CN108456878B - 一种纳米颗粒表面改性提升转化膜性能方法 - Google Patents

一种纳米颗粒表面改性提升转化膜性能方法 Download PDF

Info

Publication number
CN108456878B
CN108456878B CN201810211973.8A CN201810211973A CN108456878B CN 108456878 B CN108456878 B CN 108456878B CN 201810211973 A CN201810211973 A CN 201810211973A CN 108456878 B CN108456878 B CN 108456878B
Authority
CN
China
Prior art keywords
surface modified
conversion film
grain surface
film performance
nano grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810211973.8A
Other languages
English (en)
Other versions
CN108456878A (zh
Inventor
张涛
陈毓洋
卢小鹏
张春燕
陈必秀
王福会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201810211973.8A priority Critical patent/CN108456878B/zh
Publication of CN108456878A publication Critical patent/CN108456878A/zh
Application granted granted Critical
Publication of CN108456878B publication Critical patent/CN108456878B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及一种纳米颗粒表面改性提升转化膜性能方法,属于金属材料的表面处理技术领域。本发明所述的方法包括:先对试样表面经过打磨处理,随后利用硅烷偶联剂水解在镁合金表面通过自组装的形式形成硅烷膜,随后加入纳米颗粒最终经过磷化处理得到耐蚀性良好的磷化膜。具体包括:硅烷溶液的配制,溶胶法制备纳米颗粒,试样的预处理,转化膜的制备。与现有技术相比,本发明的膜层制备操作简单,成本低廉,制备出的磷化膜表面均一致密,颗粒细小且排列紧密,有着良好的耐蚀性能,对基体耐蚀性能的提高很明显。

Description

一种纳米颗粒表面改性提升转化膜性能方法
技术领域
本发明属于金属材料表面化学处理技术领域,特别涉及化学转化膜前处理的方法。
背景技术
随着科学技术的发展,各类金属及其合金在国民生产生活当中起着越来越重要的作用。与此同时,腐蚀所引起的材料失效问题也愈发的突出,据不完全统计,单就钢铁行业而言,其每年因腐蚀原因导致报废的材料占其年产量的30%,提升金属材料的耐蚀性能已成为当下工程材料防护技术中的一个重要环节。
在众多的防腐蚀手段中,表面处理因其简单经济快捷被人们所广泛青睐。常用的表面腐蚀防护方法有,阳极氧化处理,微弧氧化处理,化学气相沉积,物理气相沉积,化学镀,电镀和化学转化膜等。在此当中,化学转化膜价格低廉,操作简单,能耗较低,应用范围广泛,是金属腐蚀防护技术一个极为良好的选择。对于化学转化膜技术来说,在成膜前的基体的表面状态直接影响到了随后成膜的质量以及膜层的耐蚀性能,前处理是一项行之有效的提升转化膜性能的步骤。
纳米材料因为其具有的众多出色性能,使它在材料领域一直倍受重视。尤其在于因为其有着小尺寸效应,表界面效应等,导致其与众不同的表界面特性使其在表面改性方面有着广泛地应用,诸如用于陶瓷制品、人造莫来石材料、新型橡胶材料、粘结剂和密封胶、新型有机玻璃、功能纤维、新型塑料、抗老化涂料、纸张表面涂层等各个领域。
硅烷偶联剂是应用最广泛的一类偶联剂,是一类具有特殊结构的低分子有机硅化合物,其可以同时与无机物中的羟基和有机聚合物中的长分子链相互作用,使两种不同性质的材料偶联起来。其用于金属腐蚀防护方面的应用,主要是通过硅烷偶联剂水解生成硅醇与金属表面的羟基结合,形成涂层,提高其抗腐蚀性。
发明内容
为了克服现有技术的不足,本发明提供一种纳米颗粒表面改性提升转化膜性能方法,前处理中形成硅烷膜,将硅烷膜作为预处理膜,同时在之后的步骤中引入纳米颗粒进行表面改性处理,目的是利用硅烷偶联剂使得金属基体与纳米粒子充分结合,进而在成膜过程中形核位点增加,进一步使得膜层晶粒细化,减少膜层的孔隙率,降低其裂缝产生的概率,从而达到提升膜层耐蚀性能的目的。
本发明的上述目的是通过以下技术方案来实现的:
一种纳米颗粒表面改性提升转化膜性能方法,包括步骤如下:
步骤1,硅烷溶液的配制:配制硅烷偶联剂:C2H5OH:H2O质量比为8~9:1~0.5:1~0.5的溶液,然后静置5~60min,使得硅烷溶液充分水解,随后进一步稀释,稀释浓度比为1~10%;
步骤2,试样的预处理:将金属试样用砂纸打磨,随后用丙酮超声除油,酒精清洗,去离子水冲洗后干燥;
步骤3,试样的制备:将步骤2预处理后的试样在步骤1配制得到的硅烷溶液中提拉浸泡1~2min,随后在80~120℃的烘箱中烘干5~15min;
步骤4,在加入纳米颗粒的溶液中,先搅拌2~3h,随后超声10~30min,再将步骤3处理得到的试样提拉浸没30~60s,再用蒸馏水浸洗;
步骤5,通过转化膜工艺成膜,随后取出在蒸馏水中浸洗,常温下老化。
进一步地,上述步骤1中水解静置时间为10~15min,进一步稀释浓度比为1~3%。
进一步地,上述步骤2砂纸打磨按照240目、400目、800目、1000目的砂纸依次打磨。
进一步地,上述步骤2金属试样为镁合金、不锈钢或铝合金中的一种。
进一步地,上述步骤4中的纳米颗粒为二氧化硅纳米颗粒、二氧化钛纳米颗粒或三氧化二铝纳米颗粒中的一种。
进一步地,上述二氧化硅纳米颗粒溶液的制备:在室温下,将5~10ml TEOS(正硅酸乙酯)在100~150ml乙醇中溶解,加入5~10ml去离子水以及2~3ml氨水,磁力搅拌器混合10~15min,静置。
进一步地,上述步骤5所述的转化膜工艺为磷化膜工艺或稀土转化膜工艺中的一种。
本发明的有益效果:
1)前处理制备纳米颗粒操作简单,成本低廉,耐用可靠
2)纳米颗粒能够在成膜过程中作为形核中心,有效降低晶粒尺寸
3)可以制备出有机无机相紧密结合的复合涂层
4)通过硅烷偶联剂KH550制备的硅烷预处理层能够有效增强与金属基体的附着力,同时使得纳米颗粒与有机涂层紧密结合,让其在有机层表面均匀分布
5)磷化膜表面排列紧密,颗粒较小,孔隙率较小,能够有效防止腐蚀介质进入,能够有效提升基体的耐蚀性。
附图说明
附图1为通过溶胶法制得的二氧化硅纳米颗粒扫描电镜照片。
附图2为经过硅烷偶联剂KH550处理后,制得基体表面制得的硅烷膜扫描电镜照片。
附图3为将经过KH550+SiO2处理后的试样经过溶胶溶液处理的扫描电镜照片。
附图4为经过上述前处理后,磷酸盐转化膜的表面形貌。
附图5为该种镁合金基体,磷化膜以及本专利处理后磷化膜集氢结果。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
本发明中KH550水解机理如下:
硅烷偶联剂的水解:R-Si-O-R'+H2O→R-Si-OH+R'-OH
硅醇基在金属表面的吸附:R-Si-OH+HO-Metal→R-Si-O-Metal+H2O
硅醇基在金属表面的交联:R-Si-OH+HO-Si-R→R-Si-O-Si-R+H2O
硅烷偶联剂水解后生成硅醇(R-Si(OH)3),硅醇与金属表面的羟基发生化学键合生成Si-O-Metal键,同时硅醇本身也会发生自缩合的交联反应在金属表面生成一层保护膜,该处理方法不仅能改善金属表面性质,同时还可以提高金属的耐腐蚀性。
实例1
溶胶的制备:在室温下,将5ml TEOS在100ml乙醇中溶解,加入5ml去离子水以及2ml氨水,磁力搅拌器混合,10min。静置5h
图1中可看到,制得的纳米二氧化硅颗粒直径约在100nm左右
实例2
A.硅烷溶液的配制:配制KH550:C2H5OH:H2O质量比为8:1:1的溶液,然后静置5min,使得硅烷溶液充分水解,稀释成1%的溶液。
B.试样的预处理:将镁合金分别用240目,400目,800目,1000目的砂纸打磨,随后用丙酮超声除油,酒精清洗用去离子水冲洗后干燥待用
C.试样的制备:将试样在配制得硅烷溶液中提拉浸泡1min,随后在80℃的烘箱中烘干5min
D.溶胶的制备:在室温下,将10ml TEOS在100ml乙醇中溶解,加入10ml去离子水以及2ml氨水,磁力搅拌器混合,10min。静置5h。
E.纳米颗粒的附着:将D中制备的溶胶搅拌2h,随后超声30min,将经过硅烷处理的试样在溶胶中提拉浸没30s用蒸馏水浸洗。
F.在已配置的磷化液中成膜10min,随后取出在蒸馏水中浸洗30s,常温下老化24h。
从图2中可以看到,在试样表面制得较为均匀的硅烷覆盖层。
实例3
A.硅烷溶液的配制:配制KH550:C2H5OH:H2O质量比为8:1:1的溶液,然后静置30min,使得硅烷溶液充分水解,稀释成5%的溶液。
B.试样的预处理:将镁合金分别用240目,400目,800目,1000目的砂纸打磨,随后用丙酮超声除油,酒精清洗用去离子水冲洗后干燥待用
C.试样的制备:将试样在配制得硅烷溶液中提拉浸泡1min,随后在100℃的烘箱中烘干10min
D.溶胶的制备:在室温下,将10ml TEOS在100ml乙醇中溶解,加入10ml去离子水以及2ml氨水,磁力搅拌器混合,10min。静置5h。
E.纳米颗粒的附着:将D中制备的溶胶搅拌2h,随后超声30min,将经过硅烷处理的试样在溶胶中提拉浸没30s用蒸馏水浸洗。
F.在已配置的磷化液中成膜10min,随后取出在蒸馏水中浸洗30s,常温下老化24h。
图3中看到,纳米二氧化硅颗粒较为均匀地分布在基体表面
实例4
A.硅烷溶液的配制:配制KH550:C2H5OH:H2O质量比为8:1:1的溶液,然后静置60min,使得硅烷溶液充分水解,稀释成10%的溶液。
B.试样的预处理:将镁合金分别用240目,400目,800目,1000目的砂纸打磨,随后用丙酮超声除油,酒精清洗用去离子水冲洗后干燥待用
C.试样的制备:将试样在配制得硅烷溶液中提拉浸泡2min,随后在120℃的烘箱中烘干15min
D.溶胶的制备:在室温下,将10ml TEOS在100ml乙醇中溶解,加入10ml去离子水以及2ml氨水,磁力搅拌器混合,10min。静置5h。
E.纳米颗粒的附着:将D中制备的溶胶搅拌2h,随后超声30min,将经过硅烷处理的试样在溶胶中提拉浸没30s用蒸馏水浸洗。
F.在已配置的磷化液中成膜10min,随后取出在蒸馏水中浸洗30s,常温下老化24h。
图4中可看到,在基体表面覆盖了颗粒细小,排列紧密的膜层
上述硅烷溶液的配制:乙醇与水体积比值范围可选为9-1/9。
上述KH550型硅烷偶联剂质量分数可选为2%-10%。
上述KH550型硅烷偶联剂水解时间可选为1-2小时
上述KH550型硅烷偶联剂需在水解完成后1h以内用完
上述试样置入硅烷溶液可选0.5-2分钟
上述试样可在80-120℃环境下烘干。
上述烘干时间可选为10-15min。
上述溶胶溶液可反复利用。
上述磷化膜能够有效提升镁稀土合金的耐蚀性能。
表1不同处理集氢量
48h析氢量(ml·cm<sup>-2</sup>)
基体 21.3
磷化膜 2.7
本专利处理后磷化膜 0.4
如表1和图5所示集氢是常用的耐蚀性能测试的方法,48h析氢量越少,表示该涂层耐蚀性能越好。
以上所述内容为本发明构思下的基本说明,而依据本发明所做的任何等效变换,均应属于本发明的保护范围。

Claims (9)

1.一种纳米颗粒表面改性提升转化膜性能方法,其特征在于,包括步骤如下:
步骤1,硅烷溶液的配制:配制硅烷偶联剂:C2H5OH:H2O质量比为8~9:1~0.5:1~0.5的溶液,然后静置5~60min,使得硅烷溶液充分水解,随后进一步稀释,稀释浓度比为1~10%;
步骤2,试样的预处理:将金属试样用砂纸打磨,随后用丙酮超声除油,酒精清洗,去离子水冲洗后干燥;
步骤3,试样的制备:将步骤2预处理后的试样在步骤1配制得到的硅烷溶液中提拉浸泡1~2min,随后在80~120℃的烘箱中烘干5~15min;
步骤4,在加入纳米颗粒的溶液中,先搅拌2~3h,随后超声10~30min,再将步骤3处理得到的试样提拉浸没30~60s,再用蒸馏水浸洗;所述的纳米颗粒为二氧化硅纳米颗粒、二氧化钛纳米颗粒或三氧化二铝纳米颗粒中的一种;
步骤5,通过转化膜工艺成膜,随后取出在蒸馏水中浸洗,常温下老化。
2.根据权利要求1所述的纳米颗粒表面改性提升转化膜性能方法,其特征在于,步骤1中水解静置时间为10~15min,进一步稀释浓度比为1~3%。
3.根据权利要求1或2所述的纳米颗粒表面改性提升转化膜性能方法,其特征在于,步骤2砂纸打磨按照240目、400目、800目、1000目的砂纸依次打磨。
4.根据权利要求1或2所述的纳米颗粒表面改性提升转化膜性能方法,其特征在于,步骤2金属试样为镁合金、不锈钢或铝合金中的一种。
5.根据权利要求3所述的纳米颗粒表面改性提升转化膜性能方法,其特征在于,步骤2金属试样为镁合金、不锈钢或铝合金中的一种。
6.根据权利要求1或2或5所述的纳米颗粒表面改性提升转化膜性能方法,其特征在于,二氧化硅纳米颗粒溶液的制备:在室温下,将5~10ml TEOS在100~150ml乙醇中溶解,加入5~10ml去离子水以及2~3ml氨水,磁力搅拌器混合10~15min,静置。
7.根据权利要求1或2或5所述的纳米颗粒表面改性提升转化膜性能方法,其特征在于,步骤5所述的转化膜工艺为磷化膜工艺或稀土转化膜工艺中的一种。
8.根据权利要求3所述的纳米颗粒表面改性提升转化膜性能方法,其特征在于,步骤5所述的转化膜工艺为磷化膜工艺或稀土转化膜工艺中的一种。
9.根据权利要求4所述的纳米颗粒表面改性提升转化膜性能方法,其特征在于,步骤5所述的转化膜工艺为磷化膜工艺或稀土转化膜工艺中的一种。
CN201810211973.8A 2018-03-08 2018-03-08 一种纳米颗粒表面改性提升转化膜性能方法 Expired - Fee Related CN108456878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810211973.8A CN108456878B (zh) 2018-03-08 2018-03-08 一种纳米颗粒表面改性提升转化膜性能方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810211973.8A CN108456878B (zh) 2018-03-08 2018-03-08 一种纳米颗粒表面改性提升转化膜性能方法

Publications (2)

Publication Number Publication Date
CN108456878A CN108456878A (zh) 2018-08-28
CN108456878B true CN108456878B (zh) 2019-07-16

Family

ID=63216886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810211973.8A Expired - Fee Related CN108456878B (zh) 2018-03-08 2018-03-08 一种纳米颗粒表面改性提升转化膜性能方法

Country Status (1)

Country Link
CN (1) CN108456878B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304650B (zh) * 2018-12-11 2022-08-19 中内凯思汽车新动力***有限公司 活塞及活塞表面处理工艺
CN109824010A (zh) * 2019-01-21 2019-05-31 北京师范大学 一种基于离子注入技术的微纳颗粒二维图形化吸附工艺
CN114411138B (zh) * 2021-12-27 2022-09-16 东北大学 一种镁合金“消光-导电-耐蚀”化学转化膜的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020464B2 (ja) * 1982-03-10 1985-05-22 株式会社竹中製作所 金属部材の表面処理方法
JPH07278891A (ja) * 1994-04-12 1995-10-24 Nippon Parkerizing Co Ltd 金属材料の塗装前処理方法
JP2003003275A (ja) * 2001-06-20 2003-01-08 Mitsubishi Rayon Co Ltd リサイクル性に優れたマグネシウム合金用化成処理液及びそれを用いた処理方法ないしマグネシウム合金製部材
JP6184051B2 (ja) * 2011-09-21 2017-08-23 日本ペイント・サーフケミカルズ株式会社 アルミニウム製熱交換器の表面処理方法
KR101739759B1 (ko) * 2016-01-27 2017-05-26 울산과학대학교 산학협력단 망간계 인산염 화성피막제 조성물
CN106756968A (zh) * 2016-12-22 2017-05-31 山东宝龙达新材料有限公司 用纳米改性硅系复合钝化膜进行铝合金表面防护处理方法
CN107546329A (zh) * 2017-08-15 2018-01-05 东莞市联洲知识产权运营管理有限公司 一种新型钙钛矿型太阳电池光吸收层的制备方法

Also Published As

Publication number Publication date
CN108456878A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN108456878B (zh) 一种纳米颗粒表面改性提升转化膜性能方法
AU2017100110A4 (en) Nanosized core-shell structured organic-inorganic composite concrete-protecting agent and preparation method and use thereof
Wu et al. One step sol–gel electrochemistry for the fabrication of superhydrophobic surfaces
CN104910656B (zh) 一种以复合硅源制备超疏水二氧化硅粉体及超疏水涂层的方法
CN101817980B (zh) 一种氧化硅超疏水薄膜的溶胶凝胶制备方法
EP1907494B1 (en) Organic-inorganic hybrid coatings
CN106756968A (zh) 用纳米改性硅系复合钝化膜进行铝合金表面防护处理方法
Geng et al. Superior corrosion resistance of mild steel coated with graphene oxide modified silane coating in chlorinated simulated concrete solution
CN103508681A (zh) 超亲水增透涂层的制备方法及超亲水增透涂层
Guo et al. Research progress on titanium-containing organic–inorganic hybrid protective coatings
CN115093129A (zh) 一种亲水自清洁涂层及其制备方法
CN102503163A (zh) 一种在可见光下具有超亲水特性二氧化钛膜的制备方法
Li et al. Preparation of intelligent corrosion resistant coatings based on pH-responsive silica nanocontainers
Wang et al. Rapid conversion of perhydropolysilazane into thin silica coating at low temperature
Wang et al. Sandstone protection by using nanocomposite coating of silica
CN113337210A (zh) 一种负载缓蚀剂的pH响应型二氧化硅纳米容器复合硅烷膜及其制备和应用
Feng et al. Crack‐free sol‐gel coatings for protection of AA1050 aluminium alloy
CN111378337A (zh) 一种用于浸涂的水性涂料及其制备方法
Ge et al. Microstructure and corrosion resistance behavior of composite micro-arc oxidation and SiO2 coatings on magnesium alloys
CN112813426B (zh) 表面处理液及其制备方法、超疏水耐腐蚀复合转化膜及其制备方法
Bahrami et al. Optimization of effective processing parameters of hybrid anti-corrosion Si/Zr sol–gel coatings doped with cerium salt for aluminum alloy 6061
Jin et al. Efficient self-healing coatings embedded with polydopamine modified BTA@ DMSNs for corrosion protection
CN108219169A (zh) 一种抗反射高透明超疏水自洁膜及其制备方法
CN111701831A (zh) 一种涂覆在碳钢上的疏水二氧化硅纳米粒子改性环氧树脂防腐薄膜的制备方法
Zhang et al. Effect of sol-gel film on the corrosion resistance of low carbon steel plate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190716

CF01 Termination of patent right due to non-payment of annual fee