CN108628172A - 一种基于扩张状态观测器的机械臂高精度运动控制方法 - Google Patents

一种基于扩张状态观测器的机械臂高精度运动控制方法 Download PDF

Info

Publication number
CN108628172A
CN108628172A CN201810658080.8A CN201810658080A CN108628172A CN 108628172 A CN108628172 A CN 108628172A CN 201810658080 A CN201810658080 A CN 201810658080A CN 108628172 A CN108628172 A CN 108628172A
Authority
CN
China
Prior art keywords
mechanical arm
controller
extended state
state observer
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810658080.8A
Other languages
English (en)
Other versions
CN108628172B (zh
Inventor
胡健
段理想
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810658080.8A priority Critical patent/CN108628172B/zh
Publication of CN108628172A publication Critical patent/CN108628172A/zh
Application granted granted Critical
Publication of CN108628172B publication Critical patent/CN108628172B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Manipulator (AREA)

Abstract

本发明提出了一种基于扩张状态观测器的机械臂高精度运动控制方法,首选建立具有模型不确定性的机器臂***状态方程:建立机械臂***名义模型;考虑外界干扰因数造成的不确定项,建立机械臂***名义模型;建立具有模型不确定性的机器臂***状态方程;基于反步法设计机械臂控制器;基于扩张状态观测器设计机械臂控制器:设计一个状态观测器对不确定集合进行观测从而在控制器中加以补偿,设计扩张状态观测器对模型不确定性及干扰进行估计;基于扩张状态观测器设计机械臂***控制器。本发明的方法具有良好的鲁棒作用,并能够保证对跟关节的角度进行很好的跟踪。

Description

一种基于扩张状态观测器的机械臂高精度运动控制方法
技术领域
本发明属于机械臂控制领域,特别是一种基于扩张状态观测器的机械臂高精度运动 控制方法。
背景技术
机械臂作为一种机电一体化设备,能够高效的完成各种复杂和危险的作业,提高生 产效率,在工业、日常生活中得到广泛的应用。近年来该领域的快速发展,使得对机械臂的高精度运动控制提出更高的要求。但机械臂***作为一种复杂的非线性***,存在 结构和非结构不确定性,如未建模干扰,非线性摩擦,参数不确定性,外部干扰等。这些 不确定性的存在,对机械臂的运动控制精度带来很大的影响,从而加大控制器的设计难 度。
对于机械臂的运动控制,常用的控制方法有前馈补偿控制、计算力矩法、自适应鲁棒控制方法等;前馈补偿控制、计算力矩法需要基于精确的机械臂模型。在实际工程中, 由于以上不确定性,很难得到精确的机械臂数学模型,使得这些控制方法在实际工程中 难以应用;自适应鲁棒控制方法针对***中的参数不确定性,设计恰当的在线估计策略 对其进行估计;对可能发生的外干扰等不确定性非线性,通过提高非线性反馈增益对其 进行抑制进而提升***性能。由于大的非线性反馈增益往往导致设计的保守性(即高增 益反馈),从而使其在工程使用中有一定困难。然而,当外干扰等非结构不确定性逐渐 增大时,所设计的自适应鲁棒控制器会引起跟踪性能恶化,甚至出现不稳定现象。
针对机械臂中存在的模型不确定性及外部扰动,设计一种基于扩张状态观测器(ESO)的鲁棒控制器用于机械臂***控制。所提出的方法在***存在结构不确定性和 非结构化不确定性的情况下具有较好跟踪性能。
发明内容
本发明的目的在于提供一种基于扩张状态观测器的机械臂高精度运动控制方法,以 提高机械臂的控制精度。
实现本发明目的的技术解决方案为:
一种基于扩张状态观测器的机械臂高精度运动控制方法,包括以下步骤:
步骤1、建立具有模型不确定性的机器臂***状态方程;
首选建立机械臂***名义模型;考虑外界干扰因数造成的不确定项,建立机械臂系 统名义模型;建立具有模型不确定性的机器臂***状态方程;
步骤2、基于反步法设计机械臂控制器;
步骤3、基于扩张状态观测器设计机械臂控制器:设计一个状态观测器对不确定集合进行观测从而在控制器中加以补偿,设计扩张状态观测器对模型不确定性及干扰进行估计;基于扩张状态观测器设计机械臂***控制器。
本发明与现有技术相比,其显著优点:
本发明的基于扩张状态观测器的机械臂高精度运动控制方法对同时存在参数等结 构不确定性以及外干扰等非结构不确定性有良好的鲁棒作用,并能够保证对跟关节的角 度进行很好的跟踪。
下面结合附图对本发明作进一步详细描述。
附图说明
图1为本发明方法的流程图。
图2为实施例中双关节机械臂结构图。
图3为本发明所设计的基于扩张状态观测器的线性反馈控制器、线性反馈控制器以 及传统PID控制器分别作用下的机械臂***各关节角度跟踪随时间变化的对比曲线;(a)、(b)为局部放大图;(c)、(e)、(g)为关节1的角度跟踪曲线图;(d)、(f)、(h) 为关节2的角度跟踪曲线图。
图4为本发明所设计的控制器、线性反馈控制器(图中以BFDL标识)以及传统PID控制器分别作用下的机械臂***各关节角度跟踪误差随时间变化的对比曲线;(a)、(c)、(e)为关节1的角度跟踪误差曲线图;(b)、(d)、(f)为关节2的角度跟踪误差曲线图。
图5为本发明所涉及的控制器对机械臂模型不确定性及外部扰动的估计及估计误差 图;(a)、(c)分别为关节1的外部扰动的估计和估计误差曲线图;(b)、(d)分别为关节 2的外部扰动的估计和估计误差曲线图。
图6为本发明所涉及的控制器对机械臂各关节的控制输入曲线图。
具体实施方式
为了说明本发明的技术方案及技术目的,下面结合附图及具体实施例对本发明做进 一步的介绍。
本发明的一种基于扩张状态观测器的机械臂高精度运动控制方法,包括以下步骤:
步骤1、建立具有模型不确定性的机器臂***状态方程:
步骤1.1、建立具有不确定性的机器臂***动力学模型:
为实现机器臂的高精度控制,必须综合考虑各种不确定因素,包括模型不确定性和 外界干扰,建立具有不确定性的机器臂动力学模型:
其中q∈Rn为关节角度,D(q)为n×n阶正定惯性矩阵,为n×n阶惯性矩阵,表示机械臂的离心力和哥氏力,G(q)∈Rn为机械臂的重力项,τ∈Rn为控制力矩,τd∈Rn为 外加扰动;n为机械臂关节个数。
步骤1.2、建立机械臂***名义模型:
在实际工作中,由于测量误差、负载变化和外界干扰因素的影响,可能使得机器臂动力学参数值发生变化,因而机器臂动力学参数的精确值是很难或不可能获得的,只能 够建立理想的名义模型。
