器件为电致发光器件、薄膜光伏、薄膜光探测器、薄膜晶体管中的任意一种。
有益效果:本发明在纳米颗粒成膜时使颗粒之间相互交联,以增加颗粒之间的电学耦合,降低载流子传输的势垒,增加载流子迁移率,从而大幅度提升电学性能,这样制备出的纳米颗粒薄膜可以显著提升薄膜光电子器件的性能。
附图说明
图1为现有未交联氧化锌纳米颗粒薄膜的结构示意图。
图2为本发明方法制备的交联氧化锌纳米颗粒薄膜的结构示意图。
图3为不同薄膜对ITO/NPB/MoOx/Al器件的电流-电压曲线示意图。
具体实施方式
本发明提供一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的一种交联纳米颗粒薄膜的制备方法较佳实施例,其中,包括:
步骤A、将纳米颗粒分散在溶剂中,并搅拌均匀,得到纳米颗粒溶液;
所述步骤A具体为,按质量浓度为1~100mg/ml的配比,将纳米颗粒分散在溶剂中,并搅拌至混合均匀,配制得到可供溶液法成膜使用的纳米颗粒溶液。其中,所述纳米颗粒可以为宽带隙的氧化物纳米颗粒、硫化物纳米颗粒、硒化物纳米颗粒、氮化物纳米颗粒、氟化物纳米颗粒中的一种或多种,所述氧化物纳米颗粒可以为但不限于ZnOx(如ZnO)、TiOx(如TiO2)等中的一种;所述硫化物纳米颗粒可以为但不限于硫化锌、硫化钼中的一种;所述硒化物纳米颗粒可以为但不限于硒化锌、硒化铅中的一种;所述氮化物纳米颗粒可以为但不限于氮化硅、氮化铝中的一种;所述氟化物纳米颗粒可以为但不限于氟化镧、氟化钠中的一种。本发明控制纳米颗粒的尺寸,较佳地将球状纳米颗粒的平均直径控制在5nm以内,以保证有足量表面态金属原子可以参与反应。所述溶剂可以为醇类溶剂,如甲醇、乙醇等。
步骤B、通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜,并通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。本发明通过溶液法沉积薄膜,所述溶液法可以为旋涂、喷墨打印、喷涂、刮刀涂布等。
具体地,所述组合气体包括还原性气体、氧气、水汽和二氧化碳。较佳地,还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在0~2×104Pa之间,水汽偏压控制在0~2×103Pa之间、二氧化碳偏压控制在0~100Pa之间。本发明控制与膜接触的组合气体,较佳地将与膜接触的组合气体控制在上述偏压范围内,这是因为在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
下面对上述各类型纳米颗粒发生交联反应的条件进行详细说明。
1、氧化物纳米颗粒
纳米颗粒为氧化锌纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在0~1×103Pa之间,水汽偏压控制在0~1×103Pa之间、二氧化碳偏压控制在0~100Pa之间。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
纳米颗粒为氧化钛纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在0~1×104Pa之间,水汽偏压控制在0~2×103Pa之间、二氧化碳偏压控制在0~100Pa之间。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
纳米颗粒为氧化镍纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在0~5×103Pa之间,水汽偏压控制在0~2×103Pa之间、二氧化碳偏压控制在0~100Pa之间。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
2、硫化物纳米颗粒
纳米颗粒为硫化锌纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在小于0.1Pa,水汽偏压控制在0~2×103Pa之间、二氧化碳偏压控制在0~100Pa之间。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
纳米颗粒为硫化钼纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在小于0.1Pa,水汽偏压控制在0~2×103Pa之间、二氧化碳偏压控制在0~100Pa之间。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
3、硒化物纳米颗粒
纳米颗粒为硒化锌纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在小于0.1Pa,水汽偏压控制在0~1×102Pa之间、二氧化碳偏压控制在0~10Pa之间。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
纳米颗粒为硒化铅纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在小于0.1Pa,水汽偏压控制在小于0.1Pa、二氧化碳偏压控制在0~100Pa之间。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
4、氮化物纳米颗粒
纳米颗粒为氮化硅纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在0.1~1Pa,水汽偏压控制在0~2×103Pa之间、二氧化碳偏压控制在0~100Pa之间。此外,氮气保持在1×105Pa左右。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
纳米颗粒为氮化铝纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在小于0.1Pa,水汽偏压控制在0~2×103Pa之间、二氧化碳偏压控制在10~100Pa之间。此外,氮气保持在1×105Pa左右。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
5、氟化物纳米颗粒
纳米颗粒为氟化镧纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在小于0.1Pa,水汽偏压控制在0~1×102Pa之间、二氧化碳偏压控制在0~10Pa之间。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
纳米颗粒为氟化钠纳米颗粒时,将还原性气体(如一氧化碳、氢气或氨气等)偏压控制在1~100Pa之间,氧气偏压控制在小于0.1Pa,水汽偏压控制在0~2×103Pa之间、二氧化碳偏压控制在10~100Pa之间。在该偏压范围内制成的薄膜致密度会较高,薄膜中载流子电子迁移率也会较高。
本发明使纳米颗粒在成膜时相互交联,交联是指纳米颗粒之间有物质填充并通过化学键使纳米颗粒连接。相对应地,未交联的纳米颗粒之间没有通过化学键作用连接的物质。本发明通过上述交联方法,可提高相应薄膜的致密度和载流子迁移率。
本发明可在非真空条件下将纳米颗粒溶液直接制成纳米颗粒薄膜,具体地,所述步骤B具体包括:
步骤B1、首先将纳米颗粒溶液置于密闭的环境中,通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜;
步骤B2、然后往密闭的环境中通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。
上述步骤即为,在密闭的非真空条件下将纳米颗粒溶液制成纳米颗粒薄膜,然后往该密闭的环境中通入上述组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。
本发明不限于上述气体环境下制成交联纳米颗粒薄膜,还可先在惰性气体条件下制成纳米颗粒薄膜后,将得到的纳米颗粒薄膜置于密闭的环境中,然后通入组合气体促使交联反应发生,得到交联纳米颗粒薄膜。具体地,所述步骤B具体包括:
步骤B1’、首先将纳米颗粒溶液置于惰性气体环境中,通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜;
步骤B2’、然后将纳米颗粒薄膜置于密闭的环境中,往密闭的环境中通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。
本发明上述交联反应结束后,还对交联纳米颗粒薄膜进行干燥处理,最终得到厚度为15~60nm的交联纳米颗粒薄膜。其中干燥温度高于纳米颗粒溶液中溶剂的沸点;根据膜厚,干燥时间大于15分钟之每50纳米。
本发明还提供一种交联纳米颗粒薄膜,其中,采用如上任一项所述的交联纳米颗粒薄膜的制备方法制备而成。
通常的纳米颗粒薄膜由相互不交联的纳米颗粒自组装而成,本发明采用在纳米颗粒成膜时,通入组合气体,促使颗粒之间相互交联,由此增加颗粒之间的电学耦合,降低载流子传输的势垒,增加载流子迁移率,从而大幅度提升电学性能。将如此获得的交联纳米颗粒薄膜应用在诸如溶液法制备的发光二极管、薄膜太阳能电池、光探测器、薄膜晶体管中,可显著提升上述器件的性能。
下面以氧化锌纳米颗粒为例,对现有未交联氧化锌纳米颗粒薄膜和通过本发明方法制备的交联氧化锌纳米颗粒薄膜的性能进行测试。结合图1-3,图1为现有未交联氧化锌纳米颗粒薄膜的结构示意图,图2为本发明方法制备的交联氧化锌纳米颗粒薄膜的结构示意图,图3为不同薄膜对ITO/NPB/MoOx/Al器件的电流-电压曲线示意图。从图1可以看出,未交联的纳米颗粒1之间没有通过化学键作用连接的物质;从图2可以看出,纳米颗粒2之间有物质3填充并通过化学键使纳米颗粒2连接。由于加入的氧化锌对ITO/NPB/MoOx/Al这个结构的电流有非常有效的抑制作用,可以通过观察电流是否增加的方式判断ZnO纳米颗粒薄膜有没有在浸泡过程中脱离。从图3可以看出,交联ZnO纳米颗粒薄膜不论是否经过醇类溶剂(如乙醇)浸泡,电流都保持在较低数值,这说明交联ZnO纳米颗粒薄膜没有在浸泡过程中脱离,使得ZnO对ITO/NPB/MoOx/Al这个结构的电流起到了明显的抑制作用;而未交联的ZnO纳米颗粒薄膜经过醇类溶剂(如乙醇)浸泡后,电流显著升高,这说明未交联的ZnO纳米颗粒薄膜在浸泡过程中脱落了,使响应器件的电流显著升高,并非常接近不添加ZnO纳米颗粒薄膜的器件。因此,氧化锌纳米颗粒交联后得到的交联氧化锌纳米颗粒薄膜在原溶剂(指分散氧化锌纳米颗粒时采用的溶剂,通常是醇类溶剂)中浸泡后没有明显溶解或物质脱离;相反,未经交联的纳米颗粒薄膜经过浸泡后很容易脱落。
本发明还提供一种薄膜光电子器件,其中,包括如上所述的交联纳米颗粒薄膜。具体地,所述薄膜光电子器件为电致发光器件、薄膜光伏、薄膜光探测器、薄膜晶体管中的任意一种。
本发明使纳米颗粒交联可以增加薄膜的致密度并增加载流子在薄膜内的迁移率。将交联的纳米颗粒薄膜应用在溶液法制备的电致发光器件中作为电子传输层可以改善载流子平衡,提高发光效率和器件寿命;将其应用在溶液法制备的薄膜光伏中作为电子传输层可以显著降低器件的线性电阻、提高并联电阻,提高器件的能量转换效率;将其应用在溶液法制备的薄膜光探测器中作为电子抽取层和空穴阻挡层可以降低电流,提高探测率;将其应用在溶液法制备的薄膜晶体管中可以提高半导体层的载流子迁移率,增加源极-漏极电流,提高响应频率。
综上所述,本发明提供的一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件,本发明采用在纳米颗粒成膜时,通入组合气体,促使颗粒之间相互交联,由此增加颗粒之间的电学耦合,降低载流子传输的势垒,增加载流子迁移率,从而大幅度提升电学性能。将如此获得的交联纳米颗粒薄膜应用在溶液法制备的薄膜光电子器件中,可以显著提高器件的性能。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (14)

1.一种交联纳米颗粒薄膜的制备方法,其特征在于,包括:
步骤A、将纳米颗粒分散在溶剂中,并搅拌均匀,得到纳米颗粒溶液;
步骤B、通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜,并通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。
2.根据权利要求1所述的交联纳米颗粒薄膜的制备方法,其特征在于,
所述组合气体包括还原性气体、氧气、水汽和二氧化碳。
3.根据权利要求2所述的交联纳米颗粒薄膜的制备方法,其特征在于,还原性气体偏压控制在1~100Pa之间,氧气偏压控制在0~2×104Pa之间,水汽偏压控制在0~2×103Pa之间,二氧化碳偏压控制在0~100Pa之间。
4.根据权利要求1所述的交联纳米颗粒薄膜的制备方法,其特征在于,所述步骤A中,所述纳米颗粒溶液的质量浓度为1~100mg/ml。
5.根据权利要求1所述的交联纳米颗粒薄膜的制备方法,其特征在于,所述纳米颗粒为氧化物纳米颗粒、硫化物纳米颗粒、硒化物纳米颗粒、氮化物纳米颗粒、氟化物纳米颗粒中的一种或多种。
6.根据权利要求1所述的交联纳米颗粒薄膜的制备方法,其特征在于,所述纳米颗粒的平均直径控制在5nm以内。
7.根据权利要求1所述的交联纳米颗粒薄膜的制备方法,其特征在于,所述溶剂为醇类溶剂。
8.根据权利要求1所述的交联纳米颗粒薄膜的制备方法,其特征在于,所述步骤B具体包括:
步骤B1、首先将纳米颗粒溶液置于密闭的环境中,通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜;
步骤B2、然后往密闭的环境中通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。
9.根据权利要求1所述的交联纳米颗粒薄膜的制备方法,其特征在于,所述步骤B具体包括:
步骤B1’、首先将纳米颗粒溶液置于惰性气体环境中,通过溶液法将纳米颗粒溶液制成纳米颗粒薄膜;
步骤B2’、然后将纳米颗粒薄膜置于密闭的环境中,往密闭的环境中通入组合气体,促使交联反应发生,得到交联纳米颗粒薄膜。
10.根据权利要求2所述的交联纳米颗粒薄膜的制备方法,其特征在于,所述还原性气体为一氧化碳、氢气和氨气中的一种。
11.根据权利要求1所述的交联纳米颗粒薄膜的制备方法,其特征在于,所述步骤B中,所述交联纳米颗粒薄膜的厚度为15~60nm。
12.一种交联纳米颗粒薄膜,其特征在于,采用如权利要求1~11任一项所述的交联纳米颗粒薄膜的制备方法制备而成。
13.一种薄膜光电子器件,其特征在于,包括如权利要求12所述的交联纳米颗粒薄膜。
14.根据权利要求13所述的薄膜光电子器件,其特征在于,所述薄膜光电子器件为电致发光器件、薄膜光伏、薄膜光探测器、薄膜晶体管中的任意一种。
CN201710233270.0A 2017-04-11 2017-04-11 一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件 Active CN108695137B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201710233270.0A CN108695137B (zh) 2017-04-11 2017-04-11 一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件
US16/603,772 US20200313089A1 (en) 2017-04-11 2018-03-14 Crosslinked nanoparticle thin film, preparation method thereof, and thin film optoelectronic device having the same
EP18784835.3A EP3611756A4 (en) 2017-04-11 2018-03-14 CROSSLINKED NANOPARTICLE THIN-FILM AND MANUFACTURING METHOD FOR IT AS WELL AS OPTOELECTRONIC THIN-FILM DEVICE
JP2020502747A JP7075476B2 (ja) 2017-04-11 2018-03-14 架橋ナノ粒子薄膜及び製造方法、並びに薄膜光電子デバイス
KR1020197028863A KR102260236B1 (ko) 2017-04-11 2018-03-14 가교 나노 입자 박막 및 제조방법과 박막 광전자 소자
PCT/CN2018/079025 WO2018188448A1 (zh) 2017-04-11 2018-03-14 一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件
US17/874,934 US11778891B2 (en) 2017-04-11 2022-07-27 Crosslinked nanoparticle thin film, preparation method thereof, and thin film optoelectronic device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710233270.0A CN108695137B (zh) 2017-04-11 2017-04-11 一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件

Publications (2)

Publication Number Publication Date
CN108695137A true CN108695137A (zh) 2018-10-23
CN108695137B CN108695137B (zh) 2020-05-05

Family

ID=63842502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710233270.0A Active CN108695137B (zh) 2017-04-11 2017-04-11 一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件

Country Status (1)

Country Link
CN (1) CN108695137B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397671A (zh) * 2019-08-19 2021-02-23 Tcl集团股份有限公司 一种改性硫化锌及其制备方法与量子点发光二极管
CN112397657A (zh) * 2019-08-19 2021-02-23 Tcl集团股份有限公司 一种改性硫化锌及其制备方法与量子点发光二极管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112369B2 (en) * 2004-03-02 2006-09-26 Bridgestone Corporation Nano-sized polymer-metal composites
CN101238166A (zh) * 2005-07-01 2008-08-06 金文申有限公司 制备多孔网状复合材料的方法
CN102241482A (zh) * 2011-04-22 2011-11-16 中国科学院上海硅酸盐研究所 智能控温二氧化钒纳米复合多功能薄膜及其制备方法
CN102394256A (zh) * 2011-11-16 2012-03-28 浙江大学 用于太阳电池吸收层的铜铟硫阵列化薄膜的制备方法
CN103828018A (zh) * 2011-01-28 2014-05-28 西北大学 金属氧化物薄膜的低温制造技术及衍生自纳米材料的金属复合物薄膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112369B2 (en) * 2004-03-02 2006-09-26 Bridgestone Corporation Nano-sized polymer-metal composites
CN101238166A (zh) * 2005-07-01 2008-08-06 金文申有限公司 制备多孔网状复合材料的方法
CN103828018A (zh) * 2011-01-28 2014-05-28 西北大学 金属氧化物薄膜的低温制造技术及衍生自纳米材料的金属复合物薄膜
CN102241482A (zh) * 2011-04-22 2011-11-16 中国科学院上海硅酸盐研究所 智能控温二氧化钒纳米复合多功能薄膜及其制备方法
CN102394256A (zh) * 2011-11-16 2012-03-28 浙江大学 用于太阳电池吸收层的铜铟硫阵列化薄膜的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397671A (zh) * 2019-08-19 2021-02-23 Tcl集团股份有限公司 一种改性硫化锌及其制备方法与量子点发光二极管
CN112397657A (zh) * 2019-08-19 2021-02-23 Tcl集团股份有限公司 一种改性硫化锌及其制备方法与量子点发光二极管
CN112397657B (zh) * 2019-08-19 2022-05-03 Tcl科技集团股份有限公司 一种改性硫化锌及其制备方法与量子点发光二极管

Also Published As

Publication number Publication date
CN108695137B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
Luther et al. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell
Rhee et al. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites
Hu et al. Enhanced optoelectronic performance in AgBiS 2 nanocrystals obtained via an improved amine-based synthesis route
Sharma et al. Study of barrier inhomogeneities in I–VT and CVT characteristics of Al/Al2O3/PVA: n-ZnSe metal–oxide–semiconductor diode
Wang et al. Solution synthesized p-type copper gallium oxide nanoplates as hole transport layer for organic photovoltaic devices
Li et al. High‐efficiency and durable inverted perovskite solar cells with thermally‐induced phase‐change electron extraction layer
Kim et al. Air-stable and efficient inorganic–organic heterojunction solar cells using PbS colloidal quantum dots co-capped by 1-dodecanethiol and oleic acid
De Kergommeaux et al. Synthesis of colloidal CuInSe2 nanocrystals films for photovoltaic applications
Yuan et al. Optoelectronic properties of ZnO nanoparticle/pentacene heterojunction photodiode
Yang et al. Suppressed interfacial charge recombination of PbS quantum dot photovoltaics by graphene incorporated into ZnO nanoparticles
Yang et al. Oxygen annealing of the ZnO nanoparticle layer for the high-performance PbS colloidal quantum-dot photovoltaics
CN108496240A (zh) 垂直场效应晶体管
Erdal et al. A comparison of the electrical characteristics of TiO 2/p-Si/Ag, GNR-TiO 2/p-Si/Ag and MWCNT-TiO 2/p-Si/Ag photodiodes
CN108695413B (zh) 一种电致发光器件及其制备方法
Lim et al. Solution-dispersed copper iodide anode buffer layer gives P3HT: PCBM-based organic solar cells an efficiency boost
Jin et al. Efficient silicon solar cells applying cuprous sulfide as hole-selective contact
CN108695137A (zh) 一种交联纳米颗粒薄膜及制备方法与薄膜光电子器件
Saidi et al. Optical, morphological, and electrical properties of P3HT: SiNWs nanocomposite deposited on flexible substrate: effect of SiNWs concentration
Al-Ghamdi et al. Electronic and photovoltage performance of TTBTP/n-Si heterojunctions for possible use in solar cell
CN108695406B (zh) 一种薄膜光探测器及其制备方法
Lim et al. Effect of bandgap variation on photovoltaic properties of lead sulfide quantum dot solar cell
Mohammad et al. Effect of substrates on structural, morphological, optical and electrical characteristics on poly (9, 9-di-n-octylfluorenyl-2, 7-diyl)(PFO) thin films
CN108695376B (zh) 一种薄膜晶体管及其制备方法
Dhingra et al. ZnO/PPy hybrid heterojunction as an ultraviolet photosensor
Mehrabian et al. Experimental optimization of molar concentration to fabricate PbS quantum dots for solar cell applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 516006 TCL technology building, No.17, Huifeng Third Road, Zhongkai high tech Zone, Huizhou City, Guangdong Province

Applicant after: TCL Technology Group Co., Ltd

Address before: 516006 Guangdong province Huizhou Zhongkai hi tech Development Zone No. nineteen District

Applicant before: TCL RESEARCH AMERICA Inc.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant