CN108603207A - 通过发酵生产来生产l-甲硫氨酸的方法 - Google Patents

通过发酵生产来生产l-甲硫氨酸的方法 Download PDF

Info

Publication number
CN108603207A
CN108603207A CN201680077838.8A CN201680077838A CN108603207A CN 108603207 A CN108603207 A CN 108603207A CN 201680077838 A CN201680077838 A CN 201680077838A CN 108603207 A CN108603207 A CN 108603207A
Authority
CN
China
Prior art keywords
methionine
producing
solvent
fermenting
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680077838.8A
Other languages
English (en)
Inventor
L·富尔
C·科隆
A·塞弗尼耶
M·沙托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of CN108603207A publication Critical patent/CN108603207A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及发酵生产L‑甲硫氨酸和/或其衍生物的方法,包括以下步骤:i)在包含碳源、硫源和氮源的适当培养基中培养用于发酵生产甲硫氨酸而优化的微生物以生产L‑甲硫氨酸;ii)回收在步骤i)获得的L‑甲硫氨酸;iii)将醇溶剂或乙腈加入步骤ii)获得的含甲硫氨酸部分以沉淀L‑甲硫氨酸;和iv)回收L‑甲硫氨酸。

Description

通过发酵生产来生产L-甲硫氨酸的方法
技术领域
本发明涉及发酵生产具有高度纯度的L-甲硫氨酸和/或其衍生物的方法。
现有技术
含硫化合物如甲硫氨酸、半胱氨酸、高半胱氨酸或S-甲基腺苷甲硫氨酸对细胞代谢至关重要,并在工业上生产用作食品或饲料添加剂和药物。特别是动物不能合成的必需氨基酸甲硫氨酸,在许多机体功能中起着重要的作用。除了其在蛋白质生物合成中的作用外,甲硫氨酸还参与转甲基作用和硒和锌的生物利用率。甲硫氨酸还直接用于治疗疾病如过敏和风湿热。尽管如此,生产的大部分甲硫氨酸都添加到动物饲料中。
由于BSE和鸡流感导致动物源性蛋白质使用的减少,对纯甲硫氨酸的需求增加。通常,从丙烯醛、甲硫醇和氰化氢化学生成D,L-甲硫氨酸。然而,外消旋混合物的表现不如纯L-甲硫氨酸(Saunderson,1985)。此外,尽管纯的L-甲硫氨酸可以由外消旋的甲硫氨酸生产,例如通过酰基转移酶处理N-乙酰-D,L-甲硫氨酸,但是这大大增加了生产成本。因此,对于纯L-甲硫氨酸需求的增加以及环境问题,使得微生物生产甲硫氨酸具有诱人的前景。
然而,这些方法的实施需要通过在碳底(carbon sole)上发酵生产甲硫氨酸的合适微生物的利用率。已经公布了工业上有效的解决方案,特别是在专利申请WO 2005/111202、WO 2007/017710、WO 2007/077041和WO 2009/043803中。生产甲硫氨酸的其他微生物也描述于申请WO 2004/038013、WO 2006/001616、WO 2006/138689和WO 2007/012078中。
提出了不同的方法来从发酵液中回收L-甲硫氨酸。由于甲硫氨酸在正常发酵条件下的低溶解度,其与整个细胞和其他发酵液组分的分离是需要解决的主要问题,从而能够经济地生产L-甲硫氨酸。
WO 2005/007862公开了通过将pH调节至酸性或碱性pH和/或通过提高温度来提高甲硫氨酸在发酵液或发酵上清液中的溶解度的方法。然后,可以选择性地结晶甲硫氨酸。操纵甲硫氨酸溶解度以制备纯化的甲硫氨酸终产物,所述产物可以干燥和粒化以用于动物饲料行业。
WO 2011/045377和WO2013/083934涉及通过发酵获得新型液体或结晶甲硫氨酸组合物。甲硫氨酸和其他组分含量允许更容易的纯化,特别是与液体组合物的干燥残余物相比,获得具有更高甲硫氨酸含量的固体产物。
US2012/0178966公开了与包含在上清液中的碳和氮同时回收甲硫氨酸。甲硫氨酸是通过两步法生产的,其包含首先合成L-甲硫氨酸的前体O-乙酰高丝氨酸或O-琥珀酰高丝氨酸,后接第二步酶促转化成L-甲硫氨酸。
由于这些方法包括许多步骤,并且由于这些方法不提供高度纯度L-甲硫氨酸,所以申请人已经找到生产高度L-甲硫氨酸的有效方法。
发明详述
在详细描述本发明之前,应该理解本发明不限于特定示例的方法,并且当然可变化。还应该理解,本文使用的术语仅为描述本发明的具体实施方案的目的,而不是旨在限制,其将仅由所附权利要求来限制。
本文提及的所有出版物、专利和专利申请都是为了描述和公开在出版物中报道并且可以结合本发明使用的方案、试剂和载体的目的而引用的。
此外,除非另有说明,否则本发明的实施采用本领域技术内的常规微生物学和分子生物学技术。这样的技术对于本领域技术人员来说是已知的,并且在文献中有充分的解释。
在下面的权利要求和本发明的连续描述中,除了文中要求或由于语言表达或必要的指示之外,词语“包含”、“含有”、“涉及”、或“包括”或变化都是包含的意思,即明确所述特征的存在,但不排除在本发明的各种实施方案中存在或添加其他特征。
术语“甲硫氨酸”和“L-甲硫氨酸”指含硫的必需氨基酸,所述氨基酸具有化学式HO2CCH(NH2)CH2CH2SCH3和CAS编号59-51-8,或具体的L-异构体具有CAS编号63-68-3。
“甲硫氨酸衍生物”是指甲硫氨酸分子类似物,其存在相同的化学主链,但与甲硫氨酸具有至少一个化学基团不同。在本发明中,优选的甲硫氨酸衍生物是N-乙酰甲硫氨酸(NAM)、S-腺苷甲硫氨酸(SAM)和羟基甲硫氨酸。
如本文所用,术语“微生物”是指未经人工修饰的细菌、酵母或真菌。优选地,微生物选自肠杆菌科(Enterobacteriaceae)、芽孢杆菌科(Bacillaceae)、链霉菌科(Streptomycetaceae)和棒杆菌科(Corynebacteriaceae)。更优选地,微生物是埃希氏菌属(Escherichia)、克雷伯氏菌属(Klebsiella)、泛菌属(Pantoea)、沙门氏菌属(Salmonella)或棒杆菌属(Corynebacterium)的物种。甚至更优选地,根据本发明使用的微生物是大肠杆菌(Escherichia coli)物种或谷氨酸棒状杆菌(Corynebacterium glutamicum)物种。
如本文所用,术语“提高的甲硫氨酸生产”、“提高甲硫氨酸生产”及其语法上的等同指增加的甲硫氨酸/碳源产率(消耗的每克/摩尔碳源产生的克/摩尔甲硫氨酸的比率,其可以以百分比表示)和/或生产的甲硫氨酸提高的纯度。在本发明中,通过用溶剂使L-甲硫氨酸沉淀,可以提高产生的甲硫氨酸的纯度。测定消耗的碳源和产生的甲硫氨酸的量的方法是本领域技术人员所熟知的。在本发明的方法中产生的甲硫氨酸的产率较高。
在本公开中采用的术语“用于发酵生产甲硫氨酸而优化的微生物”或“重组微生物”是指与相应的野生型微生物的内源性生产相比,进化的和/或遗传修饰的以呈现提高的甲硫氨酸生产的微生物。这种用于甲硫氨酸生产而“优化”的微生物是本领域公知的,并且已经特别公开在专利申请WO2005/111202、WO2007/077041、WO2009/043803、WO2012/098042、WO2013/001055、WO2013/190343、WO2015/028674和WO2015/028675。
根据本发明,术语“发酵生产”、“培养”或“发酵”可互换使用以表示微生物的生长。这种生长通常在发酵罐中进行,所述发酵罐具有适应于所使用的微生物并且含有至少一种简单碳源的合适的培养基,并且如果需要的话,含有共底物如硫源和氮源。
“合适的培养基”是指包含对于细胞的维持和/或生长必需或有益的营养物的培养基(例如无菌液体培养基),例如碳源或碳底物、氮源,例如蛋白胨、酵母提取物、肉提取物、麦芽提取物、尿素、硫酸铵、氯化铵、硝酸铵和磷酸铵;磷源,例如磷酸一钾或磷酸二钾;微量元素(例如金属盐),例如镁盐、钴盐和/或锰盐;以及生长因子如氨基酸和维生素。
根据本发明的术语“碳源”或“碳底物”或“碳的来源”表示可以由本领域技术人员用来支持微生物正常生长的任何碳源,包括单糖(如葡萄糖、半乳糖、木糖、果糖或乳糖)、低聚糖、二糖(如蔗糖、纤维二糖或麦芽糖)、糖蜜、淀粉或其衍生物、半纤维素及其组合。特别优选的简单碳源是葡萄糖。另一种优选的简单碳源是蔗糖。碳源可衍生自可再生原料。可再生原料定义为某些工业处理所需的原材料,其可以在短暂的延迟内再生,并有足够的数量使其转化成所需的产物。处理或未处理的植物生物量是一种感兴趣的可再生碳源。
根据本发明的术语“硫源”是指硫酸盐/酯、硫代硫酸盐/酯、硫化氢、连二硫酸盐/酯、连二亚硫酸盐/酯、亚硫酸盐/酯、甲硫醇、二甲基硫醚、和其它含甲基帽的硫化物、或不同硫源的组合。更优选地,培养基中的硫源是硫酸盐/酯或硫代硫酸盐/酯或其混合物。
术语“氮源”对应于铵盐或氨气。氮源以铵或氨的形式供应。
培养条件
本发明涉及生产L-甲硫氨酸和/或其衍生物的方法,包含以下步骤:
i)在包含碳源、硫源和氮源的适当培养基中培养用于发酵生产甲硫氨酸而优化的微生物以生产L-甲硫氨酸;
ii)回收在步骤i)获得的L-甲硫氨酸;
iii)将醇溶剂或乙腈加入步骤ii)获得的含甲硫氨酸部分(fraction)以沉淀L-甲硫氨酸;和
iv)回收L-甲硫氨酸。
根据本发明的步骤i)包括培养微生物。
具体而言,微生物在20℃和55℃之间的温度,优选25℃和40℃之间发酵,更具体地谷氨酸棒状杆菌在约30℃发酵,大肠杆菌在约37℃发酵。
对于大肠杆菌,培养基可以是与M9培养基(Anderson,1946)、M63培养基(Miller,1992)相同或相似的组成;或是由Schaefer等(1999)定义的培养基。
对于谷氨酸棒状杆菌,培养基可以是与BMCG培养基(Liebl等,1989)相同或相似或者与例如Riedel等(2001)所述的培养基相同或相似的组成。
优选地,根据本发明的方法的步骤i)中的微生物是唯一的微生物。这意味着只使用一种微生物菌株,所述菌株产生L-甲硫氨酸。根据本发明的方法,不使用产生L-甲硫氨酸前体的微生物。
优选地,根据本发明的方法在任何步骤中不包含任何酶促处理L-甲硫氨酸前体。
根据本发明的步骤ii)包含回收L-甲硫氨酸。
在步骤ii)回收L-甲硫氨酸的行动应理解为通过从培养基中回收L-甲硫氨酸和/或其衍生物。它表示回收L-甲硫氨酸和/或其衍生物之一,特别是N-乙酰甲硫氨酸(NAM)和S-腺苷甲硫氨酸(SAM)以及所有其他可能有用的衍生物的行动。回收和纯化所产生的化合物的方法是本领域技术人员公知的(具体参见WO2005/007862、WO2005/059155)。优选地,回收L-甲硫氨酸和/或其衍生物的步骤ii)包含在发酵液中浓缩L-甲硫氨酸和/或其衍生物的步骤。
根据本发明的步骤ii)可以包含多个步骤,例如发酵培养基的澄清步骤,后接或不后接L-甲硫氨酸的浓缩步骤。
发酵培养基的澄清步骤是指澄清发酵培养基并从所述发酵培养基中去除不溶性和可溶性有机杂质以获得含液体的粗甲硫氨酸部分。培养基的澄清通过本领域技术人员已知的任何方法进行,所述方法例如选自以下:絮凝、倾析、膜技术(微量过滤、超滤、渗滤、纳滤和反渗透)和离心。可溶性有机杂质的去除通过本领域技术人员已知的任何方法进行,所述方法例如选自以下:超滤、热处理、用活性炭类吸附剂处理和酶促水解。这些可溶性杂质的去除使得可以确保熟的物质在沉淀处理中正确行为。事实上,没有这一步骤,熟的物质具有糊状的均匀外观,产生非常细的晶体并不利于(penalizing)所述晶体的分离和洗涤。结果,晶体的纯度降低。
去除可溶性杂质然后后接在有或没有初步预浓缩步骤的结晶步骤。
结晶步骤包括使甲硫氨酸结晶以回收固体形式的粗甲硫氨酸。该结晶步骤可以通过选自以下的技术手段进行:通过冷却结晶、通过蒸发-结晶来结晶和绝热结晶。申请人公司建议使用蒸发结晶。如果选择蒸发结晶,申请人公司建议使用降膜蒸发器通过真空蒸发预浓缩粗甲硫氨酸溶液以接近过饱和。因此,预浓缩溶液被转移到例如引流管(drafttube)类型的结晶器中,以便在其中进一步浓缩和结晶。
35℃时甲硫氨酸的溶解度约为70g/L。如果溶液浓缩至约250g/L,在确保35℃温度的真空下,固体甲硫氨酸回收产率为>70%。在这些条件下,并且通过去除可溶性杂质的优点,固体甲硫氨酸以易于从母液分离的海绵状球体形式结晶。
根据本发明的步骤iii)包含向步骤ii)获得的含甲硫氨酸部分中加入醇溶剂或乙腈以沉淀L-甲硫氨酸。该步骤是L-甲硫氨酸或其衍生物的沉淀步骤。步骤iii)中使用的醇溶剂可以选自乙醇、异丙醇或其混合物。优选地,步骤iii)中使用的醇溶剂是乙醇。
优选地,在步骤iii)中,溶剂/(含甲硫氨酸部分+溶剂)的比率为50至80重量%,优选65至75%。注意到这里使用的术语溶剂是指醇溶剂或乙腈。
优选地,在步骤iii)之后,L-甲硫氨酸在上清液中的残余溶解度在室温为5至6g.L-1,更优选为5.2至5.9g.L-1
在本发明的一些示例性实施方案中,步骤iii)的工作温度包含2℃至50℃,优选10℃至40℃,甚至更优选18℃至40℃。
可通过本领域技术人员已知的任何手段如倾析或离心、优选通过倾析来回收沉淀的甲硫氨酸。
根据本发明的步骤iv)是回收L-甲硫氨酸。步骤iv)可以与前面的步骤ii)不同,并且可以使用与步骤ii)中使用的方法不同的方法。
该步骤iv)可以包含分离所得的固体粗甲硫氨酸,洗涤并干燥。通过本领域技术人员已知的任何方法回收固体粗甲硫氨酸,所述方法例如选自以下:离心、吸滤和迎头过滤(frontal filtration)(在鼓上、在压滤机上等)。在后一种情况下,粗甲硫氨酸因此被保留在40μm的布上并且母液通过。然后用1至10BV的水,优选去矿质水洗涤粗甲硫氨酸饼。然后将固体粗甲硫氨酸干燥并任选地研磨以分类颗粒。
可以使用本领域已知的多种方法,例如高效液相色谱法(HPLC)或气相色谱法(GC)来测定发酵培养基中或不同下游处理流中(例如上清液、渗透物或结晶母液)的产物的量。例如,在使用L-甲硫氨酸作为标准进行OPA/FMOC衍生化后,通过HPLC测量培养基中获得的甲硫氨酸的量(Fluka,Ref 64319)。
优选地,步骤iv)之后,L-甲硫氨酸的浓度为至少180g.L-1,优选至少200g.L-1,特别包含从180到300g.L-1,更优选从220到300g.L-1
图1表示沉淀率与所用乙醇体积的函数(空心方块:理论产率,实心方块:实验结果)。
图2表示用循环母液进行甲硫氨酸沉淀的示例性处理。
图3表示乙醇母液循环次数与理论甲硫氨酸回收产率的函数。
实施例
在以下实施例中进一步定义了本发明。应该理解的是,这些实施例虽然表明了本发明的优选实施方案,但仅以举例说明的方式给出。从以上的公开和这些实例中,本领域技术人员可以对本发明进行各种改变而不修改本发明的基本手段,以使其适应各种用途和条件。
具体而言,实施例显示了经修饰的大肠杆菌(E.coli)菌株,但是这些修饰可以容易地在同一家族的其他微生物中进行。
大肠杆菌属于肠杆菌科,其包含革兰氏阴性杆状无芽孢形成的成员,其长度通常为1-5μm。大多数成员有用于移动的鞭毛,但少数属不能动的。这个科的许多成员是在人类和其他动物的肠道中发现的肠道菌群的正常部分,而另一些则在水中或土壤中发现,或者是各种不同动物和植物上的寄生虫。大肠杆菌是最重要的模式生物之一,但肠杆菌科的其他重要成员包括克雷伯氏菌属,特别是土生克雷伯氏菌(Klebsiella terrigena)、植生克雷伯氏菌(Klebsiella planticola)或产酸克雷伯氏菌(Klebsiella oxytoca),以及沙门氏菌。
此外,一些专利申请指出,优化甲硫氨酸生产可以容易地应用于大肠杆菌和谷氨酸棒状杆菌而无需过度实验。
实施例1:通过发酵处理的甲硫氨酸生产。
步骤i):培养微生物
产L-甲硫氨酸细菌的培养和发酵可以根据本领域已知的任何方法进行,特别是专利申请WO2013/190343的实施例4中所述的方法。
值得注意的是,除了在37℃持续直至获得65g.L-1的甲硫氨酸浓度的发酵时间外(培养时间在30至35小时之间),培养条件和培养基组成是相同的。
步骤ii)回收L-甲硫氨酸
不溶性有机杂质(生物质)的去除在第一步中通过在80℃之间的具有100nm孔径的膜上切向过滤来进行(陶瓷类型的膜具有3.5mm的通道直径)。温度优选保持在40℃,跨膜压力为1巴,并用20%去矿质水渗滤。在这些条件下,平均流量为30L/h/m2,所得渗透物清澈明亮。不含生物质和不溶性颗粒的渗透物仍含有可溶性有机杂质,特别是可溶性糖和蛋白质,建议在下一步之前去除。
第二步的目标是去除发酵必需中含有的可溶性有机杂质(可溶性糖如多糖和大分子)。这是因为这些杂质对熟的物质的行为(均匀的、束缚(bound)的外观、非常细的晶体)以及对L-甲硫氨酸结晶步骤处理中回收固相有负面影响。
这种去除可以通过在截止阈为5kDa的陶瓷膜上超滤来进行。在40℃时,过滤流速平均为25L/h/m2,大约70%的大分子保留在渗余物中。
将脱矿质溶液在降膜真空蒸发器上通过在50℃蒸发水预浓缩。取决于L-甲硫氨酸的初始浓度,浓缩因系数约为2至5。在这种情况下等于3,以便在50℃时达到过饱和(80g/L)。然后将预浓缩溶液转移到强制循环蒸发结晶器中,并在约35℃真空(50毫巴)下在其中进一步浓缩和结晶。在该蒸发结晶器中施加的浓缩系数约为3,以达到240g/L。
步骤iii)用溶剂沉淀
在从步骤ii)产生的发酵浓缩上清液中以相同比率70%(溶剂/(含甲硫氨酸部分+溶剂),以重量计)测定不同的溶剂。允许达到甲硫氨酸较低残余溶解度的溶剂是乙醇和异丙醇(表1)。
表1:L-甲硫氨酸在所用溶剂和工作温度下的残余溶解度。
*未测定
在从步骤ii)产生的发酵上清液中测定作为溶剂的不同百分比的乙醇。以不同百分比乙醇作为溶剂回收L-甲硫氨酸的理论产率与结果一致。图1显示了实验和理论结果。
将从步骤ii)产生的发酵上清液浓缩至约250g.L-1,并且加入不同比例0%、30%和70%(对应于溶剂/(含甲硫氨酸部分+溶剂)的重量比率)的乙醇。已经根据乙醇含量确定了理论回收产率。图1表明实验数据符合理论值(在37℃下L-甲硫氨酸(L-meth)的溶解度约为70g.L-1)。
步骤iv)回收L-甲硫氨酸
步骤iii)之后形成的晶体通过在压滤机上分离而回收,并且每体积饼用一体积去矿质水洗涤。晶体在45℃(型)的流化床上干燥。在这些条件下,L-甲硫氨酸回收产率>80%,且纯度>85%/干燥。
实施例2:用乙醇实现用一步沉淀的L-甲硫氨酸回收产率的提高。
按照实施例1的方案,已经纯化了衍生自上述实施方案并含有L-甲硫氨酸的发酵液。发酵处理中形成的生物质已完全分离。通过离心从发酵液中去除不溶物质。在37℃上清液中甲硫氨酸浓度接近65g.L-1。在步骤ii)之后,在真空(300毫巴)确保80℃的温度(通过使用旋转蒸发仪)下将溶液浓缩至约200g.L-1
冷却至室温后,加入乙醇(70%W/W)以完成甲硫氨酸的沉淀。过滤回收晶体。滤饼用70%(100mL)的乙醇洗涤,然后冻干干燥。
采用乙醇的一次沉淀步骤可允许结晶产率从67.5%提高至87%(表2)。
表2:不用或用乙醇(70%)沉淀步骤的沉淀产率。
不用乙醇沉淀 用一步乙醇沉淀
结晶产率 67.5% 87%
实施例3:用乙醇实现用几步沉淀的L-甲硫氨酸回收产率的提高。
可以如实施例2中所述使用乙醇,并且可以在回路中使用从蒸馏步骤获得的原始母液(图2)。乙醇循环使用用于沉淀步骤。一部分母液循环使用以提高产率。如果循环使用60%的母液,甲硫氨酸产率可提高到95%(图3)。
参考文献
-Saunderson,1985British Journal of Nutrition 54:621-633.
-Anderson,1946,Proc.Natl.Acad.Sci.USA 32:120-128.
-Miller,1992,Laboratory Manual and Handbook for Escherichia coli andRelated Bacteria,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NewYork
-Schaefer et al.1999,Anal.Biochem.270:88-96.
-Liebl et al.,1989,Appl.Microbiol.Biotechnol.32:205-210.
-Riedel et al.,2001,J.Mol.Microbiol.Biotechnol.3:573-583.

Claims (8)

1.一种发酵生产L-甲硫氨酸和/或其衍生物的方法,包含以下步骤:
i)在包含碳源、硫源和氮源的适当培养基中培养用于发酵生产甲硫氨酸而优化的微生物以生产L-甲硫氨酸;
ii)回收在步骤i)获得的L-甲硫氨酸;
iii)将醇溶剂或乙腈加入步骤ii)获得的含甲硫氨酸部分以沉淀L-甲硫氨酸;和
iv)回收L-甲硫氨酸。
2.权利要求1的方法,其中步骤i)中的所述微生物是单一微生物。
3.前述权利要求中任一项的方法,其中其不包含任何酶促处理L-甲硫氨酸前体。
4.前述权利要求中任一项的方法,其中步骤ii)包含发酵培养基的澄清步骤,后接或不接L-甲硫氨酸的结晶步骤。
5.前述权利要求中任一项的方法,其中步骤iii)中使用的所述醇溶剂选自乙醇、异丙醇或其混合物。
6.前述权利要求中任一项的方法,其中步骤iii)中使用的所述醇溶剂是乙醇。
7.前述权利要求中任一项的方法,其中步骤iii)中溶剂/(含甲硫氨酸部分+溶剂)的比率包含50至80重量%,优选65至75重量%。
8.前述权利要求中任一项的方法,其中在步骤iii)中,步骤iii)之后L-甲硫氨酸在上清液中的残余溶解度在室温为5至6g.L-1
CN201680077838.8A 2016-01-08 2016-01-08 通过发酵生产来生产l-甲硫氨酸的方法 Pending CN108603207A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/000122 WO2017118871A1 (en) 2016-01-08 2016-01-08 Method to produce l-methionine by a fermentative production

Publications (1)

Publication Number Publication Date
CN108603207A true CN108603207A (zh) 2018-09-28

Family

ID=55486985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680077838.8A Pending CN108603207A (zh) 2016-01-08 2016-01-08 通过发酵生产来生产l-甲硫氨酸的方法

Country Status (8)

Country Link
US (1) US20180355390A1 (zh)
EP (1) EP3400305A1 (zh)
KR (1) KR20180093981A (zh)
CN (1) CN108603207A (zh)
BR (1) BR112018013873A2 (zh)
MX (1) MX2018008129A (zh)
RU (1) RU2018128142A (zh)
WO (1) WO2017118871A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020016178B1 (pt) 2018-02-09 2023-03-14 Haldor Tops0E A/S Processo de produção de compostos alfa-hidroxi e seus usos
KR102489243B1 (ko) * 2020-09-11 2023-01-16 고려대학교 산학협력단 S-메틸메티오닌 생산용 재조합 미생물 및 이를 이용한 s-메틸메티오닌의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089975A1 (en) * 2003-07-08 2005-04-28 Novus International Methionine recovery processes
US20120178966A1 (en) * 2010-12-29 2012-07-12 Cj Cheiljedang Corporation Methods for production of l-methionine and related products
US20150247175A1 (en) * 2012-06-18 2015-09-03 Metabolic Explorer Recombinant Microorganism for the Fermentative Production of Methionine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881837B2 (en) * 2001-06-07 2005-04-19 Orchid Chemicals & Pharmaceuticals Ltd. Chemical synthesis of S-adenosyl-L-methionine with enrichment of (S,S)-isomer
DE10249642A1 (de) 2002-10-24 2004-05-13 Consortium für elektrochemische Industrie GmbH Feedback-resistente Homoserin-Transsuccinylasen mit modifiziertem C-Terminus
US7252756B2 (en) * 2002-12-18 2007-08-07 Bp Corporation North America Inc. Preparation of components for refinery blending of transportation fuels
DE10359668A1 (de) 2003-12-18 2005-07-14 Basf Ag Verfahren zur Herstellung von Methionin
WO2005111202A1 (en) 2004-05-12 2005-11-24 Metabolic Explorer Recombinant enzyme with altered feedback sensitivity
KR100651220B1 (ko) 2004-06-29 2006-11-29 씨제이 주식회사 L-메씨오닌 생산 균주 및 상기 균주를 이용한l-메씨오닌의 생산방법
BRPI0611909A2 (pt) 2005-06-17 2009-01-20 Microbia Inc biossÍntese aperfeiÇoada de aminoÁcido e metabàlito
AU2006269864A1 (en) 2005-07-18 2007-01-25 Evonik Degussa Gmbh Methionine producing recombinant microorganisms
WO2007017710A1 (en) 2005-08-11 2007-02-15 Metabolic Explorer Process for the preparation of aspartate and derived amino acids like lysine, threonine, isoleucine, methionine, homoserine, or valine employing a microorganism with enhanced isocitrate lyase and/or malate synthase expression
JP5172697B2 (ja) 2006-01-04 2013-03-27 メタボリック エクスプローラー 硫酸透過酵素の発現が増強された微生物を用いてメチオニンおよびその前駆体ホモセリンまたはスクシニルホモセリンを製造するための方法
WO2009043372A1 (en) 2007-10-02 2009-04-09 Metabolic Explorer Increasing methionine yield
KR101164711B1 (ko) * 2009-02-27 2012-07-11 씨제이제일제당 (주) 미네랄 첨가와 산처리를 이용하여 메치오닌의 용해도를 증가시키는 방법
FR2951195B1 (fr) 2009-10-14 2014-01-31 Roquette Freres Composition riche en methionine destinee a l'alimentation animale
EP2479279A1 (de) 2011-01-20 2012-07-25 Evonik Degussa GmbH Verfahren zur fermentativen Herstellung schwefelhaltiger Aminosäuren
AR086790A1 (es) 2011-06-29 2014-01-22 Metabolic Explorer Sa Un microorganismo para la produccion de metionina con importacion de glucosa mejorada
FR2983870B1 (fr) 2011-12-08 2015-07-17 Roquette Freres Composition en methionine destinee a l'alimentation animale
WO2015028674A1 (en) 2013-08-30 2015-03-05 Metabolic Explorer Microorganism for methionine production with improved methionine synthase activity and methionine efflux
WO2015028675A1 (en) 2013-08-30 2015-03-05 Metabolic Explorer A microorganism for methionine production with enhanced methionine efflux

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089975A1 (en) * 2003-07-08 2005-04-28 Novus International Methionine recovery processes
US20120178966A1 (en) * 2010-12-29 2012-07-12 Cj Cheiljedang Corporation Methods for production of l-methionine and related products
US20150247175A1 (en) * 2012-06-18 2015-09-03 Metabolic Explorer Recombinant Microorganism for the Fermentative Production of Methionine

Also Published As

Publication number Publication date
BR112018013873A2 (pt) 2018-12-18
KR20180093981A (ko) 2018-08-22
RU2018128142A3 (zh) 2020-02-10
RU2018128142A (ru) 2020-02-10
US20180355390A1 (en) 2018-12-13
EP3400305A1 (en) 2018-11-14
MX2018008129A (es) 2018-12-06
WO2017118871A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
Berovic et al. Citric acid production
RU2598276C2 (ru) Способ получения l-метионина и родственных продуктов
CN107058416B (zh) 一种精制谷氨酸的发酵工艺
US9357795B2 (en) Flavor containing L-glutamic acid and method thereof
EP2726625B1 (de) Verfahren zur fermentativen produktion von natürlichem l-cystein
TWI558722B (zh) 酵母萃取物萃取殘渣之利用方法
CN1884565B (zh) D-丙氨酸微生物制造方法
EP2707492B1 (de) Verfahren zur fermentativen Herstellung von L-Cystin bei kontrollierter Sauerstoffsättigung
CN108603207A (zh) 通过发酵生产来生产l-甲硫氨酸的方法
CN104093704A (zh) 用于动物饲料的蛋氨酸组合物
CN106148440B (zh) 发酵法生产胍基丁胺
KR910002850B1 (ko) L-라이신을 생산하는 미생물 및 이를 이용한 l-라이신의 제조방법
ES2870480T3 (es) Composición de aditivo para pienso y composición de pienso para animales que lo contiene
CN117126898B (zh) 一种通过生物技术制备缬氨酸的工艺
EP2895597B1 (de) Verfahren zur fermentativen produktion von l-cystein und derivaten dieser aminosäure
Chaudhary et al. Optimization of process parameters of citric acid production from cane molasses using free and immobilized cells of manganese resistant mutant of Aspergillus niger
JP2018000073A (ja) 3hbの製造方法
CN115927496A (zh) 一种用酿酒酵母生产γ-氨基丁酸的方法
JPS63141594A (ja) ヒアルロン酸の製造方法
JPH1042860A (ja) イノシトールの製造方法およびヘキサクロロシクロヘキサン耐性株の取得法
CN104232703A (zh) 一种l-苯丙氨酸生产工艺
JP2000078967A (ja) シトロバクタ―属に属する微生物およびそれを用いたシキミ酸の製造方法
Nidhee Chaudhary et al. Optimization of process parameters of citric acid production from cane molasses using free and immobilized cells of manganese resistant mutant of Aspergillus niger.
JPH01112993A (ja) 5−ヒドロキシ−l−トリプトファンの製造法及び微生物
WO2013171098A2 (de) Verfahren zur fermentativen produktion von l-cystein und derivaten dieser aminosäure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180928