将机器臂名义模型中机械臂各参数表示为D0(q),G0(q),因此,机器臂实际的动力学模型各项表示为如下形式:
其中ΔD(q),ΔG(q)是由外界干扰因数造成的不确定项,因此,机器臂的动力学模型可表达为:
其中是机械臂***模型不确定 项的集合函数,有界。
步骤1.3、建立具有模型不确定性的机器臂***状态方程:
定义跟踪误差:角度误差e、角速度误差如下:
其中qd为各关节期望角度,且二阶可导,q为各关节实际角度。
定义机械臂***状态变量x1=e,则具有模型不确定性的机器臂***(3)可表达为:
其中w=D0 -1(q)(ρ+τd)包含模型不确定性和外界干扰的不确定集合。由机器臂的动力 学特性知,w有界。
其中,为方便控制器的设计及分析,作出如下定义:设干扰力矩是有界的,即||τd||≤d, 其中d>0,由机器臂的动力学特性知,D0(q)是正定有界的,因而w也是有界的,设其中
步骤2、基于反步法设计机械臂控制器:
步骤2.1、设计虚拟控制输入
为获得***的稳定,引入状态变量x2的虚拟控制输入定义误差变量z:
则式(5)可表示为:
为保证***稳定,设计虚拟控制输入为:
其中x1=[x11,...,x1n]T∈Rn,x1n表示关节n的角度误差,k1为大于0的系数。
步骤2.2、设计控制器τ:
定义Lyapunov函数V为:
基于式(10)设计控制器τ为:
其中k2为大于0的系数,将式(11)代入式(10)得:
则由式(12)知,机械臂***渐进稳定。
步骤3、基于扩张状态观测器(ESO)设计机械臂控制器:
步骤3.1、扩张状态观测器的设计:
在上述控制器设计中把不确定集合w当作已知量,但在实际中不确定集合w通常是无法准确知道的,因此在这里设计一个状态观测器对不确定集合w进行观测从而在控制 器中加以补偿。考虑到扩张状态观测器ESO不需要太多的模型信息的优点,设计扩张 状态观测器ESO对模型不确定性及干扰进行估计。
令状态变量x3=w,且|h(t)|≤δ;则式(5)可表示为:
由式(13),设计ESO结构如下:
其中为x1的估计,为x2的估计,为x3的估计,ω0>0表示为ESO的带宽。
令估计误差i=1,2,3;则从(13),(14)可推导出ESO观测器估计误差为:
定义i=1,2,3;则式(15)可表示为:
其中B=[0,0,1]T,A为赫尔维茨矩阵,有ATP+PA=-I,矩阵P为对称正定矩阵,矩阵I为单位矩阵。由式(15)可以推导出
说明:假设h(t)是有界的,那么估计的状态总是有界的,且存在一个常数γi>0和有 限时间T1>0,使得:
由上可知所提出扩张状态观测器ESO具有良好的观测性能。在有限的时间之后,可以通过增加带宽ω0将估计误差缩小到规定范围。这表明,可以在控制器设计中使用估计状态来补偿总的不确定性x3
步骤3.2、基于扩张状态观测器ESO设计机械臂***控制器:
基于上述说明,设计基于ESO的机械臂***控制器为:
对上述机械臂***控制器进行***稳定性分析:
定义Lyapunov函数为:
将式(18)代入式(20)得:
对上式各项进行简化得:
其中
由式(16)得:
将式(22)(24)(25)代入(21)得:
其中η=(x1,z,ε123)Tλmin(·)为矩阵特征多项式的最 小值,λmax(·)为矩阵特征多项式的最大值。
由式(29)知,机械臂闭环***有界稳定,且由z的定义知,x2也是有界的。 因此保证了机械臂闭环***是有界稳定的。
实施例
结合图2,本实施方式以串联二自由度机械臂说明本发明的一种基于扩张状态观测 器的机械臂高精度运动控制方法的设计流程。具体步骤如下:
步骤1、建立具有模型不确定性的机器臂***状态方程:
步骤1.1、建立具有不确定性的机器臂***动力学模型:
为实现机器臂的高精度控制,必须综合考虑各种不确定因素,包括模型不确定性和 外界干扰,建立具有不确定性的机器臂动力学模型:
其中q=[q1,q2]为关节角度,D(q)为2×2阶正定惯性矩阵,为2×2阶惯性矩阵,表 示机械臂的离心力和哥氏力,G(q)∈R2为机械臂的重力项,τ∈R2为控制力矩,τd∈R2为 外加扰动。
步骤1.2、建立机械臂***名义模型:
在实际工作中,由于测量误差、负载变化和外界干扰因素的影响,可能使得机器臂动力学参数值发生变化,因而机器臂动力学参数的精确值是很难或不可能获得的。只能 够建立理想的名义模型。
将机器臂名义模型中机械臂各参数表示为D0(q),G0(q),因此,机器臂实际的动力学模型各项表示为如下形式:
其中ΔD(q),ΔG(q)是由外界干扰因数造成的不确定项,因此,机器臂的动力 学模型可表达为:
其中是机械臂***模型不确定项的集合函数,有 界。
步骤1.3、建立具有模型不确定性的机器臂***状态方程:
定义跟踪误差e,如下:
其中qd为各关节期望角度,且二阶可导,q为各关节实际角度。
定义机械臂***状态变量x1=e,则具有模型不确定性的机器臂***(3)可表达为:
其中w=D0 -1(q)(ρ+τd)包含模型不确定性和外界干扰的不确定集合。由机器臂的动力 学特性知,w有界。
其中,为方便控制器的设计及分析,作出如下定义:设干扰力矩是有界的,即||τd||≤d, 其中d>0,由机器臂的动力学特性知,D0(q)是正定有界的,因而w也是有界的,设其中
步骤2、基于反步法设计机械臂控制器:
步骤2.1、设计虚拟控制输入
为获得***的稳定,引入状态变量x2的虚拟控制输入定义误差变量z:
则式(5)可表示为:
为保证***稳定,设计虚拟控制输入为:
其中x1=[x11,x12]T∈R2,x12表示关节2的角度误差,k1为大于0的系数。
步骤2.2、设计控制器τ
定义Lyapunov函数V为:
基于式(10)设计控制器τ为:
其中k2为大于0的系数,将式(11)代入式(10)得:
则由式(12)知,机械臂***渐进稳定。
步骤3、基于扩张状态观测器(ESO)设计机械臂控制器
步骤3.1、扩张状态观测器的设计
在上述控制器设计中把不确定集合w当作已知量,但在实际中不确定集合w通常是无法准确知道的,因此在这里设计一个状态观测器对不确定集合w进行观测从而在控制 器中加以补偿。考虑到ESO不需要太多的模型信息的优点,设计扩张状态观测器(ESO) 对模型不确定性及干扰进行估计。令状态变量x3=w,且|h(t)|≤δ;则式(5) 可表示为:
由式(13),设计ESO结构如下:
其中为x1的估计,为x2的估计,为x3的估计,ω0>0表示为ESO的带宽。
令估计误差i=1,2,3;则从(13),(14)可推导出ESO观测器估计误差为:
定义i=1,2,3;则式(15)可表示为:
其中B=[0,0,1]T,A为赫尔维茨矩阵,有ATP+PA=-I,矩阵P为对称正定矩阵,矩阵I为 单位矩阵。由式(15)可以推导出
引理1:假设h(t)是有界的,那么估计的状态总是有界的,且存在一个常数γi>0和 有限时间T1>0,使得:
说明1:由引理1可知所提出扩张状态观测器ESO具有良好的观测性能。在有限的时间之后,可以通过增加带宽ω0将估计误差缩小到规定范围。这表明,可以在控制器设 计中使用估计状态来补偿总的不确定性x3
步骤3.2、基于扩张状态观测器ESO设计机械臂***控制器
基于上述说明,设计基于ESO的机械臂***控制器为:
对上述机械臂***控制器进行***稳定性分析:
定义Lyapunov函数为:
将式(18)代入式(20)得:
对上式各项进行简化得:
其中
由式(16)得:
将式(22)(24)(25)代入(21)得:
其中η=(x1,z,ε123)Tλmin(·)为矩阵特征多项式的最 小值,λmax(·)为矩阵特征多项式的最大值。
由式(29)知,机械臂闭环***有界稳定,且由z的定义知,x2也是有界的。 因此保证了机械臂闭环***是有界稳定的。
对上述设计的控制器进行MATLAB仿真:
取三种控制器的期望角度为q1d=1+0.2sin(0.5πt),q2d=1-0.2cos(0.5πt);取外部干扰其中d1=2,d2=2,d3=2,机械臂各关节角度初始值取为
对比仿真结果:本发明所设计的基于扩张状态观测器的机械臂高精度运动控制器的 参数选取为控制增益ESO带宽取为w0=80;基于反步法的反馈线性化控制器的参数选取为控制增益PID控制器的参数选取为 比例系数Kp=500,积分系数Ki=0,微分系数Kd=380。
三种控制器的跟踪性能如图3(a-g)、图4(a-f)所示。图3是本发明所设计的基于扩张状态观测器的线性反馈控制器(图中以ESOFDL标识)、线性反馈控制器(图中以BFDL 标识)以及传统PID控制器分别作用下的机械臂***各关节角度跟踪随时间变化的对比 曲线。图4是本发明所设计的控制器(图中以ESOFDL标识)、线性反馈控制器(图中以 BFDL标识)以及传统PID控制器分别作用下的机械臂***各关节角度跟踪误差随时间变 化的对比曲线。从图4可以看出基于扩张状态观测器的线性反馈控制器ESOFDL控制器 随着时间的变化对关节角度具有较小的跟踪误差(关节1的角度误差为7.68×10-4°, 关节2的角度误差为2.76×10-4°),其控制器瞬态和最终跟踪性能优于线性反馈控制 器BFDL及PID控制器。此外,图5给出了扩张状态观测器(ESO)对***不确定性的估 计及估计误差。从图5可以看出,扩张状态观测器(ESO)对***模型不确定性和外部 扰动具有很好的估计及补偿。图6(a-b)给出了两关节的控制力矩。

Claims (4)

1.一种基于扩张状态观测器的机械臂高精度运动控制方法,其特征在于,包括以下步骤:
步骤1、建立具有模型不确定性的机器臂***状态方程;
首选建立机械臂***名义模型;考虑外界干扰因数造成的不确定项,建立机械臂***名义模型;建立具有模型不确定性的机器臂***状态方程;
步骤2、基于反步法设计机械臂控制器:
步骤3、基于扩张状态观测器设计机械臂控制器:设计一个状态观测器对不确定集合进行观测从而在控制器中加以补偿,设计扩张状态观测器对模型不确定性及干扰进行估计;基于扩张状态观测器设计机械臂***控制器。
2.根据权利要求1所述的基于扩张状态观测器的机械臂高精度运动控制方法,其特征在于,步骤1建立具有模型不确定性的机器臂***状态方程,具体包括以下步骤:
步骤1.1、建立具有不确定性的机器臂***动力学模型:
其中q∈Rn为关节角度,D(q)为n×n阶正定惯性矩阵,为n×n阶惯性矩阵,表示机械臂的离心力和哥氏力,G(q)∈Rn为机械臂的重力项,τ∈Rn为控制力矩,τd∈Rn为外加扰动;
步骤1.2、建立机械臂***名义模型:
将机器臂名义模型中机械臂各参数表示为D0(q),G0(q),机器臂实际的动力学模型各项表示为如下形式:
其中ΔD(q),ΔG(q)是由外界干扰因数造成的不确定项,因此,机器臂的动力学模型可表达为:
其中是机械臂***模型不确定项的集合函数;
步骤1.3、建立具有模型不确定性的机器臂***状态方程:
定义跟踪误差:角度误差e、角速度误差如下:
其中q为各关节实际角度;
定义机械臂***状态变量x1=e,则具有模型不确定性的机器臂***(3)表达为:
其中包含模型不确定性和外界干扰的不确定集合。
3.根据权利要求2所述的基于扩张状态观测器的机械臂高精度运动控制方法,其特征在于,步骤2设计机械臂控制器,具体包括以下步骤:
步骤2.1、设计虚拟控制输入
引入状态变量x2的虚拟控制输入定义误差变量z:
则:
设计虚拟控制输入为:
其中x1=[x11,...,x1n]T∈Rn,x1n表示关节n的角度误差,k1为大于0的系数;
步骤2.2、设计控制器τ:
定义Lyapunov函数V为:
基于式(10)设计控制器τ为:
4.根据权利要求3所述的基于扩张状态观测器的机械臂高精度运动控制方法,其特征在于,步骤3设计机械臂控制器,具体包括以下步骤:
步骤3.1、扩张状态观测器的设计:
令状态变量x3=w,且|h(t)|≤δ;则
由式(13),设计ESO结构如下:
其中为x1的估计,为x2的估计,为x3的估计,ω0>0表示为扩张状态观测器的带宽;
令估计误差则从(13),(14)可推导出ESO观测器估计误差为:
定义则式(15)可表示为:
其中B=[0,0,1]T,A为赫尔维茨矩阵,有ATP+PA=-I,矩阵P为对称正定矩阵,矩阵I为单位矩阵;
步骤3.2、基于扩张状态观测器ESO设计机械臂***控制器:
CN201810658080.8A 2018-06-25 2018-06-25 一种基于扩张状态观测器的机械臂高精度运动控制方法 Active CN108628172B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810658080.8A CN108628172B (zh) 2018-06-25 2018-06-25 一种基于扩张状态观测器的机械臂高精度运动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810658080.8A CN108628172B (zh) 2018-06-25 2018-06-25 一种基于扩张状态观测器的机械臂高精度运动控制方法

Publications (2)

Publication Number Publication Date
CN108628172A true CN108628172A (zh) 2018-10-09
CN108628172B CN108628172B (zh) 2021-05-07

Family

ID=63688308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810658080.8A Active CN108628172B (zh) 2018-06-25 2018-06-25 一种基于扩张状态观测器的机械臂高精度运动控制方法

Country Status (1)

Country Link
CN (1) CN108628172B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324636A (zh) * 2018-10-24 2019-02-12 中北大学 基于二阶一致性和自抗扰的多四旋翼主从式协同编队控制方法
CN110977988A (zh) * 2019-12-27 2020-04-10 青岛大学 基于有限时间命令滤波的多关节机械臂阻抗控制方法
CN111319036A (zh) * 2018-12-15 2020-06-23 天津大学青岛海洋技术研究院 基于自适应算法的移动机械臂位置/力自抗扰控制方法
CN111558938A (zh) * 2020-04-27 2020-08-21 江苏建筑职业技术学院 一种基于观测器的机械臂***保瞬态与稳态性能控制方法
CN111941432A (zh) * 2020-09-28 2020-11-17 南京工业大学 一种高性能机械臂人工智能输出反馈控制方法
CN112241124A (zh) * 2020-10-27 2021-01-19 南昌大学 一种自适应反演积分非奇异快速终端滑模控制器设计方法
CN112276952A (zh) * 2020-10-23 2021-01-29 山东交通学院 一种多机器人***的鲁棒同时镇定方法及***
CN112631245A (zh) * 2020-06-11 2021-04-09 江苏航空职业技术学院 一种基于扩展状态观测器的飞机机电作动***故障检测方法
CN113110059A (zh) * 2021-04-26 2021-07-13 杭州电子科技大学 基于事件触发的单连杆机械臂***实际跟踪的控制方法
CN113325716A (zh) * 2021-06-10 2021-08-31 浙江大学 基于扩张观测器的水下液压机械臂非线性鲁棒控制方法
CN113467247A (zh) * 2021-07-21 2021-10-01 中国北方车辆研究所 一种联邦扩张状态观测器设计方法
CN113650020A (zh) * 2021-09-15 2021-11-16 山东交通学院 一种机械臂***有限时间自适应镇定控制方法和***

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091683A (en) * 1989-09-20 1992-02-25 Seiko Instruments Inc. Servo control apparatus
US20100326653A1 (en) * 2008-06-16 2010-12-30 Halliburton Energy Services, Inc. Work String Controller
CN102591207A (zh) * 2012-03-01 2012-07-18 北京航空航天大学 一种基于干扰观测器的柔性关节机械臂的滑模控制方法
CN103331756A (zh) * 2013-06-04 2013-10-02 浙江工业大学 一种机械臂运动控制方法
CN104589359A (zh) * 2014-12-25 2015-05-06 中国矿业大学 一种基于振动观测器的柔性机械臂振动控制方法
CN105563489A (zh) * 2016-03-01 2016-05-11 浙江工业大学 基于非线性自抗扰控制技术的柔性机械臂控制方法
CN106438593A (zh) * 2016-10-21 2017-02-22 电子科技大学 一种存在参数不确定性和负载干扰的电液伺服控制方法及机械臂
CN106945046A (zh) * 2017-04-24 2017-07-14 华南理工大学 基于变刚度弹性驱动器的机械臂控制***及其控制方法
CN107203141A (zh) * 2017-08-02 2017-09-26 合肥工业大学 一种机械臂分散化神经鲁棒控制的轨迹跟踪算法
CN107505841A (zh) * 2017-08-31 2017-12-22 电子科技大学 一种基于干扰估计器的机械臂姿态鲁棒控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091683A (en) * 1989-09-20 1992-02-25 Seiko Instruments Inc. Servo control apparatus
US20100326653A1 (en) * 2008-06-16 2010-12-30 Halliburton Energy Services, Inc. Work String Controller
CN102591207A (zh) * 2012-03-01 2012-07-18 北京航空航天大学 一种基于干扰观测器的柔性关节机械臂的滑模控制方法
CN103331756A (zh) * 2013-06-04 2013-10-02 浙江工业大学 一种机械臂运动控制方法
CN104589359A (zh) * 2014-12-25 2015-05-06 中国矿业大学 一种基于振动观测器的柔性机械臂振动控制方法
CN105563489A (zh) * 2016-03-01 2016-05-11 浙江工业大学 基于非线性自抗扰控制技术的柔性机械臂控制方法
CN106438593A (zh) * 2016-10-21 2017-02-22 电子科技大学 一种存在参数不确定性和负载干扰的电液伺服控制方法及机械臂
CN106945046A (zh) * 2017-04-24 2017-07-14 华南理工大学 基于变刚度弹性驱动器的机械臂控制***及其控制方法
CN107203141A (zh) * 2017-08-02 2017-09-26 合肥工业大学 一种机械臂分散化神经鲁棒控制的轨迹跟踪算法
CN107505841A (zh) * 2017-08-31 2017-12-22 电子科技大学 一种基于干扰估计器的机械臂姿态鲁棒控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG YU: "Back-stepping control of two-link flexible manipulator based on extended state observer", 《 2015 34TH CHINESE CONTROL CONFERENCE (CCC)》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324636A (zh) * 2018-10-24 2019-02-12 中北大学 基于二阶一致性和自抗扰的多四旋翼主从式协同编队控制方法
CN109324636B (zh) * 2018-10-24 2021-08-20 中北大学 基于二阶一致性和自抗扰的多四旋翼主从式协同编队控制方法
CN111319036A (zh) * 2018-12-15 2020-06-23 天津大学青岛海洋技术研究院 基于自适应算法的移动机械臂位置/力自抗扰控制方法
CN111319036B (zh) * 2018-12-15 2023-03-14 天津大学青岛海洋技术研究院 基于自适应算法的移动机械臂位置/力自抗扰控制方法
CN110977988A (zh) * 2019-12-27 2020-04-10 青岛大学 基于有限时间命令滤波的多关节机械臂阻抗控制方法
CN111558938B (zh) * 2020-04-27 2021-06-22 江苏建筑职业技术学院 一种基于观测器的机械臂***保瞬态与稳态性能控制方法
CN111558938A (zh) * 2020-04-27 2020-08-21 江苏建筑职业技术学院 一种基于观测器的机械臂***保瞬态与稳态性能控制方法
CN112631245A (zh) * 2020-06-11 2021-04-09 江苏航空职业技术学院 一种基于扩展状态观测器的飞机机电作动***故障检测方法
CN111941432A (zh) * 2020-09-28 2020-11-17 南京工业大学 一种高性能机械臂人工智能输出反馈控制方法
CN112276952A (zh) * 2020-10-23 2021-01-29 山东交通学院 一种多机器人***的鲁棒同时镇定方法及***
CN112276952B (zh) * 2020-10-23 2022-02-08 山东交通学院 一种多机器人***的鲁棒同时镇定方法及***
CN112241124B (zh) * 2020-10-27 2022-02-11 南昌大学 一种自适应反演积分非奇异快速终端滑模控制器设计方法
CN112241124A (zh) * 2020-10-27 2021-01-19 南昌大学 一种自适应反演积分非奇异快速终端滑模控制器设计方法
CN113110059A (zh) * 2021-04-26 2021-07-13 杭州电子科技大学 基于事件触发的单连杆机械臂***实际跟踪的控制方法
CN113110059B (zh) * 2021-04-26 2022-04-19 杭州电子科技大学 基于事件触发的单连杆机械臂***实际跟踪的控制方法
CN113325716A (zh) * 2021-06-10 2021-08-31 浙江大学 基于扩张观测器的水下液压机械臂非线性鲁棒控制方法
CN113467247A (zh) * 2021-07-21 2021-10-01 中国北方车辆研究所 一种联邦扩张状态观测器设计方法
CN113467247B (zh) * 2021-07-21 2023-06-30 中国北方车辆研究所 一种联邦扩张状态观测器设计方法
CN113650020A (zh) * 2021-09-15 2021-11-16 山东交通学院 一种机械臂***有限时间自适应镇定控制方法和***

Also Published As

Publication number Publication date
CN108628172B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN108628172A (zh) 一种基于扩张状态观测器的机械臂高精度运动控制方法
CN108942924A (zh) 基于多层神经网络的模型不确定性机械臂运动控制方法
CN105319972B (zh) 基于快速终端滑模的遥操作机器人固定时间控制方法
CN108803324A (zh) 多关节工业机械臂反步有限时间滑模控制方法
CN105093934B (zh) 考虑干扰与模型不确定性的多机器人***分布式有限时间跟踪控制方法
CN104111607B (zh) 一种考虑输入时滞的电机位置伺服***的控制方法
CN108319144A (zh) 一种机器人轨迹跟踪控制方法及***
CN110376882A (zh) 基于有限时间扩张状态观测器的预定性能控制方法
Tripathi et al. Finite‐time super twisting sliding mode controller based on higher‐order sliding mode observer for real‐time trajectory tracking of a quadrotor
CN108803326A (zh) 具有干扰和时延的工业机械臂线性自抗扰跟踪控制方法
CN105404304A (zh) 基于归一化神经网络的航天器容错姿态协同跟踪控制方法
CN107263483B (zh) 二自由度关节机器人轨迹的协调控制方法
CN108555913A (zh) 基于无源性的移动机械臂位置/力的自抗扰控制方法
CN108303885A (zh) 一种基于干扰观测器的电机位置伺服***自适应控制方法
CN110488749A (zh) 一种多轴运动***的轮廓误差控制器及其控制方法
CN107894708A (zh) 一种环形耦合型多轴机器人***的同步控制方法
CN111965976B (zh) 基于神经网络观测器的机器人关节滑模控制方法及***
CN108155833A (zh) 考虑电气特性的电机伺服***渐近稳定控制方法
CN103345155B (zh) 微陀螺仪的自适应反演控制***及方法
CN105278331A (zh) 一种微陀螺的鲁棒自适应神经网络h无穷控制方法
CN113110059A (zh) 基于事件触发的单连杆机械臂***实际跟踪的控制方法
CN113268064A (zh) 一种考虑通信时延的多移动机器人协同编队控制方法
CN105652667A (zh) 一种模型不确定双关节机械手的高精度轨迹跟踪控制方法
CN117452831B (zh) 一种四旋翼无人机控制方法、装置、***及存储介质
Meng et al. Adaptive non‐singular fault‐tolerant control for hypersonic vehicle with unexpected centroid shift

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant