CN108399974A - 通过新型热处理提高Nb3Sn超导股线中的股线临界电流密度 - Google Patents

通过新型热处理提高Nb3Sn超导股线中的股线临界电流密度 Download PDF

Info

Publication number
CN108399974A
CN108399974A CN201810072759.9A CN201810072759A CN108399974A CN 108399974 A CN108399974 A CN 108399974A CN 201810072759 A CN201810072759 A CN 201810072759A CN 108399974 A CN108399974 A CN 108399974A
Authority
CN
China
Prior art keywords
hours
heat treatment
platform
current density
method described
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810072759.9A
Other languages
English (en)
Other versions
CN108399974B (zh
Inventor
迈克尔·菲尔德
苗汉平
卡洛斯·萨纳利亚
杰弗里·帕雷尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BLOOM Co Ltd
Original Assignee
BLOOM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BLOOM Co Ltd filed Critical BLOOM Co Ltd
Publication of CN108399974A publication Critical patent/CN108399974A/zh
Application granted granted Critical
Publication of CN108399974B publication Critical patent/CN108399974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0128Manufacture or treatment of composite superconductor filaments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/917Mechanically manufacturing superconductor
    • Y10S505/918Mechanically manufacturing superconductor with metallurgical heat treating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/917Mechanically manufacturing superconductor
    • Y10S505/918Mechanically manufacturing superconductor with metallurgical heat treating
    • Y10S505/919Reactive formation of superconducting intermetallic compound
    • Y10S505/92Utilizing diffusion barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

描述了新的用于内锡法Nb3Sn股线的热处理。所述热处理使用Nausite膜来降低η相的体积分数,从而使其液化最小化,最终导致更好地连接的Nb3Sn。除了最终的Nb3Sn反应阶段之外,所述热处理只需要一个阶段。该热处理允许临界电流密度(在16T)增加28%。

Description

通过新型热处理提高Nb3Sn超导股线中的股线临界电流密度
技术领域
本发明一般涉及超导材料及其制造工艺。更具体地,本发明提供了一种使Nb3Sn超导股线中的临界电流密度最大化的热处理。
背景技术
Nb3Sn超导股线可由几种不同的工艺制成,包括青铜法(Bronze Process)[1]、粉末套管法(Powder in Tube)[2]和内锡法(Internal Tin)[3]。对于内锡法工艺,扩散阻挡层可以是用于ITER聚变项目的单一非反应阻挡层[4],或者具有棒重新堆叠法(RodRestack Process)中的多个分布式可反应扩散阻挡层[5]。内锡法Nb3Sn超导股线是通过在称为“子单元”(sub elements)12的特征的阵列中通过共同拉伸Nb、Cu和Sn的延性金属合金(通常与Ti和/Ta合金化以用于掺杂目的)而制造,如图1所示,其重新堆叠在Cu套11中以形成完整的超导线前驱体10。然后使用特定的热处理(通常具有多个温度保持(temperaturehold))使这些“未熟”(green)组分(Nb细丝14、Nb阻挡层15、Cu基体17,Sn 13芯)进行反应,以激活Nb3Sn的形成[5],形成超导体。已经注意到,该热处理对股线的最终超导性能可以有很大的影响。内锡法Nb3Sn超导线出现后50年来,Nb3Sn反应热处理遵循类似的多温度/时间阶段模式。过去,Nb3Sn线的热处理使用了很多温度保持(或者停留(dwell)),其被设计成在经历相变之前均匀化Cu-Sn混合物[6],以及避免孔隙[7]。下面描述了历史上用于内锡法Nb3Sn股线的不同停留及使用其的理由。
1.初始锡混合停留(Initial Tin Mixing Dwell):210至215℃:该停留通常用于在超过纯Sn的熔化温度227℃之前尽可能均匀化Cu-Sn混合物以将纯Sn转化成η相(以防止其液化)[8]。也有人认为,该停留会“弄湿”晶界和防止孔隙。停留时间的长度通常为24至100小时。
2.青铜相混合停留(Bronze Phase Mixing Dwell):(a)340℃:该停留用于为了低AC损耗而设计成具有相对较低Sn含量的股线。该停留被建议在超过δ相的形成温度之前尽可能均匀化,因为已表明该相与孔隙有关[9]。或者(b)400℃:该停留与为了最大临界电流密度而设计成具有相对较高Sn含量的股线相关。如图2所示,该停留被建议在超过η相的熔化温度之前[8]尽可能混合Cu-Sn以将η相18转化成ε相19[10]。然而,应该提及的是,所述混合被期待是在细丝内发生[4],而在不是芯内发生,如Sn-Nb-Cu三元膜20所允许的。
3.桥接防止停留(Bridging prevention dwell):450℃:该停留用于为了低AC损耗而设计成具有相对较低Sn含量的股线。根据报告,该停留产生大量孔隙,可以防止细丝桥接(如果这是期望的话)[11]。
4.细丝包停留(Filament Pack Dwell)中青铜的分布:575℃:根据报告,该停留是在最小Nb3Sn形成和细丝内Sn的均匀分布之间的折衷[10],以在形成Nb3Sn的反应发生之前均匀化细丝周围的相。
5.Nb3Sn反应停留(Nb3Sn Reaction Dwell):620℃至700℃:该最终停留是Nb3Sn反应阶段,其中Nb在Cu的存在下与Sn进行反应以形成Nb3Sn。
发明内容
在第一方面,本发明提供了一种生产高电流密度Nb3Sn超导线的方法,包括(a)制造包含Nb、Sn、Cu和Ti和/或Ta的掺杂剂的Cu包覆内锡法Nb3Sn前驱体线,其被拉制成外线直径为0.2mm至2.0mm;(b)进行热处理反应,其中继续至于高于620℃和低于750℃的Nb3Sn反应平台并保持24至400小时之前,提供24至400小时的350℃至380℃的Cu扩散平台。在一些情况下,在步骤a)中,在扩散阻挡层内并包括扩散阻挡层的金属比率可以是例如,按面积为50至65%的Nb部分,按面积为20至25%的Sn部分,以及掺杂剂元素,如果是Ta,则是Nb部分的一部分,具有Nb7.5wt%Ta的优选合金,或者如果是Ti,则用作按面积为1至2%的Ti或Nb47wt%Ti棒,并且Cu部分可以是余量。
Cu扩散平台温度可以优选地为350℃至380℃。Cu扩散平台时间可以优选地为100至400小时。如果a)中的掺杂剂是Ti,Nb3Sn反应平台可优选地为620℃至680℃。如果a)中的掺杂剂是Ta,Nb3Sn反应平台可优选地为650℃至700℃。Nb3Sn反应平台温度可以优选地为50至400小时。
在第二方面,本发明提供由本文所述方法产生的高电流密度Nb3Sn超导线。
附图说明
图1是分布式阻挡层内锡法股线的示图;
图2是部分反应的子单元的显微照片,示出了膜形式的Nausite的生长;
图3是完全反应的子单元的显微照片,示出了因为形成Nausite而断开的Nb3Sn;
图4是部分反应的子单元的显微照片,示出了η相的液化后Nausite的快速生长;
图5是在各种温度下作为时间函数的Nausite膜厚度的曲线图。用**标记的值是随后被确认的预测值;
图6是通过Nausite膜的Cu流的曲线图;
图7是具有35μm的子单元直径的线的Ic增加的曲线图;
图8是使用先前的热处理和所提出的热处理的线的子单元内铜含量的曲线图。
具体实施方式
多年来,已经注意到,如图3所示,一些Nb3Sn从主环断开21[12],因此不能对电流传输带来贡献。该断开是Sn-Nb-Cu三元相导致的,所述三元相被识别为(Nb0.75Cu0.25)Sn2[13]和命名为″Nausite″,其在热处理期间在两种情况下形成:
1.Nausite的第一形成具有环(或膜)的形状,其位于Cu/Nb细丝包和Cu-Sn芯之间(如图2所示)。该Nausite膜20在408℃以下形成(Cu-Snη相或Cu6Sn5的熔化温度)。当形成时,Nausite膜允许Cu扩散到所述芯,同时阻挡Sn向外扩散。这种Cu扩散有利于消耗η相,并且产生更多具有较高熔点的ε相。不幸的是,所述膜随着时间生长,产生更多Nausite,导致如前所述Nb3Sn断开。如果该阶段在210至215℃下在内锡法混合停留阶段之前进行,或不是由210至215℃内锡法混合停留阶段进行,这点并不重要。
2.在η相的液化时,Nausite的第二形成22在408℃以上发生,如图4所示,它表现出非常大的颗粒。液体腐蚀Nb细丝和快速产生大块的Nausite 23,从而导致(如前所述)Nb3Sn断开。
本文所述的新型热处理工艺有利地使用Nausite膜,从而将最高量的Cu扩散到芯中(尽可能消耗最多的η,从而防止液化),同时抑制作为膜的Nausite的生长。
本文所述的新型热处理与上述现有技术的不同之处在于,本文所述的新型热处理工艺不会集中于相变或孔隙。反而,本发明的热处理工艺集中于Nausite膜的形成,从而促进Cu扩散到芯中,并尽可能防止η的液化。
Nausite膜可以在400℃至350℃下在短短8小时内形成。图5示出了作为时间函数的Nausite膜厚度。由于Nausite相产生断开的Nb3Sn,所以期望较低的温度;然而,该膜似乎不会在300℃以下持续地生长。一旦形成所述膜,便会激活了Cu扩散,如图6所示,这种扩散不太依赖与400℃至370℃的温度。应当注意,Cu扩散在350℃以下减慢至无用的量。
本文描述的热处理工艺建议将先前的青铜相混合停留替代为>100小时的~350至380℃的Cu扩散停留。例如,一次104小时的370℃的停留导致Nausite的层厚度减小46%。由于减少了Nausite的形成以及增加了Cu的扩散,该热处理将子单元尺寸为35μm的线的临界电流密度(在16T)提高了27%,如图7所示。此外,150小时的360℃停留导致Nausite的层厚度减少54%(未测量临界电流密度)。
由于Nausite膜在较高温度下快速生长,建议热处理停留为350℃至380℃,并且进行超过100小时,从而尽可能将Cu扩散到芯中,以使η相青铜至ε相青铜的转化最大化。停留时间的实际限制最多约为400小时。在优选实施例中,热处理工艺可包括370℃/104小时+665℃/50小时的热处理。
示例1
为了证明热处理工艺的有效性,它是在一系列分布式阻挡层股线上进行的[14]。这些股线由相同的设计制造为具有相同的最终直径,皆为0.7mm,但在使用标准热处理程序处理时具有不同的超导性能:以25℃/小时的升温速率从室温升至210℃,在210℃下停留48小时,以50℃/小时的升温速率升温至400℃,在400℃下停留48小时,以及以75℃/小时的升温速率升温至650℃,在650℃下停留50小时。图7显示了在4.2K和12T的外加磁场下的临界电流(Ic),其用于标准热处理和具有改进的Cu混合停留的热处理,以25℃/小时的升温速率从室温升至370℃,在370℃下停留104小时,以75℃/小时的升温速率升温至650℃,在650℃下停留50小时。当应用新的热处理时,该特定的线在12T的临界电流增加了15%,并且在15T的临界电流增加了27%。该热处理允许产生比标准热处理所产生的薄46%的Nausite膜,并且使芯中的Cu含量提高了9%,如图8所示。
确切的升温速率对热处理工艺的结果没有显著的影响。升温速率通常被选择为尽可能快,但同时仍然允许产品的均匀加热;即,对较大磁性线圈使用较慢的升温速率。升温速率的实际范围是1℃/小时至75℃/小时。
參考文獻
[1]A.R.Kaufmann and J.J.Pickett,“Multifilament Nb3Sn SuperconductingWire,”J.Appl.Phys.,vol.42,no.1,pp.58-58,Jan.1971.
[2]C.van Beijnen and J.Elen,“Multifilament Nb3Sn superconductorsproduced by the E.C.N.technique,”IEEE Trans.Magn.,vol.15,no.1,pp.87-90,Jan.1979.
[3]Y.Hashimoto,K.Yoshizaki,and M.Tanaka,“Processing and properties ofsuperconducting Nb3Sn filamentary wires,”Proc.Fifth Int.Cryog.Eng.Conf.ICEC,no.Kyoto,1974.
[4]R.Schwall,G.Ozeryansky,D.Hazelton,S.Cogan,and R.Rose,“Propertiesand performance of high current density Sn-core process MF Nb3Sn,”IEEETrans.Magn.,vol.19,no.3,pp.1135-1138,May 1983.
[5]M.Field,J.Parrell,Y.Zhang,and S.Hong,“Critical current density inNb3Sn superconducting wire,”U.S.Patent Publication 2006/0081307 A1,20-Apr-2006.
[6]N.Higuchi,K.Tsuchiya,C.J.Klamut,and M.Suenaga,“SuperconductingProperties of Nb3Sn Multifilamentary Wires Fabricated by Internal TinProcess,”in Advances in Cryogenic Engineering Materials,A.F.Clark andR.P.Reed,Eds.Springer US,1984,pp.739-746.
[7]E.Gregory,G.M.Ozeryansky,and M.Suenaga,“Some Effects of Porosityand Hip’ing on Critical Currents in Internal-Tin-Processed MultifilamentaryNb3Sn Wires,”Brookhaven National Lab.,Upton,NY(United States),BNL-46846;CONF-9110306--1,Jan.1991.
[8]S.Fürtauer,D.Li,D.Cupid,and H.Flandorfer,“The Cu-Sn phase diagram,Part I:New experimental results,”Intermetallics,vol.34,pp.142-147,Mar.2013.
[9]S.Cogan,S.Kwon,J.Klein,and R.Rose,“Fabrication of large diameterexternal-diffusion processed Nb3Sn composites,”IEEE Trans.Magn.,vol.19,no.3,pp.1139-1142,May 1983.
[10]A.McInturff and D.Larbalestier,“Effect of metallurgical historyon‘Jc(5T)’in surface diffused multifilamentary Nb3Sn,”IEEE Trans.Magn.,vol.11,no.2,pp.259-262,Mar.1975.
[11]E.Gregory,E.A.Gulko,and T.Pyon,“Improvements in the properties ofinternal-tin Nb3Sn,”IEEE Trans.Appl.Supercond.,vol.7,no.2,pp.1498-1503,Jun.1997.
[12]J.A.Parrell,Y.Zhang,M.B.Field,P.Cisek,and S.Hong,“High fieldNb3Sn conductor development at Oxford Superconducting Technology,”IEEETrans.Appl.Supercond.,vol.13,no.2,pp.3470-3473,2003.
[13]S.Martin,A.Walnsch,G.Nolze,A.Leineweber,F.Léaux,andC.Scheuerlein,“The crystal structure of(Nb0.75Cu0.25)Sn2in the Cu-Nb-Snsystem,”Intermetallics,vol.80,pp.16-21,Jan.2017.
[14]M.Field,J.Parrell,Y.Zhang,and S.Hong,“Critical current density inNb3Sn superconducting wire,”U.S.Patent 7,368,021 B2,06-May-2008.

Claims (7)

1.一种生产高电流密度Nb3Sn超导线的方法,包括以下步骤:
a.制造包含Nb、Sn、Cu和Ti和/或Ta的掺杂剂的Cu包覆内锡法Nb3Sn前驱体线,其被拉制成外线直径为0.2mm至2.0mm;以及
b.进行热处理反应,其中进行24至400小时的350℃至380℃的Cu扩散平台,并且进行24至400小时的高于620℃和低于750℃的Nb3Sn反应平台。
2.根据权利要求1所述的方法,其中在步骤a)中,在扩散阻挡层内并包括扩散阻挡层的金属比率如下:
a)Nb部分按面积为50至65%,
b)Sn部分按面积为20至25%,
c)掺杂剂元素为
a.如果是Ta,则是Nb部分的一部分,具有Nb7.5wt%Ta的合金;或者
b.如果是Ti,则是按面积为1至2%的Ti或Nb47wt%Ti棒,并且
d)Cu部分为余量。
3.根据权利要求1所述的方法,其中Cu扩散平台温度为350℃至380℃。
4.根据权利要求1所述的方法,其中Cu扩散平台时间为100至400小时。
5.根据权利要求1所述的方法,其中如果掺杂剂是Ti,Nb3Sn反应平台为620℃至680℃。
6.根据权利要求1所述的方法,其中如果掺杂剂是Ta,Nb3Sn反应平台为650℃至700℃。
7.根据权利要求1所述的方法,其中Nb3Sn反应平台温度为50至400小时。
CN201810072759.9A 2017-01-25 2018-01-25 通过新型热处理提高Nb3Sn超导股线中的股线临界电流密度 Active CN108399974B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762450116P 2017-01-25 2017-01-25
US62/450,116 2017-01-25

Publications (2)

Publication Number Publication Date
CN108399974A true CN108399974A (zh) 2018-08-14
CN108399974B CN108399974B (zh) 2023-02-24

Family

ID=61054165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810072759.9A Active CN108399974B (zh) 2017-01-25 2018-01-25 通过新型热处理提高Nb3Sn超导股线中的股线临界电流密度

Country Status (5)

Country Link
US (1) US10825978B2 (zh)
EP (1) EP3355373B1 (zh)
JP (1) JP2018120860A (zh)
KR (1) KR102478208B1 (zh)
CN (1) CN108399974B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295242A (zh) * 2022-09-30 2022-11-04 西部超导材料科技股份有限公司 高临界电流密度的铌三锡超导股线的制备方法
CN116334375A (zh) * 2023-05-30 2023-06-27 西安聚能超导线材科技有限公司 铌三锡超导线材热处理方法、制备方法及铌三锡超导线材
CN116895405A (zh) * 2023-09-11 2023-10-17 西安聚能超导线材科技有限公司 一种Nb3Sn超导线材的分段式热处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573435B2 (en) * 2016-01-29 2020-02-25 Bruker Ost Llc Method for producing a multifilament Nb3Sn superconducting wire
EP3961659B1 (en) * 2019-12-26 2024-06-19 Joint-Stock Company "TVEL" Method for manufacturing a superconducting composite wire based on nb3sn

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334929A (ja) * 1992-05-29 1993-12-17 Showa Electric Wire & Cable Co Ltd Nb3Sn超電導線の製造方法
US20020006527A1 (en) * 1996-03-07 2002-01-17 Yoshio Kubo Method for producing Nb-Sn compound superconducting wire precursor and wire
JP2004035940A (ja) * 2002-07-02 2004-02-05 Kobe Steel Ltd Nb3Sn系超電導線材用ブロンズ材およびこれを用いた超電導線材用複合材、並びに超電導線材
CN1832058A (zh) * 2005-03-10 2006-09-13 株式会社神户制钢所 制备Nb3Sn超导线的前体、Nb3Sn超导线以及其制备方法
CN1972758A (zh) * 2004-02-19 2007-05-30 牛津超导技术公司 提高Nb3Sn超导线材中的临界密度
JP2010097902A (ja) * 2008-10-20 2010-04-30 Kobe Steel Ltd Nb3Sn超電導線材製造用前駆体およびNb3Sn超電導線材
CN102925861A (zh) * 2012-11-20 2013-02-13 大连理工大学 具有高导电性和高热稳定性的Cu-Ni-Sn合金薄膜及其制备工艺
CN104947084A (zh) * 2015-07-09 2015-09-30 成都点石创想科技有限公司 一种在导电金属基底上制备超导材料的方法
CN105321626A (zh) * 2015-11-25 2016-02-10 西部超导材料科技股份有限公司 一种低磁滞损耗内锡法制备Nb3Sn超导线材的方法
CN106170464A (zh) * 2014-02-18 2016-11-30 俄亥俄州立大学 超导线及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236836A (ja) * 2000-02-21 2001-08-31 Hitachi Cable Ltd Nb3Sn系超電導線材
US6981309B2 (en) * 2003-10-17 2006-01-03 Oxford Superconducting Technology Method for producing (Nb, Ti)3Sn wire by use of Ti source rods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334929A (ja) * 1992-05-29 1993-12-17 Showa Electric Wire & Cable Co Ltd Nb3Sn超電導線の製造方法
US20020006527A1 (en) * 1996-03-07 2002-01-17 Yoshio Kubo Method for producing Nb-Sn compound superconducting wire precursor and wire
JP2004035940A (ja) * 2002-07-02 2004-02-05 Kobe Steel Ltd Nb3Sn系超電導線材用ブロンズ材およびこれを用いた超電導線材用複合材、並びに超電導線材
CN1972758A (zh) * 2004-02-19 2007-05-30 牛津超导技术公司 提高Nb3Sn超导线材中的临界密度
CN1832058A (zh) * 2005-03-10 2006-09-13 株式会社神户制钢所 制备Nb3Sn超导线的前体、Nb3Sn超导线以及其制备方法
JP2010097902A (ja) * 2008-10-20 2010-04-30 Kobe Steel Ltd Nb3Sn超電導線材製造用前駆体およびNb3Sn超電導線材
CN102925861A (zh) * 2012-11-20 2013-02-13 大连理工大学 具有高导电性和高热稳定性的Cu-Ni-Sn合金薄膜及其制备工艺
CN106170464A (zh) * 2014-02-18 2016-11-30 俄亥俄州立大学 超导线及其制备方法
CN104947084A (zh) * 2015-07-09 2015-09-30 成都点石创想科技有限公司 一种在导电金属基底上制备超导材料的方法
CN105321626A (zh) * 2015-11-25 2016-02-10 西部超导材料科技股份有限公司 一种低磁滞损耗内锡法制备Nb3Sn超导线材的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.EBRUZEK,ETC: "Effect of Heat Treatments on Superconducting Properties of Nb3Sn Strands Developed at GEC ALSTHONM", 《IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY》 *
CARLOS A.RODRIGUES,ETC: "Development, Heat Treatment Optimization and Microstructural Characterization of Nb3Sn Superconductor Wire", 《IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295242A (zh) * 2022-09-30 2022-11-04 西部超导材料科技股份有限公司 高临界电流密度的铌三锡超导股线的制备方法
CN115295242B (zh) * 2022-09-30 2023-01-24 西部超导材料科技股份有限公司 高临界电流密度的铌三锡超导股线的制备方法
CN116334375A (zh) * 2023-05-30 2023-06-27 西安聚能超导线材科技有限公司 铌三锡超导线材热处理方法、制备方法及铌三锡超导线材
CN116334375B (zh) * 2023-05-30 2023-08-11 西安聚能超导线材科技有限公司 铌三锡超导线材热处理方法、制备方法及铌三锡超导线材
CN116895405A (zh) * 2023-09-11 2023-10-17 西安聚能超导线材科技有限公司 一种Nb3Sn超导线材的分段式热处理方法
CN116895405B (zh) * 2023-09-11 2024-02-20 西安聚能超导线材科技有限公司 一种Nb3Sn超导线材的分段式热处理方法

Also Published As

Publication number Publication date
KR20180087874A (ko) 2018-08-02
KR102478208B1 (ko) 2022-12-19
US10825978B2 (en) 2020-11-03
US20180212136A1 (en) 2018-07-26
EP3355373B1 (en) 2021-03-03
CN108399974B (zh) 2023-02-24
JP2018120860A (ja) 2018-08-02
EP3355373A1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
CN108399974A (zh) 通过新型热处理提高Nb3Sn超导股线中的股线临界电流密度
Xu A review and prospects for Nb3Sn superconductor development
US11491543B2 (en) Method for producing an Nb3Sn superconductor wire
Huang et al. An efficient approach for superconducting joint of YBCO coated conductors
Lee et al. Niobium-titanium superconducting wires: Nanostructures by extrusion and wiredrawing
JP2002373534A (ja) 超電導線材とその作製方法及びそれを用いた超電導マグネット
Suenaga et al. Fabrication techniques and properties of multifilamentary Nb 3 Sn conductors
Field et al. Progress with Nb/sub 3/Sn conductors at oxford instruments, superconducting technology
Zhang et al. An investigation into the heat treatment tolerance of WST Nb 3 Sn strands produced for massive fusion coils
US20100031494A1 (en) powder and rod process and method of manufacture
US7887644B2 (en) Superconductive elements containing copper inclusions, and a composite and a method for their production
JP3577506B2 (ja) Cu添加Nb3Al極細多芯超伝導線材とその製造方法
JPH065129A (ja) NbTi合金系超電導線
Ghosh et al. Systematic Changes of the Nb-Sn Reaction With Time, Temperature, and Alloying in Restacked-Rod-Process (RRP) ${\hbox {Nb}} _ {3}{\hbox {Sn}} $ Strands
JP3945600B2 (ja) Nb 3 Sn超伝導線材の製造方法
Zhang et al. Investigation of ${\rm Nb} _ {3}{\rm Sn} $ Strand for ITER by Bronze Route
Lee et al. Advances in superconducting strands for accelerator magnet application
Iijima et al. Cu-added Nb/sub 3/Al multifilamentary superconductors having high J/sub c/in high fields
Iijima et al. Direct formation of A15 phase through RHQ treatment in RIT processed Nb/Al-Cu precursor wire
JP4386306B2 (ja) Nb3Al化合物系超電導線の製造方法
Slimani et al. Fabrication Technologies of Superconducting Cables and Wires
Tachikawa Recent developments in high-field superconductors
Kundu et al. Development of Nb3Sn based multi-filamentary superconductor wires for fusion reactor magnets
Thoener et al. Method for producing an Nb 3 Sn superconductor wire
Yao Development of Multifilamentary 122-Type IBS Tapes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant