CN1085828C - 空气分离方法 - Google Patents

空气分离方法 Download PDF

Info

Publication number
CN1085828C
CN1085828C CN96115022A CN94105398A CN1085828C CN 1085828 C CN1085828 C CN 1085828C CN 96115022 A CN96115022 A CN 96115022A CN 94105398 A CN94105398 A CN 94105398A CN 1085828 C CN1085828 C CN 1085828C
Authority
CN
China
Prior art keywords
air
flow velocity
oxygen
nitrogen
described method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN96115022A
Other languages
English (en)
Other versions
CN1097506A (zh
Inventor
伯纳德·达莱多
让·伊夫·莱赫曼
让·马克·佩隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
George Cloud Technology Research And Development Co ltd
Original Assignee
George Cloud Technology Research And Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26230289&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1085828(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by George Cloud Technology Research And Development Co ltd filed Critical George Cloud Technology Research And Development Co ltd
Publication of CN1097506A publication Critical patent/CN1097506A/zh
Application granted granted Critical
Publication of CN1085828C publication Critical patent/CN1085828C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • F25J3/0449Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures for rapid load change of the air fractionation unit
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/285Plants therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04927Liquid or gas distribution devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/32Technologies related to metal processing using renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/915Combustion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

在一种空气分离工艺中,为保持蒸馏塔(24)生成的气态产物的纯度不变,当产物需求量和所供应空气的流速增大时把过量富氮液体加入塔(24)中。当它们减小时,从塔(24)中取出过量富氮液体。

Description

空气分离方法
本发明涉及蒸馏塔中的空气分离技术。
近年来,人们提出了快速变动空气分离器操作的要求。这一要求在蒸馏塔的空气分离技术中尤为迫切,在蒸馏塔中所产生的氧被用于综合气化器组合循环(Integrated Gasifier Conbined Cycle,缩写成IGCC)类发电站中。
在新近发展起来的这类发电站中,用煤和氧气发电。由于用户的用电量是变动的,氧的供应也随之要作出变动,并且,氧的纯度要保持不变(用在气化器中一般高于80%)。
在空气分离器用于上述综合气化器组合循环类发电站中时(图1),从空气分离器出来的空气流速和压力是可变的,此空气通向压缩机2,压缩机2与气体涡轮4机械相连。因此,电的需求量的快速变动加上对送往综合气化器组合循环的氧气的需求的快速变动引起气化器6的生成的可燃气的变动以及燃气的变动。从而造成压缩机2中压缩空气的流速和压力的快速变动,并因而造成送往空气分离器的空气的流速和压力的快速变动。
因此问题在于使空气分离器生成数量可变的氧,但其数量足以满足用电量的变动,同时,尽管用电量变动造成空气分离器空气流速的涨落,但此氧气仍能保持纯度不变,以满足综合气化器组合循环的气化器6的标准。同时,剩余氮经压缩后被送至气体涡轮4,因此必须把比剩余氮中的氧含量保持在一定限度之下,因此必须保持所有蒸馏产物的纯度。
当空气分离器的空气压缩机8与气体涡轮4的压缩机2分开时(图2),空气分离器的问题是根据气化器6的需要迅速加以调节,把合适流速的氧供应给气化器6。此时,空气压缩机8的流速随氧气流速的变动而近似变动,其输出压力的变动相对较小。
本发明的目的是提供解决上述两问题的方案。
对于空气和蒸馏塔压力变动问题,专利申请EP-A-0519688提出了一种解决方案,该方案包括,在压力减小时,把液态氮注入蒸馏塔;在压力增加时,取出并储存液态氮。该方案适用于补偿下列现象:
蒸馏塔中包含的液体数量(持液量)或“塔储量”)大而压力下降时大量产生闪蒸气体;
所生成的闪蒸气体富含氧,因而难于生成纯氮。
另一方面,EP-A-O 0519688的工艺在操作以发动过程中并没有改正发生在蒸馏塔中的决定性因素,即蒸馏塔中持液量的变动。当液体流速下降时,也就是说当空气分离器所处理的空气流下降时,这一持液是大大下降。因此,此时若不希望看到蒸馏塔底部积满液体以及取出的产品(特别是氧)纯度减低的话,必须把过量液体除去。
本发明的目的是提供一种方案,解决(装有筛板或填料的)蒸馏塔空气流速快速变动所造成的问题。
因此,这样构造的蒸馏塔会随着空气流速的迅速变动,持液量大量增减,使其相当于在压力变动过程中生成闪蒸气体或使其重新冷凝的变化。出人意料的是,不管蒸馏塔的液体量为多少(液体在此方说压力下降时会大量气化),这些液量由于流速变动而引起的变动甚至更大,从而若要保持产品含量,在空气流速下降时必须减小液态氮的回流,在空气流速提高时必须增加液态氮的回流。
本人因此发现,令人惊奇的是,在改变装有筛板或有结构填料的蒸馏塔的空气流速时,所要做的与专利EP-A-0519686所描述的恰恰相反。
为此,本发明的目的是提供一种在低温蒸馏设备中分离空气的工艺,该设备包括至少一个蒸馏塔,在该蒸馏塔中把供给的空气加以分离,生成富氧馏分和高氮馏分作为产品,其特征在于,通过下述方法,使得这些产品的纯度在产品需求变动或供应空气的流速或压力变动的情况下仍大体保持不变:
a)若产品需求量增加或供应空气的流速增大时,把过量富氮液体加入蒸馏设备,或者
b)若产品需求量减小或供应空气流速减小时,从蒸馏设备中取出过量富氮液体。
本发明的另一个目的是提供在低温蒸馏设备中分离空气的装备,该设备至少包括一蒸馏塔,在蒸馏塔中分离提供的空气,生成富氧馏分和富氮馏分作为产品,其特征在于,在产品需求量变动或供给空气的流速或压力变动时,该装备所包括的装置仍能保持上述产品的纯度不变,这些装置包括:
a)产品需求量或供应的空气流速增大时把过量富氮液体加入该设备的装置;以及
b)产品需求量或供应的空气流速减小时把过量富氮液体以该设备中取出并同时储存该液体的装置。
此外,本发明的再一目的是提供在低温蒸馏设备中分离空气的装备,该设备包括一蒸馏塔,在蒸馏塔中分离所提供的空气,生成富氧馏分和富氮馏分,该装备包括在产品需求量或供给空气的流速或压力发生变动时仍能确保这些产器纯度不变的装置,这些装置包括该在设备中加入或取出富含氮液体的装置和存储该液体的装置,其特征在于,存储装置位于蒸馏塔的低压塔中。
本人发现一种令人十分惊奇的现象:在产量减少因而气体流速以及在至少一个蒸馏塔中所处理的液体减少时,该蒸馏塔或这些蒸馏塔的行为表现为,产量或压力减少时不再需要注入液态氮,而是相反,需要取出液态氮,而在载荷(和压力)增加时,反倒要加入液态氮。
上述现象的解释如下:当蒸馏塔中的载荷,液体和气体流速(以及压力)减小时,发生两种相反方向的现象。
第一种与压力下降有关的现象是该蒸馏塔的液体发生闪蒸。所生成的闪蒸气体的数量是压力下降和蒸馏塔所含液体量的函数。
第二种现象是由气体流速和所处理液体的变动造成的蒸馏塔中持液量的改变。
但是,令人吃惊并且与至今一般所认为的相反,我们发现,即使在装有“筛板的蒸馏塔中,当压力与空气流速成正比变动时,或者更不必说,当压力以小于空气流速的比例变动时(这是一般情况),第二种现象占主导地位。载荷减小时的持液量的减小在筛板塔中转变成处于每块筛板上的过量液体(在填充塔中,过量液***于每一分配器中的),此时,若要避免产生过量回流、在蒸馏塔底积累起液体以及氧的纯度下降,就必须清除掉这些过量液体,因为同时,低压蒸馏塔底部的加热因氮的冷凝而减弱。
本人在研究筛板蒸馏塔和填充蒸馏塔在操作快速变动过程中的行为时所作出的全然令人惊奇的发现因此成为:它们在相变过程中不仅能避免氮的纯度下降,而且为了保持氧的纯度,在产量和压力下降时,它们需要取出液态氮;而在要增加产量时,需要加入液态氮,从而通过迅速充分恢复持液量而使筛板(或者,在填充蒸馏塔中,是蒸馏塔顶部的分配器)始终保持充分的回流。
本设备在操作变动过程中的另一个改进之处是作出如下安排:转变期中进行调节的根本问题是控制蒸馏塔中气体流速的上升,以保持两头(氧和氮)的纯度。但是,在转变期中无法同时保持这两者的纯度。因此,若能在转变期中相对独立地调节氧的纯度和氮的纯度,那是很有趣的。如果蒸馏塔包括一个低压蒸馏塔和一个中压蒸馏塔,那末当进气涡轮的流速减小时(此时空气经涡轮供给低压蒸馏塔),低压蒸馏塔上部的蒸馏条件大为改善。在操作变动时对空气汽化器控制的改善因此在转变期中使得进气涡轮的流速总能减小到它的平衡值之下,从而能同时改善氧和氮的纯度,因此可更好地控制它们。对于膨胀中在氮的涡轮,情况也复如此,此时,用如此膨胀的中压氮的减少来补充回流,从而改善中压塔,因而是低压塔的蒸馏。
最后,如果本工艺包括一蒸馏支持循环,这一循环的流速在转变期中会增大,或者该循环中的涡轮流速会减小,如可能发生的那样。
下面参照附图对本发明的不同实施例作出说明,附图中:
图3为本发明装备的两个实施例的示意图;
图4和图5为本发明装置的另两个实施例的示意图;
图6为本发明的存储装置;
图7和图8分别同图3和图5的示意图,但还分别示出了调节装置。
在图3中,空气在压缩机70中被压缩,并在热交换器32中被冷却。冷却的空气被引入双蒸馏塔24的中压蒸馏塔30的底部。塔24装有筛板。但筛板可以至少部分地为填料(结构填料或实体填料)所取代。
在中压塔30中,空气被分离成氮气和底部富含氧液体。一部分气化物被引到低压塔中的冷凝器34,在冷凝器中冷凝并作为回流返回到中压塔30。高压氮从中压塔取出,另一部分在热交换器32中再加热,然后由压缩机72压缩。底部富含氧液体从中压塔30中取出,通过管40被注入低压塔42。
为了为低压塔42产生回流,液态氮从中压塔30上部取出,通过管44,注入到低压塔42的顶部。管44的回流液态氮和管40的底部液体蒸馏生成低压气态氮和液态氧。
当氧气需求量不变时,由于有控制取自塔24的氧气和氮的装置,塔24的压力得到保持。在回流管中循环的所有氮都作为回流被送到塔42。在罐60中什么都不储存;罐60的上游阀52和下游阀54控制着引入该罐或取自该罐的流速。
当氧的需求量减小时,塔24中的液量减少,因此,必须取出过量富含氮液体以避免过量回流。此液体由于通过管44的流速减小而从塔24转送到罐60。同时通过管46取出更少的氮。
当氧的需求量增加时,为了在设备中保持充足的回流,用阀54提高取自管44的流速并注入过量液态氮。
图3、4和5表示出四种改进,而且可把它们组合起来,以确保气态产物的纯度。
在图3中,一部分由压缩机70压缩的供给空气由膨胀涡轮82膨胀后引入低压塔42。
在图3中,用虚线表示出支持循环:在这里,一部分由压缩机76压缩的氮在引入中压塔30顶部之前由另一个压缩机84压缩,从而用来支持精馏。返回中压塔30的气体使得从中压塔30顶部取出更多液体送到低压塔42,从而改善低压塔42的回流量并因此改善它的蒸馏能力。
这一精馏支持在设备的载荷变动过程中也是有用的。当对气态氧的需求增加时,精馏支持预先增强,从而此设备的载荷增加得更迅速,相应扩展了纯度分离的限度。在对气态氧的需求减小时,精馏支持则比设备的载荷减少得更慢。
图4也表示出支持循环,在这里,支持循环中的一部分氮经部分冷却后由膨胀涡轮88膨胀并经加热后在压缩机76中再循环。
图5所示装备是对图4的改进。一部分经压缩机70压缩的空气在热交换器32中冷却前进一步在压缩机68中压缩。这一双重压缩部分在液相时分为两部分,一部分引入中压塔30,另一部分引入低压塔42。
氧以液相从低压塔42底部取出,经泵82压缩后通到热交换器32,与压缩空气逆流而被汽化。
随着氧需求量和空气压力的下降,热交换管32中的被压缩液化的空气的流速比在热交换管中汽化的富氧液体的流速下降得更慢,因此此时,过量的压缩空气流速至少部分吸收了由热交换管中正在加热的气体的流速与正在冷却的气体的流速之间的不平衡造成的致冷作用。
当氧气需求量和空气压力上升时,在热交换管中,被压缩和液化的空气的流速比汽化的富氧液体的流速增加得慢,从而抵消了此时法加热产物与冷却产物之间流速不平衡引起的热不平衡。
被压缩空气的流速通过调整总热流抵消了转变期中热交换管12中的不平衡。
在载荷减少时,被压缩空气流将保持大于氧的流速与被压缩空气的流速的正常比值。载荷增加时,情况相反。
作为一种改进,罐60可为低压塔42中位于图6所示(结构的或实体的)填充塔的顶部分配器上方的储槽所代替。储槽60B的尺寸做成让正常流速的50%通过。在这些条件下,此槽的液体容量等于它所要储存的液体容量。两储槽60A、60B由导管11、12连结到各自的阀52A、52B、52A、52B再由两导管连到中压塔30顶部。
阀52A、52B的结构(O,F/打开,关闭)各自提供了100%的控制。结构(F,O),只提供给储槽60B,并提供50%的控制。阀52A、52B打开的程度提供了在这两个操作极限之间的中间控制。
本专业人士自然明白,这一改进是一种适用于不同蒸馏工艺和适用于与图3到图5所示不同的其它类型装备的储存装置。它能在低压下储存富氮液体。
虽然在图3到图5中的蒸馏塔24装有主薄膜蒸发器34,但本专业人士当应明白,此蒸发器并不是本发明的主要部件,它可用其它装置代替。
图7和图8分别详细表示出了对图3(包括虚线所示特征)和图5装备进行控制的装置。
控制装置包括诸如用来控制流速的FIC(“流速控制器”)56、58、AIC(“分析控制器”)66之类的调节器和一台计算机26,它与所有其它组件连结,并控制着它们的功能。
稳态操作时,根据物料平衡由离开设备的流速(残渣、气态氧和气态氮)来确定进入该设备的空气的流速。
载荷需求增加时,只须提高离开低压塔42的气体流速以使更多空气流入中压塔30。这样,低压塔42的压力下降,蒸发器/冷凝器的温差增大从而其冷凝能力增大(中压塔30中的需的空气流速增大)。
载荷需求减小时,只要减小离开低压塔42的气体流速以使更少空气流入中压塔30,空气流速自行增大或减小到会产生一定纯度的氧所需的值。
从中压塔30的贫含体出口取出而进入罐60的液体法作用于阀52的FIC(流速控制器)58调节,阀52把上述液体送往罐60。它的调节点是进入中压塔30的空气流速的线性函数,调节点经计及及各种滞后和动态补偿类型(时间滞后,超前滞后,装料台…)的动态函数滤波,从而控制滞留在中压塔30的液体。
离开罐60向着低压塔42贫含液体入口而去的液体由作用于阀54的FIC56调节,阀54把该液体送往低压塔42。它的调节点是计及空气流速的动态出数以及动态补偿的函数,该空气流速根据由电池处理的气态氧需求量计算而得,从而控制低压塔42贫含液体入口和富含液体入口之间部分的液体滞留量。
在过渡期,FIC56、58的调节点受不同动态特性的控制,罐60随操作的增大或减小而分别放空或积满。
在稳态条件下,输出流速的FIC56受罐60的液面高度的控制,它的控制点自然是设备载荷的函数。装在罐60的液体进口处的FIC58的调节点是通过取自中压塔30顶部的氮的纯度调节器出口进行校正。
蒸馏塔压力变动引起的闪蒸在热交换管中引起暂时的不平衡。
载荷减小时,致冷流速大于加热流速;载荷增加时,情况相反。
在稳态条件下,气态氧的纯度决定于氧的流速对空气流速的比例。因此,对于给定的气态氧流速,氧的纯度的改善发生在空气流速增加之时,因而应提高残渣相对于气态氧的流速。
对于给定的低压塔42和给定的氧的流速,残渣的纯度是其结果。若存在精馏支持,就能提高低压塔42的蒸馏能力,从而相对调节氧和残渣纯度。
在稳态条件下,用来测量残渣氧含量的AIC66将对支持流速的调节作出校正。
本发明同样适用于包括填充蒸馏塔或筛板蒸馏塔等的设备。本发明设备也可以是填充和筛板蒸馏塔的组合。

Claims (17)

1.在低温蒸馏设备中分离空气的方法,该设备包括一中压蒸馏塔(30)和一低压蒸馏塔(42)以及回流导管(44;11,12),回流导管可把从中压塔(30)取出的富氮液体加到低压塔(42)中,在蒸馏塔中,所供给的空气被分离,生成产物富氧馏分和富氮馏分,其特征在于,通过下述方法这些产品的纯度在产品需求量发生变动或所供应的空气的压力或流速发生变动时大体保持不变,
a)若产品需求量或所供给空气的流速上升,在蒸馏设备中引入过量回流液;或者
b)若产品需求量或供给空气流速下降,则从蒸馏设备中取出过量回流液。
2.按权利要求1所述的方法,特征在于,把过量的富氮液体从回流导管(44)的流体(44,11,12)中取出,或者把过量富氮液体注入回流导管(44)的流体(44,11,12)中。
3.按权利要求1到2之一所述的方法,把过量富氮液体储存在塔(30,42)外部的储存器(60)中,或从该储存箱(60)中取出过量富含氮液体。
4.按权利要求1到2之一所述的方法,其特征在于一空气膨胀涡轮(82)把空气供给低压蒸馏塔(42),出自该膨胀涡轮(82)的气流可调节。
5.按权利要求1到2之一所述的方法,其特征在于取自中压塔(30)的可调节部分的氮被送至涡轮(82)膨胀并在热交换管(32)中再加热。
6.按权利要求1到2之一所述的方法,其特征在于,在该设备的低压塔(12)中生成的一部分富氮馏分被再加热、压缩、再循环到该设备的中压塔(30),该经再循环的氮的可调节部分膨胀至中间温度并在热交换管(32)中再加热。
7.按权利要求6所述的方法,其特征在于,对富氮馏分的含量进行测量,而对再循环到中压塔(30)的该富氮馏分的流速根据氮馏分的上述纯度进行控制。
8.按权利要求6所述的方法,其特征在于,在转变期中,对富氮馏分的含量进行测量,并对循环中被膨胀的该馏分的流速根据富氮馏分的上述纯度进行控制。
9.按权利要求1到2之一所述的方法,其特征在于,包括下列步骤:
a)当氧需求量增加时,同时增大取自该设备的低压塔(42)的产品的流过,从而通过把低压塔(42)的汽化器/冷凝器(34)的温度差增大到以所需纯度生产所需氧气所需的值,而让设备接纳的空气的流速自行增大,低压塔(42)的压力则随设备特性和可获得的空气的压力听其自行调节;
b)当氧需求量减少时,同时减小取自该设备的低压塔(42)的产品的流速,从而通过把低压塔(42)的汽化器/冷凝器(34)的温度差减小到以所需纯度生产所需氧气所需的值,而让设备接纳的空气的流速自行减小,低压塔(42)的压力则随设备特性和可获得空气的压力听其自行调节。
10.按权利要求9所述的方法,其特征在于,对富含氧产品的纯度进行测量,并通过根据富氧产品的纯度调节富氧馏分或富氮馏分的流速而对所处理的空气的流速进行控制。
11.按权利要求1到2中任一权利要求所述的方法,其特征在于,至少一富氧产物以液相取自蒸馏塔,经泵(82)压缩后在热交换管(32)中汽化,并且,至少一部分所供给空气压缩到更高压力,在热交换管(32)中液化后以液相送至蒸馏塔(30,42)。
12.按权利要求11所述的方法,其特征在于,随着氧需求量和空气压力的下降,被压缩并在热交换管(32)中液化的空气的流速比在热交换管中汽化的富氧液体的流速下降得慢,从而过量的压缩空气流至少吸收掉一部分因此时热交换管中加热气体和冷却气体之间流速不平衡而造成的过量致冷作用。
13.按权利要求11所述的方法,其特征在于,随着氧需求量和空气压力的上升,被压缩并在热交换管(32)中液化的空气的流速比在热交换管中汽化的富氧液体的流速增大得慢,从而抵消此时在热交换管中固加热产物和冷却产物之间流速不平衡造成的热不平衡。
14.按权利要求1到2之一所述的方法,其特征在于,低温蒸馏设备把氧供给“综合汽化器组合循环”类发电站,供给该低温蒸馏设备的空气的压力决定于该综合汽化器组合循环类发电站所需氧气量。
15.按权利要求1到2之一所述的方法,其特征在于,至少一个蒸馏塔(30、42)包括结构填料。
16.按权利要求1到2之一所述的方法,其特征在于,至少一个蒸馏塔(30、42)包括实体填料。
17.按权利要求1到2之一所述的方法,其特征在于,至少一个蒸馏塔(30、42)包括筛板。
CN96115022A 1993-04-29 1994-04-28 空气分离方法 Expired - Lifetime CN1085828C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9305062A FR2704632B1 (fr) 1993-04-29 1993-04-29 Procede et installation pour la separation de l'air.
FR9305062 1993-04-29
FR9311509A FR2710737B1 (fr) 1993-04-29 1993-09-28 Procédé et installation pour la séparation de l'air.
FR9311509 1993-09-28

Publications (2)

Publication Number Publication Date
CN1097506A CN1097506A (zh) 1995-01-18
CN1085828C true CN1085828C (zh) 2002-05-29

Family

ID=26230289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96115022A Expired - Lifetime CN1085828C (zh) 1993-04-29 1994-04-28 空气分离方法

Country Status (10)

Country Link
US (4) US5437160A (zh)
EP (2) EP0622595B1 (zh)
JP (1) JP3515165B2 (zh)
CN (1) CN1085828C (zh)
AU (1) AU673725B2 (zh)
CA (1) CA2122199A1 (zh)
DE (1) DE69408358T2 (zh)
ES (1) ES2111867T3 (zh)
FR (2) FR2704632B1 (zh)
ZA (1) ZA942849B (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529681C2 (de) * 1995-08-11 1997-05-28 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
US5666823A (en) * 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
US5802875A (en) * 1997-05-28 1998-09-08 Praxair Technology, Inc. Method and apparatus for control of an integrated croyogenic air separation unit/gas turbine system
EP0908689A3 (en) * 1997-08-20 1999-06-23 AIR LIQUIDE Japan, Ltd. Method and apparatus for air distillation
WO1999040304A1 (en) 1998-02-04 1999-08-12 Texaco Development Corporation Combined cryogenic air separation with integrated gasifier
US5996373A (en) * 1998-02-04 1999-12-07 L'air Liquide, Societe Ananyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
DE19815885A1 (de) * 1998-04-08 1999-10-14 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt bei der Tieftemperaturzerlegung von Luft
US5983668A (en) * 1998-04-29 1999-11-16 Air Products And Chemicals, Inc. Air separation unit feed flow control in an IGCC power generation system
US6006546A (en) * 1998-04-29 1999-12-28 Air Products And Chemicals, Inc. Nitrogen purity control in the air separation unit of an IGCC power generation system
US6214258B1 (en) * 1998-08-13 2001-04-10 Air Products And Chemicals, Inc. Feed gas pretreatment in synthesis gas production
US6182471B1 (en) 1999-06-28 2001-02-06 Praxair Technology, Inc. Cryogenic rectification system for producing oxygen product at a non-constant rate
US6309454B1 (en) 2000-05-12 2001-10-30 Johnson & Johnson Medical Limited Freeze-dried composite materials and processes for the production thereof
FR2811712B1 (fr) 2000-07-12 2002-09-27 Air Liquide Installation de distillation d'air et de production d'electricite et procede correspondant
DE10047102A1 (de) * 2000-09-21 2002-04-11 Linde Ag Regelverfahren für eine Tieftemperatur-Rektifikationsanlage
EP1191291B1 (de) * 2000-09-21 2005-05-04 Linde Aktiengesellschaft Regelverfahren für eine Tieftemperatur-Rektifikationsanlage
US6622521B2 (en) * 2001-04-30 2003-09-23 Air Liquide America Corporation Adaptive control for air separation unit
FR2825754B1 (fr) * 2001-06-08 2004-02-27 Air Liquide Procede et installation de production d'energie au moyen d'une turbine a gaz associee a une unite de separation d'air
JP4699643B2 (ja) * 2001-06-26 2011-06-15 大陽日酸株式会社 空気液化分離方法及び装置
US7284362B2 (en) * 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US20030213688A1 (en) * 2002-03-26 2003-11-20 Wang Baechen Benson Process control of a distillation column
US6647745B1 (en) 2002-12-05 2003-11-18 Praxair Technology, Inc. Method for controlling the operation of a cryogenic rectification plant
US7087804B2 (en) * 2003-06-19 2006-08-08 Chevron U.S.A. Inc. Use of waste nitrogen from air separation units for blanketing cargo and ballast tanks
US7762082B1 (en) 2003-09-25 2010-07-27 IES Consulting Inc. Apparatus and method of recovering vapors
US8475966B2 (en) 2003-09-25 2013-07-02 IES Consulting, Inc. Apparatus and method of recovering vapors
US7284395B2 (en) * 2004-09-02 2007-10-23 Praxair Technology, Inc. Cryogenic air separation plant with reduced liquid drain loss
FR2910604B1 (fr) * 2006-12-22 2012-10-26 Air Liquide Procede et appareil de separation d'un melange gazeux par distillation cryogenique
FR2912206B1 (fr) * 2007-02-01 2015-05-29 Air Liquide Procede et appareil de production de monoxyde de carbone par distillation cryogenique
FR2916039B1 (fr) * 2007-05-11 2013-11-01 Air Liquide Procede de regulation d'une unite de distillation cryogenique.
US9714789B2 (en) * 2008-09-10 2017-07-25 Praxair Technology, Inc. Air separation refrigeration supply method
EP2390604A1 (de) * 2010-05-27 2011-11-30 Linde AG Verfahren und Vorrichtung zur Trennung eines Fluidgemisches durch Tieftemperatur-Destillation, insbesondere zur Rein-Krypton-Gewinnung
US10041407B2 (en) 2011-03-29 2018-08-07 General Electric Company System and method for air extraction from gas turbine engines
JP5895896B2 (ja) * 2013-04-23 2016-03-30 Jfeスチール株式会社 精製ガス供給装置及び製造ガスの純度補償方法
EP3438584B1 (fr) * 2017-08-03 2020-03-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation d'air par distillation cryogénique
WO2020074120A1 (de) 2018-10-09 2020-04-16 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2446535A (en) * 1943-09-15 1948-08-10 Arthur J Fausek Liquefaction and rectification column
US2708831A (en) * 1953-04-09 1955-05-24 Air Reduction Separation of air
LU35763A1 (zh) * 1957-02-13
GB890458A (en) * 1959-12-14 1962-02-28 British Oxygen Co Ltd Low temperature separation of gas mixtures
FR1479561A (fr) * 1966-03-25 1967-05-05 Air Liquide Procédé de preoduction d'un gaz en débit variable
JPS4846387A (zh) * 1971-10-13 1973-07-02
JPS5419165B2 (zh) * 1973-03-01 1979-07-13
GB2125949B (en) * 1982-08-24 1985-09-11 Air Prod & Chem Plant for producing gaseous oxygen
US4566887A (en) * 1982-09-15 1986-01-28 Costain Petrocarbon Limited Production of pure nitrogen
GB2129115B (en) * 1982-10-27 1986-03-12 Air Prod & Chem Producing gaseous nitrogen
JPS61190277A (ja) * 1985-02-16 1986-08-23 大同酸素株式会社 高純度窒素および酸素ガス製造装置
WO1987001185A1 (en) * 1985-08-23 1987-02-26 Daidousanso Co., Ltd. Oxygen gas production unit
JPS6475884A (en) * 1987-09-17 1989-03-22 Nippon Oxygen Co Ltd Method of liquefying and separating air
US4867772A (en) * 1988-11-29 1989-09-19 Liquid Air Engineering Corporation Cryogenic gas purification process and apparatus
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
US5081845A (en) * 1990-07-02 1992-01-21 Air Products And Chemicals, Inc. Integrated air separation plant - integrated gasification combined cycle power generator
FR2670278B1 (fr) * 1990-12-06 1993-01-22 Air Liquide Procede et installation de distillation d'air en regime variable de production d'oxygene gazeux.
GB9100814D0 (en) * 1991-01-15 1991-02-27 Boc Group Plc Air separation
US5165245A (en) * 1991-05-14 1992-11-24 Air Products And Chemicals, Inc. Elevated pressure air separation cycles with liquid production
US5224336A (en) * 1991-06-20 1993-07-06 Air Products And Chemicals, Inc. Process and system for controlling a cryogenic air separation unit during rapid changes in production
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern
DE4135302A1 (de) * 1991-10-25 1993-04-29 Linde Ag Anlage zur tieftemperaturzerlegung von luft
JP3306516B2 (ja) * 1992-02-14 2002-07-24 日本酸素株式会社 空気液化分離装置用精留塔
US5228297A (en) * 1992-04-22 1993-07-20 Praxair Technology, Inc. Cryogenic rectification system with dual heat pump
US5271231A (en) * 1992-08-10 1993-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for gas liquefaction with plural work expansion of feed as refrigerant and air separation cycle embodying the same
US5406800A (en) * 1994-05-27 1995-04-18 Praxair Technology, Inc. Cryogenic rectification system capacity control method

Also Published As

Publication number Publication date
CN1097506A (zh) 1995-01-18
EP0622595B1 (fr) 1998-02-04
US5437160A (en) 1995-08-01
ES2111867T3 (es) 1998-03-16
AU6064794A (en) 1994-11-03
US5901580A (en) 1999-05-11
DE69408358T2 (de) 1998-09-03
FR2704632B1 (fr) 1995-06-23
DE69408358D1 (de) 1998-03-12
CA2122199A1 (fr) 1994-10-30
FR2710737A1 (fr) 1995-04-07
US5592834A (en) 1997-01-14
FR2710737B1 (fr) 1995-12-08
JPH06313674A (ja) 1994-11-08
EP0814310A1 (fr) 1997-12-29
AU673725B2 (en) 1996-11-21
JP3515165B2 (ja) 2004-04-05
FR2704632A1 (fr) 1994-11-04
US5666825A (en) 1997-09-16
EP0622595A1 (fr) 1994-11-02
ZA942849B (en) 1995-08-25

Similar Documents

Publication Publication Date Title
CN1085828C (zh) 空气分离方法
US5953937A (en) Process and apparatus for the variable production of a gaseous pressurized product
JP3161696B2 (ja) 燃焼タービンを統合した空気分離方法
CN1254823A (zh) 制备产生动力的蒸汽的装置
CN1089427C (zh) 用于生产低纯度氧的低温精馏***
CN1130538C (zh) 用于供应可变流量的来自空气的一种气体的方法和设备
CN1105443A (zh) 氧和氮作为气态和/或液态产品共同生产的分离方法
CN1119733A (zh) 较低压力下操作的低温精馏***
EP1169609B1 (en) Variable capacity fluid mixture separation apparatus and process
CN1112669A (zh) 带混合产品蒸发器的低温精馏***
CN1123399A (zh) 空气分离
CN1211458A (zh) 常压蒸馏方法和常压蒸馏装置
CN1173627A (zh) 生产低纯氧和高纯氮的低温精馏***
CN1067956A (zh) 制造超高纯氮的方法和设备
CN1165284A (zh) 超高纯氮、氧生成装置
CN1154463A (zh) 可变流速的情况下生产加压气态氧的方法和装置
CN1044156C (zh) 低温精馏分离空气的方法和装置
JPH04222380A (ja) 粗アルゴン生成物生産に係る極低温蒸留による空気分離法   
CN1210964A (zh) 生产低纯氧的高压高效低温精馏***
CN101595356B (zh) 通过低温蒸馏分离气体混合物的方法和装置
JP2636949B2 (ja) 改良された窒素発生器
CN1146716C (zh) 低温分离空气的方法及设备
US11959701B2 (en) Air separation unit and method for production of high purity nitrogen product using a distillation column system with an intermediate pressure kettle column
JP2000227275A (ja) 即応性のアルゴンサイドア―ム塔の再循環方法
CN1154464A (zh) 超高纯氮、氧生成装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20140428

Granted publication date: 20020529