CN108594257A - 基于多普勒效应的测速传感器及其标定方法与测量方法 - Google Patents

基于多普勒效应的测速传感器及其标定方法与测量方法 Download PDF

Info

Publication number
CN108594257A
CN108594257A CN201810707860.7A CN201810707860A CN108594257A CN 108594257 A CN108594257 A CN 108594257A CN 201810707860 A CN201810707860 A CN 201810707860A CN 108594257 A CN108594257 A CN 108594257A
Authority
CN
China
Prior art keywords
prism
laser
laser beam
incident
testee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810707860.7A
Other languages
English (en)
Other versions
CN108594257B (zh
Inventor
王志会
张怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering Science Communication Shenyang Industrial Technology Research Institute Co ltd
Original Assignee
North Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Minzu University filed Critical North Minzu University
Priority to CN201810707860.7A priority Critical patent/CN108594257B/zh
Publication of CN108594257A publication Critical patent/CN108594257A/zh
Application granted granted Critical
Publication of CN108594257B publication Critical patent/CN108594257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明涉及一种基于多普勒效应的测速传感器及其标定方法与测量方法,所述测速传感器包括有激光器与激光束:激光器发射激光束,激光束入射至三角反射镜的第一反射面,经第一反射面反射后入射至第二反射面,反光镜接收第二反射面反射的激光并将激光束反射至棱镜,棱镜使所述反光镜反射的激光束发生折射,并透射出去,光电探测器接收经棱镜折射并射出的激光束,并测量其入射位置。本发明通过多普勒效应:指物体辐射的波长因为光源和观测者的相对运动而产生变化,同时棱镜对不同波长的激光折射角不同,通过激光在光电探测器上入射位置的变化,从而计算出被测物体的速度。本发明测量结构简单,成本低,测量精度较传统方法有显著提高。

Description

基于多普勒效应的测速传感器及其标定方法与测量方法
技术领域
本发明涉及测量技术领域,具体涉及一种基于多普勒效应的测速传感器及其标定方法与测量方法。
背景技术
近年来,随着半导体激光器与光电探测器的出现,使得激光三角法测量成为可能并且得以广泛应用。激光三角法测量是凭借三角波光学器件和高精度PSD(PositionSensitive Device,位置灵敏(敏感)探测器),在物体进行了小幅运行时,通过光学三角进行放大,水平运行在光电探测器(PSD)上放大距离,从而在小范围内实现高精度的运行或速度测量。多普勒效应是波源和观察者有相对运动时,观察者接收到波的频率与波源发出的频率并不相同的现象,因此,利用多普勒效应可以进行速度测量。
发明内容
本发明的目的在于提出一种基于多普勒效应的测速传感器及其标定方法与测量方法。
为了实现上述目的,本发明提供以下技术方案:
一种基于多普勒效应的测速传感器,包括:
可随被测物体同步移动的三角反射镜,包括第一反射面和第二反射面;
激光束,入射至三角反射镜的所述第一反射面,经第一反射面反射后入射至所述第二反射面;
反光镜,用于接收第二反射面反射的激光束,并使该激光束反射至棱镜;
所述棱镜,用于使所述反光镜反射的激光束发生折射,并透射出去;
光电探测器,用于接收从所述棱镜中透射出的激光束,并测量其入射位置;
处理***,用于根据光电探测器接收到的激光的入射位置变化量计算出被测物体的运行量。
在进一步的方案中,所述三角反射镜附着在被测物体上,三角反射镜随着被测物体的移动而移动。通过直接将三角反射镜固定在被测物体上,既能达到波源和观察者相对位置发生变动的目的,又实现反射激光随着被测物体的移动而同步运动。
在进一步的方案中,所述三角反射镜的第一反射面与第二反射面的夹角为直角。第一反射面与第二反射面的夹角为直角时,入射至第一反射面的入射光线和从第二反射面出射的光线平行,从而有利于***中各部件的布置,使整体结构尽可能小型化,也方便于被测物体的速度计算。
在进一步的方案中,所述棱镜的材质为光子晶体。光子晶体可以减少光的色散与衰弱。
在进一步的方案中,所述棱镜包括棱镜面一与棱镜面二,所述经反光镜反射的激光束入射至棱镜的棱镜面一,并发生折射,发生折射后的激光入射至棱镜面二时,棱镜面二使得激光再次发生折射,并使激光从棱镜面二射出。
另一方面,本发明同时提出基于多普勒效应的测速传感器的位置变化量与运动速度标定方法,步骤如下:
步骤一:在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
步骤二:调整激光器、三角反射镜、反光镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至反光镜,经反光镜反射至棱镜,经棱镜透射后被光电探测器接收;
步骤三:给定大小不同的速度V1、V2、V3…Vn,记录对应速度下的光电探测器位置变化量,通过非线性拟合获得运动速度与光电探测器的位置变化量的公式和/关系曲线。
另一方面,本发明同时提供了一种上述基于多普勒效应的测速传感器的测量方法,包括以下步骤:
在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
调整激光器、三角反射镜、反光镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至反光镜,经反光镜反射至棱镜,经棱镜透射后被光电探测器接收;
被测物体沿靠近或远离激光器的方向运行,且运行过程中激光器发射的激光束沿同一光路传输至反光镜,且被反光镜反射至棱镜的同一位置;
根据光电探测器在运行过程中接收到的入射光线的位置变化量计算被测物体的速度。
同时,本发明还提出另一种基于多普勒效应的测速传感器,包括:
可随被测物体同步移动的三角反射镜,包括第一反射面和第二反射面,第一反射面与第二反射面的夹角为直角;
激光束,入射至三角反射镜的所述第一反射面,经第一反射面反射后入射至所述第二反射面;
所述棱镜,用于使所述第二反射面反射的激光束发生折射,并透射出去;
光电探测器,用于接收从所述棱镜中透射出的激光束,并测量其入射位置;
处理***,用于根据光电探测器接收到的激光的入射位置变化量计算出被测物体的速度。
另一方面,本发明还提出了上述另一种基于多普勒效应的测速传感器的位置变化量与运动速度的标定方法,步骤如下:
步骤一:在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
步骤二:调整激光器、三角反射镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至至棱镜,经棱镜透射后被光电探测器接收;
步骤三:给定速度V1、V2、V3…Vn,记录对应速度下的光电探测器位置变化量,通过非线性拟合获得运动速度与光电探测器的位置变化量的公式和/或关系曲线。
另一方面,本发明还提出上述另一种基于多普勒效应的测速传感器的测量方法,包括以下步骤:
在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
调整激光器、三角反射镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至棱镜,经棱镜透射后被光电探测器接收;
被测物体沿靠近或远离激光器的方向运行,且运行过程中激光器发射的激光束沿同一光路传输至棱镜的同一位置;
根据光电探测器在运行过程中接收到的入射光线的位置变化量计算被测物体的速度。
与现有技术相比,使用本发明提供的一种基于多普勒效应的测速传感器及其标定方法与测量方法,其有益效果为:本发明通过多普勒效应:指物体辐射的波长因为光源和观测者的相对运动而产生变化,同时根据棱镜对不同波长的激光折射角不同,通过激光在光电探测器上入射位置的变化,从而计算出被测物体的运行速度。本发明测量结构简单,成本低,测量精度较传统方法有显著提高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例1中提供的一种基于多普勒效应的测速传感器的结构示意图。
图2为本发明实施例2中提供的一种基于多普勒效应的测速传感器的结构示意图。
图中标记说明
激光器1,激光束2,被测物体3,三角反射镜4,反光镜5,棱镜6,光电探测器7,第一反射面8,第二反射面9,棱镜面一10,棱镜面二11。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
请参阅图1,本实施例示意性地公开了一种基于多普勒效应的测速传感器,包括激光器1,三角反射镜4,反光镜5,棱镜6,光电探测器7,其中三角反射镜4包括第一反射面8和第二反射面9,同时三角反射镜4附着在被测物体3上,所述棱镜6包括棱镜面一10和棱镜面二11。
本新型基于多普勒效应的测速传感器中:
激光器1用于发射出激光束2,激光束2入射至三角反射镜4的所述第一反射面8,经第一反射面8反射后入射至所述第二反射面9;反光镜5接收第二反射面9反射的激光束后,使得激光束发生反射,入射至棱镜6的棱镜面一10,棱镜面一10使得入射的激光束2发生折射并入射至棱镜面二11,棱镜面二使得激光束2再次发生折射,并射出,光电探测器7接收由棱镜面二11射出的激光束2,并测量其入射位置。处理***,用于根据光电探测器7接收到的激光束2的入射位置变化量计算出被测物体的运行速度。
多普勒频移公式如下:
观察者和发射源的频率关系为公式1所示:
f'为观察到的频率;
f为发射源于该介质中的原始发射频率;
v为波在该介质中的行进速度;
v0为观察者移动速度,若接近发射源则前方运算符号为+号,反之则为-号;
vs为发射源移动速度,若接近观察者则前方运算符号为-号,反之则为+号。
对于本发明而言,激光发射源静止不动,则多普勒频移公式可以简化为公式2:
由于光学材料折射率与光的波长属于非线性关系,因此本发明提出位置变化量与运动速度标定方法。步骤如下:
步骤一:在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
步骤二:调整激光器、三角反射镜、反光镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至反光镜,经反光镜反射至棱镜,经棱镜透射后被光电探测器接收;
步骤三:给定速度V1、V2、V3…Vn,记录对应速度下的光电探测器位置变化量,通过非线性拟合获得速度与光电探测器位置变化量的公式和/或关系曲线。当通过上述测速传感器测出光电探测器上的位置变化量时,即可通过标定得到的关系曲线或公式得到被测物体的运动速度。
如图1所示,箭头方向为被测物体与三角反射镜的运行(运动)方向,另外的,光电传感器7采用PSD,运行前的激光束2、被测物体3、三角反射镜4用实线表示,运行后的激光束2、被测物体3、三角反射镜4用虚线表示,激光束2的传输路径如下:
运行前,激光器1发射激光束2,激光束2入射至三角反射镜4的所述第一反射面8,经第一反射面8反射后入射至所述第二反射面9;反光镜5接收第二反射面9反射的激光束2,并将激光束2反射至棱镜6的棱镜面一10,棱镜面一10使得激光束2发折射并入射至棱镜面二11,棱镜面二11使得激光束2再次发生折射并射至光电探测器7,光电探测器7接收经棱镜面二11折射并射出的激光束2,并测量其入射位置,此时记为第一入射位置。
运行后(被测物体沿靠近或远离激光器的方向运行,图1中仅展示了沿靠近激光器的方向运行的情况),激光器1发射激光束2,激光束2入射至三角反射镜4的所述第一反射面8,经第一反射面8反射后入射至所述第二反射面9;反光镜5接收第二反射面9反射的激光束2,并将激光束2反射至棱镜6的棱镜面一10,棱镜面一10使得激光束2发生折射并入射至棱镜面二11,棱镜面二11使得激光束2再次发生折射并射至光电探测器7,光电探测器7接收经棱镜面二11折射并射出的激光束2,并测量其入射位置,此时记为第二入射位置。
根据第一入射位置与第二入射位置即可得到入射光线的位置变化量,结合上述公式即可计算出被测物体的速度。
作为一种较优的实施方式,所述第一反射面8与第二反射面9的夹角为直角。容易理解的,此处将第一反射面8与第二反射面9的夹角设置为直角是为了便于各部件的布置,尽可能减小整个设备的尺寸,及方便被测物体运动速度的计算,在保证激光束入射至三角反射镜4的所述第一反射面8,经第一反射面8反射后入射至所述第二反射面9,第二反射面9可以将激光反射至反光镜5的情况下,不限制第一反射面与第二反射面的夹角度数。
作为一种较优的实施方式,所述棱镜6的材质优选为光子晶体。此处采用光子晶体是为了减少光的色散与衰弱,在保证激光束2仍能入射至光电探测器7的情况下,对棱镜的材质不做限制。
上述本实施例中提供的基于多普勒效应的测速传感器,其基于多普勒效应实现,整个测速传感器的结构简单,成本低,且测量精度高。
基于上述基于多普勒效应的测速传感器,其测量方法包括以下步骤:
步骤一:
在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
步骤二:
调整激光器、三角反射镜、反光镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至反光镜,经反光镜反射至棱镜,经棱镜透射后被光电探测器接收;
步骤三:
被测物体沿靠近或远离激光器的方向运行,且运行过程中激光器发射的激光束沿同一光路传输至反光镜,且被反光镜反射至棱镜的同一位置;
步骤四:
根据光电探测器在运行过程中接收到的入射光线的位置变化量计算被测物体的运行速度。
实施例2
请参阅图2,本实施例示意性地公开了一种基于多普勒效应的测速传感器,包括激光器1,三角反射镜4,棱镜6,光电探测器7,其中三角反射镜4包括第一反射面8和第二反射面9,第一反射面8与第二反射面9的夹角为直角,同时三角反射镜4附着在被测物体3上,所述棱镜6包括棱镜面一10和棱镜面二11。
本新型基于多普勒效应的测速传感器中:
激光器1用于发射出激光束2,激光束2入射至三角反射镜4的所述第一反射面8,经第一反射面8反射后入射至所述第二反射面9;经第二反射面9反射的激光束2入射至棱镜6的棱镜面一10,棱镜面一10使得入射的激光束2发生折射并入射至棱镜面二11,棱镜面二使得激光束2再次发生折射,并射出,光电探测器7接收由棱镜面二11射出的激光束2,并测量其入射位置。处理***,用于根据光电探测器7接收到的激光束2的入射位置变化量计算出被测物体的运行速度。
多普勒频移公式如下:
观察者和发射源的频率关系为公式1所示:
f'为观察到的频率;
f为发射源于该介质中的原始发射频率;
v为波在该介质中的行进速度;
v0为观察者移动速度,若接近发射源则前方运算符号为+号,反之则为-号;
vs为发射源移动速度,若接近观察者则前方运算符号为-号,反之则为+号。
对于本发明而言,激光发射源静止不动,则多普勒频移公式可以简化为公式2:
由于光学材料折射率与光的波长属于非线性关系,因此本发明提出位置变化量与运动速度标定方法。步骤如下:
步骤一:在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
步骤二:调整激光器、三角反射镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至棱镜,经棱镜透射后被光电探测器接收;
步骤三:给定大小不同的速度V1、V2、V3…Vn,记录对应速度下的光电探测器位置变化量,通过非线性拟合获得运动速度与光电探测器的位置变化量的公式和/或关系曲线。
如图2所示,箭头方向为被测物体与三角反射镜的运行(运动)方向,另外的,光电传感器7采用PSD,运行前的激光束2、被测物体3、三角反射镜4用实线表示,运行后的激光束2、被测物体3、三角反射镜4用虚线表示,激光束2的传输路径如下:
运行前,激光器1发射激光束2,激光束2入射至三角反射镜4的所述第一反射面8,经第一反射面8反射后入射至所述第二反射面9;激光束2反射至棱镜6的棱镜面一10,棱镜面一10使得激光束2发折射并入射至棱镜面二11,棱镜面二11使得激光束2再次发生折射并射至光电探测器7,光电探测器7接收经棱镜面二11折射并射出的激光束2,并测量其入射位置,此时记为第一入射位置。
运行后(被测物体沿靠近或远离激光器的方向运行,图1中仅展示了沿靠近激光器的方向运行的情况),激光器1发射激光束2,激光束2入射至三角反射镜4的所述第一反射面8,经第一反射面8反射后入射至所述第二反射面9;激光束2反射至棱镜6的棱镜面一10,棱镜面一10使得激光束2发生折射并入射至棱镜面二11,棱镜面二11使得激光束2再次发生折射并入射至光电探测器7,光电探测器7接收经棱镜面二11折射并射出的激光束2,并测量其入射位置,此时记为第二入射位置。
根据第一入射位置与第二入射位置即可得到入射光线的位置变化量,结合上述标定得到的公式或关系曲线即可计算出被测物体的速度。
基于上述基于多普勒效应的测速传感器,其测量方法包括以下步骤:
在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
调整激光器、三角反射镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至棱镜,经棱镜透射后被光电探测器接收;
被测物体沿靠近或远离激光器的方向运行,且运行过程中激光器发射的激光束沿同一光路传输至棱镜的同一位置;
根据光电探测器在运行过程中接收到的入射光线的位置变化量计算被测物体的速度。
本实施例中的测速传感器相对而言,少了分光镜的使用,结构更简单。
以上所述,仅为本发明的具体实施方式,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种基于多普勒效应的测速传感器,其特征在于,包括:
可随被测物体同步移动的三角反射镜,包括第一反射面和第二反射面;
激光束,入射至三角反射镜的所述第一反射面,经第一反射面反射后入射至所述第二反射面;
反光镜,用于接收第二反射面反射的激光束,并使该激光束反射至棱镜;
所述棱镜,用于使所述反光镜反射的激光束发生折射,并透射出去;
光电探测器,用于接收从所述棱镜中透射出的激光束,并测量其入射位置;
处理***,用于根据光电探测器接收到的激光的入射位置变化量计算出被测物体的速度。
2.根据权利要求1所述的基于多普勒效应的测速传感器,其特征在于,所述三角反射镜附着在被测物体上。
3.根据权利要求1所述的基于多普勒效应的测速传感器,其特征在于,所述三角反射镜的第一反射面与第二反射面的夹角为直角。
4.根据权利要求1所述的基于多普勒效应的测速传感器,其特征在于,所述棱镜的材质为光子晶体。
5.根据权利要求1所述的基于多普勒效应的测速传感器,其特征在于,所述棱镜包括棱镜面一与棱镜面二,所述经反光镜反射的激光束入射至棱镜的棱镜面一,并发生折射,发生折射后的激光入射至棱镜面二时,棱镜面二使得激光再次发生折射,并使激光从棱镜面二射出。
6.根据权利要求1-5任一所述的基于多普勒效应的测速传感器的位置变化量与运动速度的标定方法,其特征在于,步骤如下:
步骤一:在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
步骤二:调整激光器、三角反射镜、反光镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至反光镜,经反光镜反射至棱镜,经棱镜透射后被光电探测器接收;
步骤三:给定大小不同的速度V1、V2、V3…Vn,记录对应速度下的光电探测器位置变化量,通过非线性拟合获得运动速度与光电探测器的位置变化量的公式和/或关系曲线。
7.根据权利要求1-6任一所述的基于多普勒效应的测速传感器的测量方法,其特征在于,包括以下步骤:
在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
调整激光器、三角反射镜、反光镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至反光镜,经反光镜反射至棱镜,经棱镜透射后被光电探测器接收;
被测物体沿靠近或远离激光器的方向运行,且运行过程中激光器发射的激光束沿同一光路传输至反光镜,且被反光镜反射至棱镜的同一位置;
根据光电探测器在运行过程中接收到的入射光线的位置变化量计算被测物体的速度。
8.一种基于多普勒效应的测速传感器,其特征在于,包括:
可随被测物体同步移动的三角反射镜,包括第一反射面和第二反射面,第一反射面与第二反射面的夹角为直角;
激光束,入射至三角反射镜的所述第一反射面,经第一反射面反射后入射至所述第二反射面;
所述棱镜,用于使所述第二反射面反射的激光束发生折射,并透射出去;
光电探测器,用于接收从所述棱镜中透射出的激光束,并测量其入射位置;
处理***,用于根据光电探测器接收到的激光的入射位置变化量计算出被测物体的速度。
9.根据权利要求8所述的基于多普勒效应的测速传感器的位置变化量与运动速度的标定方法,其特征在于,步骤如下:
步骤一:在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
步骤二:调整激光器、三角反射镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至至棱镜,经棱镜透射后被光电探测器接收;
步骤三:给定速度V1、V2、V3…Vn,记录对应速度下的光电探测器位置变化量,通过非线性拟合获得运动速度与光电探测器的位置变化量的公式和/或关系曲线。
10.根据权利要求8所述的基于多普勒效应的测速传感器的测量方法,其特征在于,包括以下步骤:
在被测物体上设置三角反射镜,使得三角反射镜可与被测物体同步运行;
调整激光器、三角反射镜、棱镜与光电探测器的位置关系,使得激光器射出的激光束入射至三角反射镜的第一反射面,经第二反射面反射后入射至棱镜,经棱镜透射后被光电探测器接收;
被测物体沿靠近或远离激光器的方向运行,且运行过程中激光器发射的激光束沿同一光路传输至棱镜的同一位置;
根据光电探测器在运行过程中接收到的入射光线的位置变化量计算被测物体的速度。
CN201810707860.7A 2018-07-02 2018-07-02 基于多普勒效应的测速传感器及其标定方法与测量方法 Active CN108594257B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810707860.7A CN108594257B (zh) 2018-07-02 2018-07-02 基于多普勒效应的测速传感器及其标定方法与测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810707860.7A CN108594257B (zh) 2018-07-02 2018-07-02 基于多普勒效应的测速传感器及其标定方法与测量方法

Publications (2)

Publication Number Publication Date
CN108594257A true CN108594257A (zh) 2018-09-28
CN108594257B CN108594257B (zh) 2024-04-02

Family

ID=63635433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810707860.7A Active CN108594257B (zh) 2018-07-02 2018-07-02 基于多普勒效应的测速传感器及其标定方法与测量方法

Country Status (1)

Country Link
CN (1) CN108594257B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109084691A (zh) * 2018-11-05 2018-12-25 北方民族大学 一种折射式位移传感器及其测量方法
CN109141294A (zh) * 2018-10-26 2019-01-04 北方民族大学 一种角度测量传感器及其标定方法与测量方法
CN109342758A (zh) * 2018-11-16 2019-02-15 成都信息工程大学 新型测速传感器
CN109521219A (zh) * 2018-11-16 2019-03-26 成都信息工程大学 多路测量式速度测量传感器
CN110398749A (zh) * 2019-08-13 2019-11-01 湖南波恩光电科技有限责任公司 一种双斜射非对称车载激光测速装置
CN110470863A (zh) * 2019-09-03 2019-11-19 中国空气动力研究与发展中心超高速空气动力研究所 一种测速装置标定***及标定方法
CN112485805A (zh) * 2020-11-24 2021-03-12 中国科学院沈阳自动化研究所 一种激光三角位移传感器及其测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397550A (en) * 1980-02-14 1983-08-09 Agency Of Industrial Science & Technology Laser doppler velocimeter
JPH05135399A (ja) * 1991-11-12 1993-06-01 Hitachi Ltd 光ヘツド
CN101416071A (zh) * 2006-03-30 2009-04-22 威克股份有限公司 用于产生放大的测量体以基于激光多普勒测速法来确定纺织纤维的结构和/或缠绕速度的方法和装置
CN101506661A (zh) * 2006-08-25 2009-08-12 克里斯多佛·伊恩·莫伊尔 速度检测器
CN107063476A (zh) * 2017-05-27 2017-08-18 中国电子科技集团公司第四十研究所 一种测量太赫兹波长的装置及方法
CN207528750U (zh) * 2017-11-27 2018-06-22 长沙普德利生科技有限公司 一种车载激光多普勒测速仪
CN208596228U (zh) * 2018-07-02 2019-03-12 北方民族大学 基于多普勒效应的测速传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397550A (en) * 1980-02-14 1983-08-09 Agency Of Industrial Science & Technology Laser doppler velocimeter
JPH05135399A (ja) * 1991-11-12 1993-06-01 Hitachi Ltd 光ヘツド
CN101416071A (zh) * 2006-03-30 2009-04-22 威克股份有限公司 用于产生放大的测量体以基于激光多普勒测速法来确定纺织纤维的结构和/或缠绕速度的方法和装置
CN101506661A (zh) * 2006-08-25 2009-08-12 克里斯多佛·伊恩·莫伊尔 速度检测器
CN107063476A (zh) * 2017-05-27 2017-08-18 中国电子科技集团公司第四十研究所 一种测量太赫兹波长的装置及方法
CN207528750U (zh) * 2017-11-27 2018-06-22 长沙普德利生科技有限公司 一种车载激光多普勒测速仪
CN208596228U (zh) * 2018-07-02 2019-03-12 北方民族大学 基于多普勒效应的测速传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张思超: "折射式激光多普勒测速***", 《实验力学》, vol. 28, no. 4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141294A (zh) * 2018-10-26 2019-01-04 北方民族大学 一种角度测量传感器及其标定方法与测量方法
CN109084691A (zh) * 2018-11-05 2018-12-25 北方民族大学 一种折射式位移传感器及其测量方法
CN109084691B (zh) * 2018-11-05 2024-04-05 四川惠科达仪表制造有限公司 一种折射式位移传感器及其测量方法
CN109342758A (zh) * 2018-11-16 2019-02-15 成都信息工程大学 新型测速传感器
CN109521219A (zh) * 2018-11-16 2019-03-26 成都信息工程大学 多路测量式速度测量传感器
CN109521219B (zh) * 2018-11-16 2023-07-21 成都信息工程大学 多路测量式速度测量传感器
CN109342758B (zh) * 2018-11-16 2023-10-27 成都信息工程大学 测速传感器
CN110398749A (zh) * 2019-08-13 2019-11-01 湖南波恩光电科技有限责任公司 一种双斜射非对称车载激光测速装置
CN110398749B (zh) * 2019-08-13 2024-03-01 北京航天光新科技有限公司 一种双斜射非对称车载激光测速装置
CN110470863A (zh) * 2019-09-03 2019-11-19 中国空气动力研究与发展中心超高速空气动力研究所 一种测速装置标定***及标定方法
CN110470863B (zh) * 2019-09-03 2021-05-25 中国空气动力研究与发展中心超高速空气动力研究所 一种测速装置标定***及标定方法
CN112485805A (zh) * 2020-11-24 2021-03-12 中国科学院沈阳自动化研究所 一种激光三角位移传感器及其测量方法

Also Published As

Publication number Publication date
CN108594257B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN108594257A (zh) 基于多普勒效应的测速传感器及其标定方法与测量方法
CN105866795B (zh) 基于全光纤扫描f-p干涉仪的大动态风场探测激光雷达
CN109459761A (zh) 一种激光雷达
CN105093238B (zh) 单腔f-p干涉仪单探测器实现的透反式双边缘测风激光雷达
CN106353770B (zh) 基于大光敏面超导单光子探测器的高空大气探测激光雷达
CN105334519B (zh) 基于三通道f-p标准具的多大气参数同时高精度探测激光雷达***
CN108594258A (zh) 基于多普勒效应的修正式测速传感器及其标定与测量方法
CN107515402A (zh) 一种tof三维测距***
CN103472456A (zh) 一种基于稀疏孔径压缩计算关联的主动成像***及方法
CN108957471A (zh) 基于调频连续波激光测距的三维测量***
CN109342758A (zh) 新型测速传感器
CN107515403A (zh) 一种tof三维测距传感器
US20180128904A1 (en) Lidar scanner with optical amplification
CN108469531A (zh) 基于多普勒效应的双重修正式测速传感器及标定与测量方法
CN104777486A (zh) 手持式激光近距离测距仪
CN208596228U (zh) 基于多普勒效应的测速传感器
CN102980534B (zh) 一种隐蔽转轴与端面垂直度的非接触测量方法及***
CN108646047A (zh) 基于多普勒效应带修正结构的测速传感器及标定与测量方法
CN108534688A (zh) 可提高放大倍数的位移传感器及其测量方法
CN209417303U (zh) 一种激光雷达
CN108801465A (zh) 一种激光偏振态测量装置及其测量方法
CN105043305B (zh) 一种量子关联自准直仪及测角方法
CN204903381U (zh) 非线性薄膜材料的光学非线性测量装置
CN208283558U (zh) 基于多普勒效应的修正式测速传感器
CN208283418U (zh) 基于多普勒效应带修正结构的测速传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240307

Address after: No. 188-37 Jinzi Street, Shenfu Demonstration Zone, Hunnan District, Shenyang City, Liaoning Province, 110172

Applicant after: Harbin Engineering Science Communication (Shenyang) Industrial Technology Research Institute Co.,Ltd.

Country or region after: China

Address before: 750021 No. 204 Wenchang North Road, Xixia District, the Ningxia Hui Autonomous Region, Yinchuan

Applicant before: BEIFANG MINZU University

Country or region before: China

GR01 Patent grant
GR01 Patent grant