CN108562305A - 一种惯性/天文深组合导航***安装误差五位置快速粗标定方法 - Google Patents

一种惯性/天文深组合导航***安装误差五位置快速粗标定方法 Download PDF

Info

Publication number
CN108562305A
CN108562305A CN201810033992.6A CN201810033992A CN108562305A CN 108562305 A CN108562305 A CN 108562305A CN 201810033992 A CN201810033992 A CN 201810033992A CN 108562305 A CN108562305 A CN 108562305A
Authority
CN
China
Prior art keywords
star
angle
coordinate system
under
star sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810033992.6A
Other languages
English (en)
Other versions
CN108562305B (zh
Inventor
宁晓琳
张�杰
袁维平
房建成
刘刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810033992.6A priority Critical patent/CN108562305B/zh
Publication of CN108562305A publication Critical patent/CN108562305A/zh
Application granted granted Critical
Publication of CN108562305B publication Critical patent/CN108562305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

本发明涉及一种惯性/天文深组合导航***安装误差五位置快速粗标定方法。根据不同坐标系下恒星方向和重力方向角度不变这一特性,星敏感器一次只观测一颗星,运载体的姿态变化使星敏感器在五个不同位置观测到不同的五颗星,建立相应的方程组,从而求解惯性/天文深组合导航***星敏感器相对于IMU坐标系的安装误差。本发明弥补了对惯性/天文深组合导航***安装误差标定方法研究的不足,同时使安装误差的求解更加简单、快速。

Description

一种惯性/天文深组合导航***安装误差五位置快速粗标定 方法
技术领域
本发明属于导航领域,一种惯性/天文深组合导航***安装误差五位置快速粗标定方法。
背景技术
近年来,惯性/天文组合导航***以其自主性强、不受电磁干扰、隐蔽性好、精度高等特点,在航空航天及国防军事领域得到了广泛应用。若用天文来辅助惯性导航进行定位,天体高度是重要的量测量之一。天体高度是恒星星光方向与当地水平方向之间的夹角,包含了运载体的位置信息。在实际应用中常用星敏感器来获取恒星星光方向,惯导输出重力方向,从而计算出天体高度作为量测信息。由于星敏感器相对于IMU的安装误差带来的误差远远高于星敏感器本身的测量误差,严重影响了天体高度的精度,从而影响惯性/天文组合导航***的定位精度。因此星敏感器相对于IMU的安装误差是制约惯性/天文组合导航精度的主要因素之一。
针对惯性/天文组合导航***中星敏感器相对于IMU的安装误差标定,现有的方法主要有地面标定法和基于姿态的标定方法,地面标定法主要是用星模拟器模拟远处恒星,通过经纬仪测量星敏感器相对于IMU的安装误差,但是这种方法需要多种仪器设备,且对设备精度要求高,成本高,操作复杂。基于姿态的标定方法是利用惯导和天文输出的姿态矩阵之差来标定星敏感器相对于IMU的安装误差,然而这种方法至少需要同时观测3颗星,在无法同时观测到多颗星的情况下并不适用。
发明内容
本发明要解决的技术问题是:为弥补现有对惯性/天文深组合导航***安装误差标定方法研究的不足,提出一种惯性/天文深组合导航***安装误差五位置快速粗标定方法,提供更加简单快速的安装误差标定结果,可以为后续的滤波等精标定方法提供初值。
本发明提出一种惯性/天文深组合导航***安装误差五位置快速粗标定方法,通过星敏感器坐标系、导航坐标系和惯性坐标系下的恒星方向矢量和重力方向夹角不变这一特点,星敏感器一次只观一颗星,运载体的位置不变,姿态变化,在五个位置可以观测到五颗不同的恒星,从而构建方程组,求解方程组即实现惯性/天文组合导航星敏感器相对于IMU安装误差的快速粗标定。
具体包括以下步骤:
1.调平惯导使运载体俯仰角、横滚角为0;
利用加速度计的输出来调平惯导,当加速度计输出为的时候,则惯导被调平,此时运载体的俯仰角、横滚角可近似为0,其中g为重力加速度。
2.运载***置不变,运载体的航向角变化三次,使星敏感器观测三颗不同的恒星;
运载***置不变,俯仰角、横滚角为0,运载体航向角变化,星敏感器观测恒星,一次只观一颗星。
在惯性坐标系、星敏感器坐标系、导航坐标系下恒星方向和重力方向的夹角不变,即
Si T·gi=Sc T·gc=Sn T·gn (1)
其中,i系为地心惯性坐标系,简称惯性系,n系为导航坐标系,Si为恒星在惯性系下的三维坐标,gi为重力方向在惯性系下的表示,gc为重力方向在星敏感器坐标系下的表示,为Si的转置,Sn T为Sn的转置,Sn为恒星在导航系下的三维坐标,可由Si通过坐标变换得到,Sn T为Sn的转置,gn为重力方向在导航系下的表示;有:
其中,为从地心惯性坐标系到地球系下的转换矩阵,tSHA是格林尼治时间的格林尼治时角,它可以从天文年历中得到精确的测量时间;为从地球坐标系到导航坐标系下的转换矩阵,L为运载体所在位置的纬度、λ为所在位置的经度。
星敏感器坐标系下的重力方向为:
其中,m系为IMU坐标系,c系为星敏感器坐标系,为星敏感器坐标系相对于IMU坐标系的安装矩阵,gm为重力方向在IMU坐标系下的表示;
因此(1)式可以化为:
其中,为星敏感器坐标系相对于IMU坐标系的安装矩阵,为Sc的转置,矩阵即为求解的安装误差阵。
星敏感器一次只能观一颗星,运载体航向角变化三次,使得星敏感器在三个不同的位置可以观测到三颗不同的恒星,得到三颗星的时候,有:
其中,p表示三个位置观测到的三颗不同恒星,Scp为所观测的第p颗恒星在星敏感器坐标系下的三维坐标,如Sc1为观测的第一颗恒星在星敏感器坐标系下的三维坐标,为Scp的转置,gm为运载体的重力方向在IMU系下的表示,Snp为所观测三颗恒星在导航系下的三维坐标,如Sn1为观测的第一颗恒星在导航系下的三维坐标,为Sn1的转置,gn为重力方向在导航系下的表示。
3.建立相应的方程组,求解两个水平安装误差角;
建立方程组如下:
化成矩阵的形式为:
因步骤1中惯导调平使得俯仰角和横滚角都为0,因此可以近似求解水平安装误差角;Sn1(3)代表Sn1向量的第三维,Sn2(3)代表Sn2向量的第三维,Sn3(3)代表Sn3向量的第三维,则由式(9)有:
又因为矩阵用安装误差角描述可以表示为:
其中,θxyz为星敏感器坐标系相对于IMU坐标系的安装误差角;
可求解水平误差角:
B(2)表示向量B的第二维,同理,B(1)表示向量B的第一维
4.保持运载***置不变,依次改变运载体的俯仰角和航向角观测两颗不同恒星
运载体俯仰角变化,星敏感器观测一颗星,然后航向角变化,观测另一颗星;
首先,让运载体的俯仰角变化,观测一颗星,由
可得到一组方程
再让运载体的航向角变化,再观测一颗星,得到另一组方程:
其中,Si4、Si5为第四颗、第五颗恒星在惯性系下的三维坐标,星敏感器观测到这两颗恒星时星敏感器的位置记为位置4、5,gi4、gi5分别为在位置4、5时重力方向在惯性系下的表示,gc4、gc5分别为在位置4、5时重力方向在星敏感器坐标系下的表示,Sc4、Sc5分别为在位置4、5时恒星在星敏感器坐标系下的三维坐标,gm4、gm5分别为在位置4、5时重力方向在IMU坐标系下的表示。
gi为在惯性系下的重力方向,可以由重力方向在地球固连坐标系中的坐标ge得到,
其中,L为运载体所在位置的纬度、λ为所在位置的经度,为从地球坐标系到地心惯性坐标系的转换矩阵,tSHA是格林尼治时间的格林尼治时角,它可以从天文年历中得到精确的测量时间。
5.求解方位安装误差角
对于第四个位置有:
cosθz·M1+sinθz·M2+M3=0 (21)
对于第五个位置有:
cosθz·M4+sinθz·M5+M6=0 (22)
其中:
‘·(1)’代表向量的第一维的数值,例如,Sc4(1)代表Sc4向量的第一维的数值;
将步骤3求解的水平安装误差角θxy作为已知量代入方程组
可以求解方位安装误差角θz
至此得到全部安装误差角θxyz,即可得到安装误差矩阵:
本发明的原理是:通过在星敏感器坐标系、导航坐标系和惯性坐标系下的恒星方向矢量和重力方向夹角不变这一特点,星敏感器一次只观一颗星,运载体的经度、纬度、高度不变,姿态根据要求变化,在五个位置观测到五颗不同的恒星,从而构建方程组,求解方程组即可得到惯性/天文组合导航星敏感器安装误差。
本发明与现有技术相比的优点在于:(1)运载体满足经度、纬度、高度不变,姿态变化,星敏感器在五个位置观测五颗星就可以估计出安装误差,简单易操作,可实现安装误差的快速标定。(2)星敏感器一次只观一颗星,弥补了现有方法要求一次至少观测三颗星的不足。
附图说明
图1为本发明所述的惯性/天文深组合导航***安装误差五位置快速粗标定方法流程图。
具体实施方式
如图1所示,本发明采用一种惯性/天文深组合导航***安装误差五位置方法,对星敏感器坐标系相对于IMU坐标系的安装误差矩阵进行了快速粗标定。可适用于任何模式下的惯性/天文组合导航***。下面详细说明本发明的具体实施过程:
1.调平惯导使运载体俯仰角、横滚角为0;
利用加速度计的输出来调平惯导,当加速度计输出为的时候,则惯导被调平,此时运载体的俯仰角、横滚角可近似为0,其中g为重力加速度。
2.运载***置不变,使运载体的航向角变化三次,观测三颗不同的恒星;
运载***置不变,俯仰角、横滚角为0,航向角变化,星敏感器观测恒星,一次只观一颗星。
(1)首先,运载体航向角变化使得星敏感器在位置1观测恒星;
在惯性坐标系、星敏感器坐标系和导航坐标系下恒星方向和重力方向的夹角不变,即:
Si1 T·gi1=Sc1 T·gc1=Sn1 T·gn1 (27)
其中,i系为地心惯性坐标系(简称惯性系),n系为导航坐标系,Si1为所观测恒星在惯性系下的三维坐标,gi1为此刻重力方向在惯性系下的表示,gc1为此刻重力方向在星敏感器坐标系下的表示,Sc1为所观测恒星在星敏感器坐标系下的三维坐标,Sn1为恒星在导航系下的三维坐标,可由Si1通过坐标变换得到,Sn1 T为Sn1的转置,gn1为重力方向在导航系下的表示;
有:
其中,为从惯性系到地球系下的转换矩阵,为从地球坐标系到导航坐标系下的转换矩阵;
其中,为从地心惯性坐标系到地球系下的转换矩阵,tSHA是格林尼治时间的格林尼治时角,它可以从天文年历中得到精确的测量时间。为从地球坐标系到导航坐标系下的转换矩阵,L为运载体所在位置的纬度、λ为所在位置的经度。
星敏感器坐标系下的重力方向为:
其中,m系为IMU坐标系,c系为星敏感器坐标系,为星敏感器坐标系相对于IMU坐标系的安装矩阵,gm1为重力方向在IMU坐标系下的表示;
可以得到:
(2)运载体航向角变化使得星敏感器在位置2得到第二颗观测的恒星信息:
在惯性坐标系、星敏感器坐标系和导航坐标系下恒星方向和重力方向的夹角不变,即:
Si2 T·gi2=Sc2 T·gc2=Sn2 T·gn2 (33)
其中,i系为地心惯性坐标系(简称惯性系),n系为导航坐标系,Si2为所观测恒星在惯性系下的三维坐标,gi2为此刻重力方向在惯性系下的表示,gc2为此刻重力方向在星敏感器坐标系下的表示,Sc2为所观测恒星在星敏坐标系下的三维坐标,Sn2为恒星在导航系下的三维坐标,可由Si2通过坐标变换得到,Sn2 T为Sn2的转置,gn2为重力方向在导航系下的表示;
有:
其中,为从惯性系到地球系下的转换矩阵,为从地球坐标系到导航坐标系下的转换矩阵
其中,为从地心惯性坐标系到地球系下的转换矩阵,tSHA是格林尼治时间的格林尼治时角,它可以从天文年历中得到精确的测量时间。为从地球坐标系到导航坐标系下的转换矩阵,L为运载体所在位置的纬度、λ为所在位置的经度。
重力方向在星敏感器坐标系下的三维坐标为:
为星敏感器坐标系相对于IMU坐标系的安装矩阵,gm2为重力方向在IMU系下的表示。
可以得到:
(3)运载体航向角变化使得星敏感器在位置3观测恒星,得到第三颗观测的恒星信息:
在惯性坐标系、星敏感器坐标系和导航坐标系下恒星方向和重力方向的夹角不变,即:
Si3 T·gi3=Sc3 T·gc3=Sn3 T·gn3 (39)
其中,i系为地心惯性坐标系(简称惯性系),n系为导航坐标系,Si3为所观测恒星在惯性系下的三维坐标,gi3为此刻重力方向在惯性系下的表示,gc3为此刻重力方向在星敏感器坐标系下的表示,Sc3为所观测恒星在星敏坐标系下的三维坐标,Sn3为恒星在导航系下的三维坐标,可由Si3通过坐标变换得到,Sn3 T为Sn3的转置,gn3为重力方向在导航系下的表示;
有:
其中,为从惯性系到地球系下的转换矩阵,为从地球坐标系到导航坐标系下的转换矩阵
其中,为从地心惯性坐标系到地球系下的转换矩阵,tSHA是格林尼治时间的格林尼治时角,它可以从天文年历中得到精确的测量时间。为从地球坐标系到导航坐标系下的转换矩阵,L为运载体所在位置的纬度、λ为所在位置的经度。
重力方向在星敏感器坐标系下的三维坐标为:
为星敏感器坐标系相对于IMU坐标系的安装矩阵,gm3为重力方向在IMU系下的表示。
可以得到:
3.建立相应的方程组,求解两个水平安装误差角;
可建立相应的方程组为:
化为矩阵的形式为:
因步骤1中惯导调平使得俯仰角和横滚角都为0,
因此可以近似求解水平安装误差角。Sn1(3)代表Sn1向量的第三维,Sn2(3)代表Sn2向量的第三维,Sn3(3)代表Sn3向量的第三维。
矩阵用安装误差角描述可以表示为:
其中,θxyz为星敏感器坐标系相对于IMU坐标系的安装误差角。
可求解水平误差角:
B(2)表示向量B的第二维,同理,B(1)表示向量B的第一维;
4.保持运载***置不变,依次改变运载体的俯仰角和航向角观测两颗不同恒星;
运载体俯仰角变化,星敏感器观测一颗星,运载体航向角变化,观测另一颗星;
(1)首先,让运载体的俯仰角变化,观测一颗星,由惯性坐标系和星敏感器坐标系下恒星矢量和重力方向夹角不变,即:
可得到一组方程:
Sc4为观测的第四颗恒星在星敏感器坐标系下的三维坐标,为Sc4的转置,gm4为重力方向在IMU坐标系下的表示,Si4为所观测的恒星在惯性系下的三维坐标,gi4为重力方向在惯性系下的表示。
gi为在惯性系下的重力方向,可以由重力方向在地球固连坐标系中的坐标ge得到,
其中,为从地球系到地心惯性坐标系的转换矩阵,tSHA是格林尼治时间的格林尼治时角,它可以从天文年历中得到精确的测量时间。为从地球坐标系到导航坐标系的转换矩阵,L为运载体所在位置的纬度、λ为所在位置的经度。
(2)让运载体的航向角变化,再观测一颗星,得到另一组方程:
Sc5为观测的第五颗恒星在星敏感器坐标系下的三维坐标,为Sc5的转置,gm5为重力方向在IMU坐标系下的表示,Si5为所观测的恒星在惯性系下的三维坐标,gi5为重力方向在惯性系下的表示。
gi为重力方向在惯性系下的表示,可以由重力方向在地球固连坐标系中的坐标ge得到。
5.求解方位安装误差角;
对于第四个位置有:
cosθz·M1+sinθz·M2+M3=0 (61)
对于第五个位置有:
cosθz·M4+sinθz·M5+M6=0 (62)
其中
‘·(1)’代表向量的第一维的数值,例如,Sc4(1)代表Sc4向量的第一维的数值。
将步骤3求解的水平安装误差角θxy作为已知量代入方程组,
可以求解方位安装误差角θz
至此得到全部安装误差角θxyz,即可得到安装误差矩阵:
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (1)

1.一种惯性/天文深组合导航***安装误差五位置快速粗标定方法,其特征在于:根据在星敏感器坐标系、导航坐标系和惯性坐标系下的恒星方向矢量和重力方向夹角不变这一特点,星敏感器一次只观一颗星,先保持运载体俯仰角和横滚角为0,航向角变化,通过运载体的姿态变化使星敏感器在三个位置观测到不同的三颗星,从而构建方程组,求解方程组即可得到惯性/天文深组合导航***星敏感器的两个水平安装误差角,之后依次改变运载体的俯仰角和航向角,星敏感器在两个位置观测到不同的两颗星,就可以根据方程组求解星敏感器方位安装误差角,具体包括以下步骤:
①调平惯导使运载体俯仰角、横滚角为0;
利用加速度计的输出来调平惯导,当加速度计输出为的时候,则惯导被调平,此时运载体的俯仰角、横滚角可近似为0,其中g为重力加速度;
②运载***置不变,运载体的航向角变化三次,使星敏感器观测三颗不同的恒星;
运载***置不变,俯仰角、横滚角为0,运载体航向角变化,星敏感器观测恒星,一次只观一颗星;
在惯性坐标系、星敏感器坐标系、导航坐标系下恒星方向和重力方向的夹角不变,即:
Si T·gi=Sc T·gc=Sn T·gn (1)
其中,i系为地心惯性坐标系,简称惯性系,n系为导航坐标系,Si为恒星在惯性系下的三维坐标,gi为重力方向在惯性系下的表示,gc为重力方向在星敏感器坐标系下的表示,为Si的转置,Sn T为Sn的转置,Sn为恒星在导航系下的三维坐标,可由Si通过坐标变换得到,Sn T为Sn的转置,gn为重力方向在导航系下的表示;有:
其中,为从地心惯性坐标系到地球系下的转换矩阵,tSHA是格林尼治时间的格林尼治时角,它可以从天文年历中得到精确的测量时间;为从地球坐标系到导航坐标系下的转换矩阵,L为运载体所在位置的纬度、λ为所在位置的经度;
星敏感器坐标系下的重力方向为:
其中,m系为IMU坐标系,c系为星敏感器坐标系,为星敏感器坐标系相对于IMU坐标系的安装矩阵,gm为重力方向在IMU坐标系下的表示;
因此(1)式可以化为:
其中,为星敏感器坐标系相对于IMU坐标系的安装矩阵,为Sc的转置,矩阵即为求解的安装误差阵;
星敏感器一次只能观一颗星,运载体航向角变化三次,使得星敏感器在三个不同的位置可以观测到三颗不同的恒星,得到三颗星的时候,有:
其中,p表示三个位置观测到的三颗不同恒星,Scp为所观测的第p颗恒星在星敏感器坐标系下的三维坐标,如Sc1为观测的第一颗恒星在星敏感器坐标系下的三维坐标,为Scp的转置,gm为运载体在IMU系下的重力方向,Snp为所观测三颗恒星在导航系下的三维坐标,如Sn1为观测的第一颗恒星在导航系下的三维坐标,为Sn1的转置,gn为重力方向在导航系下的表示;
③建立相应的方程组,求解两个水平安装误差角;
建立方程组如下:
化成矩阵的形式为:
因步骤①中惯导调平使得俯仰角和横滚角都为0,因此可以近似求解水平安装误差角;Sn1(3)代表Sn1向量的第三维,Sn2(3)代表Sn2向量的第三维,Sn3(3)代表Sn3向量的第三维,则由式(9)有:
又因为矩阵用安装误差角描述可以表示为:
其中,θxyz为星敏感器坐标系相对于IMU坐标系的安装误差角;
可求解水平误差角:
B(2)表示向量B的第二维,同理,B(1)表示向量B的第一维;
④保持运载***置不变,依次改变运载体的俯仰角和航向角观测两颗不同恒星;
运载体俯仰角变化,星敏感器观测一颗星,然后航向角变化,观测另一颗星;
首先,让运载体的俯仰角变化,观测一颗星,由
可得到一组方程:
再让运载体的航向角变化,再观测一颗星,得到另一组方程:
其中,Si4、Si5为第四颗、第五颗恒星在惯性系下的三维坐标,星敏感器观测到这两颗恒星时星敏感器的位置记为位置4、5,gi4、gi5分别为在位置4、5时重力方向在惯性系下的表示,gc4、gc5分别为在位置4、5时重力方向在星敏感器坐标系下的表示,Sc4、Sc5分别为在位置4、5时恒星在星敏感器坐标系下的三维坐标,gm4、gm5分别为在位置4、5时重力方向在IMU坐标系下的表示;
gi为在惯性系下的重力方向,可以由重力方向在地球固连坐标系中的坐标ge得到,
其中,L为运载体所在位置的纬度、λ为所在位置的经度,为从地球坐标系到地心惯性坐标系的转换矩阵,tSHA是格林尼治时间的格林尼治时角,它可以从天文年历中得到精确的测量时间;
⑤求解方位安装误差角;
对于第四个位置有:
cosθz·M1+sinθz·M2+M3=0 (21)
对于第五个位置有:
cosθz·M4+sinθz·M5+M6=0 (22)
其中
‘·(1)’代表向量的第一维的数值,例如,Sc4(1)代表Sc4向量的第一维的数值;
将步骤③求解的水平安装误差角θxy作为已知量代入方程组
可以求解方位安装误差角θz
至此得到全部安装误差角θxyz,即可得到安装误差矩阵:
CN201810033992.6A 2018-01-15 2018-01-15 一种惯性/天文深组合导航***安装误差五位置快速粗标定方法 Active CN108562305B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810033992.6A CN108562305B (zh) 2018-01-15 2018-01-15 一种惯性/天文深组合导航***安装误差五位置快速粗标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810033992.6A CN108562305B (zh) 2018-01-15 2018-01-15 一种惯性/天文深组合导航***安装误差五位置快速粗标定方法

Publications (2)

Publication Number Publication Date
CN108562305A true CN108562305A (zh) 2018-09-21
CN108562305B CN108562305B (zh) 2021-08-17

Family

ID=63529809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810033992.6A Active CN108562305B (zh) 2018-01-15 2018-01-15 一种惯性/天文深组合导航***安装误差五位置快速粗标定方法

Country Status (1)

Country Link
CN (1) CN108562305B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672128A (zh) * 2019-11-05 2020-01-10 中国人民解放军国防科技大学 一种星光/惯性组合导航及误差在线标定方法
CN110849391A (zh) * 2019-11-01 2020-02-28 上海卫星工程研究所 矢量磁力仪与星敏感器非正交安装矩阵标定***及方法
CN111552272A (zh) * 2020-05-07 2020-08-18 上海航天电子有限公司 无源相控阵天线波束控制算法
CN111637884A (zh) * 2020-05-12 2020-09-08 北京控制工程研究所 一种天文组合导航安装阵修正方法
CN112833878A (zh) * 2021-01-05 2021-05-25 上海航天控制技术研究所 近地面多源天文自主导航方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564455A (zh) * 2011-12-29 2012-07-11 南京航空航天大学 星敏感器安装误差四位置标定与补偿方法
CN102679999A (zh) * 2012-01-13 2012-09-19 南京航空航天大学 星敏感器安装误差四位置标定与补偿方法
WO2014086340A1 (de) * 2012-12-04 2014-06-12 Jena Optronik Gmbh Verfahren zur automatischen korrektur von ausrichtungsfehlern in sternsensorsystemen
CN104165640A (zh) * 2014-08-11 2014-11-26 东南大学 基于星敏感器的近空间弹载捷联惯导***传递对准方法
CN104833375A (zh) * 2015-05-19 2015-08-12 北京控制工程研究所 一种借助星敏感器的imu两位置对准方法
CN105371844A (zh) * 2015-12-02 2016-03-02 南京航空航天大学 一种基于惯性/天文互助的惯性导航***初始化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564455A (zh) * 2011-12-29 2012-07-11 南京航空航天大学 星敏感器安装误差四位置标定与补偿方法
CN102679999A (zh) * 2012-01-13 2012-09-19 南京航空航天大学 星敏感器安装误差四位置标定与补偿方法
WO2014086340A1 (de) * 2012-12-04 2014-06-12 Jena Optronik Gmbh Verfahren zur automatischen korrektur von ausrichtungsfehlern in sternsensorsystemen
CN104165640A (zh) * 2014-08-11 2014-11-26 东南大学 基于星敏感器的近空间弹载捷联惯导***传递对准方法
CN104833375A (zh) * 2015-05-19 2015-08-12 北京控制工程研究所 一种借助星敏感器的imu两位置对准方法
CN105371844A (zh) * 2015-12-02 2016-03-02 南京航空航天大学 一种基于惯性/天文互助的惯性导航***初始化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SOMOV, YEVGENY 等: "In-flight Calibration of an Integrated Attitude Determination System for a Small Information Satellite", 《 6TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST)》 *
张金亮: "捷联惯性/星光组合导航关键技术研究", 《中国博士学位论文全文数据库信息科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849391A (zh) * 2019-11-01 2020-02-28 上海卫星工程研究所 矢量磁力仪与星敏感器非正交安装矩阵标定***及方法
CN110849391B (zh) * 2019-11-01 2021-07-13 上海卫星工程研究所 矢量磁力仪与星敏感器非正交安装矩阵标定***及方法
CN110672128A (zh) * 2019-11-05 2020-01-10 中国人民解放军国防科技大学 一种星光/惯性组合导航及误差在线标定方法
CN111552272A (zh) * 2020-05-07 2020-08-18 上海航天电子有限公司 无源相控阵天线波束控制算法
CN111637884A (zh) * 2020-05-12 2020-09-08 北京控制工程研究所 一种天文组合导航安装阵修正方法
CN111637884B (zh) * 2020-05-12 2021-10-01 北京控制工程研究所 一种天文组合导航安装阵修正方法
CN112833878A (zh) * 2021-01-05 2021-05-25 上海航天控制技术研究所 近地面多源天文自主导航方法

Also Published As

Publication number Publication date
CN108562305B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN109556632B (zh) 一种基于卡尔曼滤波的ins/gnss/偏振/地磁组合导航对准方法
CN108562305A (zh) 一种惯性/天文深组合导航***安装误差五位置快速粗标定方法
CN111947652B (zh) 一种适用于月球着陆器的惯性/视觉/天文/激光测距组合导航方法
CN101706281B (zh) 惯性/天文/卫星高精度组合导航***及其导航方法
CN104698486B (zh) 一种分布式pos用数据处理计算机***实时导航方法
CN104655152B (zh) 一种基于联邦滤波的机载分布式pos实时传递对准方法
US6876926B2 (en) Method and system for processing pulse signals within an inertial navigation system
CN102252673B (zh) 一种星敏感器在轨光行差的修正方法
CN109556631B (zh) 一种基于最小二乘的ins/gnss/偏振/地磁组合导航***对准方法
CN103196448B (zh) 一种机载分布式惯性测姿***及其传递对准方法
CN106767787A (zh) 一种紧耦合gnss/ins组合导航装置
CN105371844B (zh) 一种基于惯性/天文互助的惯性导航***初始化方法
CN103217159A (zh) 一种sins/gps/偏振光组合导航***建模及动基座初始对准方法
CN108387227A (zh) 机载分布式pos的多节点信息融合方法及***
CN112595350B (zh) 一种惯导***自动标定方法及终端
CN109073388B (zh) 旋磁地理定位***
CN107764261B (zh) 一种分布式pos传递对准用模拟数据生成方法和***
CN103925930B (zh) 一种重力仪双轴陀螺稳定平台航向误差效应的补偿方法
CN113503894B (zh) 基于陀螺基准坐标系的惯导***误差标定方法
CN109489661B (zh) 一种卫星初始入轨时陀螺组合常值漂移估计方法
CN110849360B (zh) 面向多机协同编队飞行的分布式相对导航方法
CN112611394A (zh) 一种在发射坐标系下的飞行器姿态对准方法及***
CN110296719A (zh) 一种在轨标定方法
CN107576977A (zh) 基于多源信息自适应融合的无人机导航***及方法
CN108303120A (zh) 一种机载分布式pos的实时传递对准的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant